
IUT
Université de Marne la Vallée

DUT 1re Année
Année 2012-2013

Prog UNIX : Programmation modulaire

TP n◦3

Dans tous les exercices, on veillera particulièrement à la lisibilité du code. Le but de ce TP
est de modulariser un code en vrac (pas écrit par vous même) pour en faire un projet bien
structuré. Dans un second temps, et pour les plus rapides, on veillera à améliorer le code.

Exercice 1 Modularisation d’un projet

Téléchargez l’archive code_en_vrac.tar.gz situé à l’adresse suivante :
http://www-igm.univ-mlv.fr/˜borie/cours/prog_sys/code_en_vrac.tar.gz
Cette archive contient un fichier de code écrit en langage C : code_en_vrac.c. Il y a aussi un
répertoire data avec un fichier repertoire.txt dedans.

Vous pouvez tenter de vérifier le bon (ou mauvais) fonctionnement de ce code en le com-
pilant avec la commande gcc -o test code_en_vrac.c -Wall -ansi puis en exécutant le
programme généré. L’exercice consiste maintenant à diviser ce code en plusieurs modules
pour en faciliter la manipulation. Ce code résout en partie ce qui vous a été demandé dans le
TP n◦2 : gérer un répertoire de personnes.

Parmi les difficultés de cet exercice :

• Gérer le découpage en module.

• Faire les fichiers d’en-tête proprement (utilisez le cours!).

• Inclure les bibliothèques standards stdio.h et string.h dans les fichiers de code que
lorsque c’est nécessaire. ÉVITEZ, autant que possible, l’inclusion des bibliothèques
dans les fichiers d’en-tête.

• Faire un Makefile adapté au projet ainsi divisé.

Exercice 2 Un main facile à utiliser

Une fois bien divisé, votre projet devrait comporter un fichiermain.c contenant une fonction
main (c’est d’ailleurs le seul fichier à contenir une telle fonction).

L’objectif de cet exercice est de réécrire la fonction main pour faciliter l’utilisation de
l’exécutable généré. Modifiez donc cette fonction main pour qu’elle donne l’affichage suivant:

Bienvenu dans le projet repertoire, faites un choix :

1 - Charger le repertoire depuis le fichier

2 - Afficher le repertoire courant

3 - Ajouter une fiche dans le repertoire courant

4 - Sauvegarder le repertoire courant

5 - Quitter

Votre choix :

?



Ensuite le code de votre fonction main devra faire le bon aiguillage suivant la fonctionnalité
demandée par l’utilisateur.

Utiliser un switch ... case est une bonne manière de faire.

Exercice 3 Fonctionnalités supplémentaires

Vous pouvez ajouter les fonctions suivantes à chaque fois dans le module approprié :

• Une fonction int compare_date(Date *d1, Date *d2) qui retourne 1 si la date *d1
est antérieure à la date *d2, −1 si la date *d1 est postérieure à la date *d2 et 0 si les deux
dates sont égales.

• Une fonction Fiche* recherche_fiche(Repertoire *R, char *mon) qui recherche si
le répertoire *R contient une fiche dont le nom de la personne est *nom. Si aucune fiche
est trouvée, la fonction retourne un pointeur NULL sinon elle retourne un pointeur vers
la première fiche trouvée.

• Une fonction void affiche_personne_mois(Repertoire *R, int mois) qui affiche
les fiches du répertoire *R où la personne correspondante est née durant le mois dont
le numéro est donné en argument mois.

• Une fonction void affiche_plus_jeune(Repertoire *R) qui demande à l’utilisateur
de saisir une date au clavier et affiche ensuite toutes les personnes nées après la date
donnée au clavier présente dans le répertoire *R.

Exercice 4 Finalisation du rendu

Voici le cahier des charges pour ce second TP :

• votre travail devra être rendu en pièce attachée d’un mail envoyé à une adresse com-
muniquée par votre chargé de TP,

• vous ne devrez envoyer qu’une seule pièce jointe au format tar.gz dont le nom devra
être : TP1_NOM_PRENOM.tar.gz où NOM est votre nom de famille et PRENOM votre prénom
(voir l’aide mémoire tar en ligne),

• le sujet de votre mail devra être : [DUT1 info][TP2 prog_sys] NOM PRENOM où NOM
devra être remplacé par votre nom de famille et PRENOM par votre prénom,

• votre rendu devra contenir au moins trois répertoires aux noms de doc ,sources, data
et un fichier nommé Makefile,

• une fois votre TP décompressé, la commande make devra compiler les sources C des
exercices situées dans le dossier sources et fabriquer un exécutable au nom adapté
qui se placera dans la racine de votre TP. La compilation devra être effectuée avec les
options -Wall et -ansi,

• L’exécutable de votre rendu devra tester, autant que possible, toutes les fonctions im-
plantées dans vos sources.

• la commande make clean devra effacer tous les exécutables générés lors de l’exécution
de la commande make.


