
Programmation C
Université de Marne la Vallée

ESIPE Informatique et Réseaux 1ère année
Informatique et Géomatique 1ère année

Programmation C
Exemple de correction TP 2

Voici un des SEULS corrigés de l’année (probablement le seul). Ce dernier est destiné à la
fois aux débutants mais aussi à ceux qui sont plus à l’aise. Ce corrigé se veut un peu comme
un exemple de proposition propre que l’on peut faire pour un TP au niveau bac+3.

Code sources :

fichier exo1.c :

1 # include <s t d i o . h>

2

3 / ∗ The c l a s s i c C H e l l o World program . ∗ /
4 i n t main (i n t argc , char ∗ argv []) {
5 p r i n t f (" Hello �World ! \ n") ;
6 return 0 ;
7 }

fichier exo2.c :

1 # include <s t d i o . h>

2

3 / ∗ P r i n t t h e sum o f two i n t e g e r s g i v e n by t h e u s e r in t h e t e r m i n a l . ∗ /
4 i n t main (i n t argc , char ∗ argv []) {
5 i n t a , b , sum ;
6

7 p r i n t f (" Give�me�two� i n t e g e r s � separated �by�a� space : � \ n") ;
8 scanf ("%d�%d" , &a , &b) ;
9 sum = a + b ;

10 p r i n t f (" The�sum� of �%d�and�%d� i s �%d \ n" , a , b , sum) ;
11 return 0 ;
12 }

fichier exo2_bis.c :

1 # include <s t d i o . h>

2 # include < s t d l i b . h>

3

4 / ∗ P r i n t t h e sum o f two i n t e g e r s g i v e n by t h e
5 u s e r a t c a l l o f t h e program . ∗ /
6 i n t main (i n t argc , char ∗ argv []) {
7 i n t a , b , sum ;
8

9 i f (argc != 3) {
10 f p r i n t f (s tderr , " Error : � t h i s �program�needs "
11 " � e x a c t l y �two� i n t e g e r s � as �arguments \ n") ;

12 return 1 ;
13 }
14 a = a t o i (argv [1]) ;
15 b = a t o i (argv [2]) ;
16 sum = a + b ;
17 p r i n t f (" The�sum� of �%d�and�%d� i s �%d \ n" , a , b , sum) ;
18 return 0 ;
19 }

fichier exo3.c :

1 # include <s t d i o . h>

2

3 / ∗ D i s p l a y n n−1 . . . 2 1 1 2 . . . n−1 n us ing f o r i n s t r u c t i o n s . ∗ /
4 void number_imperative (i n t n) {
5 i n t i ;
6

7 for (i=n ; i >0 ; i −−){
8 p r i n t f ("%d� " , i) ;
9 }

10 for (i =1 ; i <=n ; i ++){
11 p r i n t f ("%d� " , i) ;
12 }
13 p r i n t f (" \ n") ;
14 }
15

16 / ∗ D i s p l a y n n−1 . . . 2 1 1 2 . . . n−1 n us ing t h e r e c u r s i o n . ∗ /
17 void number_recursive (i n t n) {
18 i f (n >= 1) {
19 p r i n t f ("%d� " , n) ;
20 number_recursive (n−1) ;
21 p r i n t f ("%d� " , n) ;
22 }
23 }
24

25 i n t main (i n t argc , char ∗ argv []) {
26 i n t i = 1 0 ;
27

28 p r i n t f (" Imperative � vers ion \ n") ;
29 number_imperative (i) ;
30 p r i n t f (" Recursive � vers ion \ n") ;
31 number_recursive (i) ;
32 p r i n t f (" \ n") ;
33 return 0 ;
34 }

fichier exo4.c :

1 # include <s t d i o . h>

2

3 / ∗ D i s p l a y j u s t t h e i n t e g e r n . ∗ /

4 void pr in t_var (i n t n) {
5 p r i n t f (" Value� of � the � v a r i a b l e � : �%d \ n" , n) ;
6 }
7

8 / ∗ D i s p l a y t h e a d d r e s s o f t h e p o i n t e r and t h e p o i n t e d v a l u e . ∗ /
9 void p r i n t _ p o i n t e r (i n t ∗ p) {

10 p r i n t f (" Po in ter � address � : �%p�and� Pointed � value � : �%d \ n" , p , ∗p) ;
11 }
12

13 / ∗ S e t t h e p o i n t e d v a l u e ∗ p o f t h e p o i n t e r p t o n . ∗ /
14 void s e t _ p o i n t e r (i n t ∗ p , i n t n) {
15 ∗p = n ;
16 }
17

18 i n t main (i n t argc , char ∗ argv []) {
19 i n t a ;
20 i n t ∗ p=&a ;
21

22 pr in t_var (a) ;
23 a = 5 3 ;
24 pr in t_var (a) ;
25 p r i n t _ p o i n t e r (p) ;
26 s e t _ p o i n t e r (p , 4 2) ;
27 / ∗ s e t _ p o i n t e r a f f e c t t h e l o c a l v a r i a b l e ’ a ’
28 w i t h o u t t a k i n g i t a s an argument . ∗ /
29 p r i n t _ p o i n t e r (p) ;
30 pr in t_var (a) ;
31

32 return 0 ;
33 }

fichier exo5.c :

1 # include <s t d i o . h>

2

3 / ∗ Thi s program open i t s own s o u r c e f i l e
4 and d i s p l a y i t on t h e s t a n d a r d out pu t . ∗ /
5 i n t main (i n t argc , char ∗ argv []) {
6 FILE ∗ f i c h i e r ;
7 char c ;
8

9 f i c h i e r = fopen (" exo5 . c " , " r ") ;
10 while ((c = f g e t c (f i c h i e r)) != EOF) {
11 putchar (c) ;
12 }
13 return 0 ;
14 }

Makefile :

Makefile TP2 - Prog C IR1/IG1

all:

make exo1

make exo2

make exo3

make exo4

make exo5

exo1: exo1.c

gcc -o HelloWorld exo1.c -Wall -ansi

exo2: exo2.c exo2_bis.c

gcc -o Sum exo2.c -Wall -ansi

gcc -o Sum_bis exo2_bis.c -Wall -ansi

exo3: exo3.c

gcc -o Number exo3.c -Wall -ansi

exo4: exo4.c

gcc -o Pointer exo4.c -Wall -ansi

exo5: exo5.c

gcc -o Replicant exo5.c -Wall -ansi

clean:

rm HelloWorld

rm Sum

rm Sum_bis

rm Number

rm Pointer

rm Replicant

rm *~

Effets produits en machine :

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$ ls

exo1.c exo2_bis.c exo2.c exo3.c exo4.c exo5.c Makefile

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$ make

make exo1

make[1]: entrant dans le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

gcc -o HelloWorld exo1.c -Wall -ansi

make[1]: quittant le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

make exo2

make[1]: entrant dans le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

gcc -o Sum exo2.c -Wall -ansi

gcc -o Sum_bis exo2_bis.c -Wall -ansi

make[1]: quittant le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

make exo3

make[1]: entrant dans le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

gcc -o Number exo3.c -Wall -ansi

make[1]: quittant le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

make exo4

make[1]: entrant dans le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

gcc -o Pointer exo4.c -Wall -ansi

make[1]: quittant le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

make exo5

make[1]: entrant dans le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

gcc -o Replicant exo5.c -Wall -ansi

make[1]: quittant le répertoire « /home/nborie/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige »

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$ ls

exo1.c exo2_bis.c exo2.c exo3.c exo4.c exo5.c

HelloWorld Makefile Number Pointer Replicant Sum Sum_bis

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./HelloWorld

Hello World!

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./Sum

Give me two integers separated by a space:

234 4532

The sum of 234 and 4532 is 4766

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./Sum_bis 23

Error: this programm needs exactly two integers as arguments

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./Sum_bis 23 45

The sum of 23 and 45 is 68

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./Number

Imperative version

10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10

Recursive version

10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./Pointer

Value of the variable : 32767

Value of the variable : 53

Pointer address : 0x7fff6ddc84d4 and Pointed value : 53

Pointer address : 0x7fff6ddc84d4 and Pointed value : 42

Value of the variable : 42

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$./Replicant

#include <stdio.h>

/* This program open its own source file

and display it on the standard output. */

int main(int argc, char* argv[]){

FILE* fichier;

char c;

fichier = fopen("exo5.c", "r");

while ((c = fgetc(fichier)) != EOF){

putchar(c);

}

return 0;

}

nborie@perceval:~/Enseignement/Marne_2014_2015/C_IR1/tp/tp2/corrige$

Si ce TP avait été à rendre, il aurait fallu alors produire une archive tar.gz des fichiers
sources (les .c) avec le fichier Makefile. Le correcteur n’a plus qu’à taper make pour compiler
tous les exercices.

Ne pas oublier de faire make clean avant un rendu, le correcteur se moque de vos exécuta-
bles, il veut les sources!!!

Q: Ouais mais monsieur, il est super long votre corrigé !!! On n’a pas le temps de faire tout
ça en deux heures de TP !

R: Mais si! On va apprendre à programmer vite et bien. Les bonnes habitudes sont dures à
prendre mais en les pratiquant au plus vite et systématiquement, ce sont vos doigts qui vont
les mémoriser!

