
Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Computing invariants of permutation groups
using Fourier Transform

Nicolas Borie

March 1, 2011

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Introduction

Classical algorithms

Using Fourier Transform

Work of implementation

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Short presentation of the problem

I Data : Let C be the complex field. Let n be an integer such
that n > 1. Let G be a subgroup of Sn. (i.e. a group of
permutations)

I Fact : let R = C[x1, x2, . . . , xn]
G be the set of polynomials

invariant under the action of G . R is a graded connected
finitely generated algebra over C. It is also a free module over
the symmetric polynomials C[x1, x2, . . . , xn]

Sn .

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Short presentation of the problem

I Data : Let C be the complex field. Let n be an integer such
that n > 1. Let G be a subgroup of Sn. (i.e. a group of
permutations)

I Fact : let R = C[x1, x2, . . . , xn]
G be the set of polynomials

invariant under the action of G . R is a graded connected
finitely generated algebra over C. It is also a free module over
the symmetric polynomials C[x1, x2, . . . , xn]

Sn .

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

What does we want ?

I Goal : find the polynomials in R invariant under the action of
G which generates R as an algebra.

I Example : The family {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3}
generate C[x1, x2, x3]

s3 .
I Find the secondary invariants

(polynomials invariants under the action of G but not
invariants under Sn).

I x2
1 x2 + x2

2 x3 + x2
3 x1 is invariant under C3 =< (1, 2, 3) > but

not under the action of S3.
I (2009) algorithms and computers can compute it efficiently up

to n = 7 in characteristic 0.

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

What does we want ?

I Goal : find the polynomials in R invariant under the action of
G which generates R as an algebra.

I Example : The family {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3}
generate C[x1, x2, x3]

s3 .

I Find the secondary invariants
(polynomials invariants under the action of G but not
invariants under Sn).

I x2
1 x2 + x2

2 x3 + x2
3 x1 is invariant under C3 =< (1, 2, 3) > but

not under the action of S3.
I (2009) algorithms and computers can compute it efficiently up

to n = 7 in characteristic 0.

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

What does we want ?

I Goal : find the polynomials in R invariant under the action of
G which generates R as an algebra.

I Example : The family {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3}
generate C[x1, x2, x3]

s3 .
I Find the secondary invariants

(polynomials invariants under the action of G but not
invariants under Sn).

I x2
1 x2 + x2

2 x3 + x2
3 x1 is invariant under C3 =< (1, 2, 3) > but

not under the action of S3.
I (2009) algorithms and computers can compute it efficiently up

to n = 7 in characteristic 0.

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

What does we want ?

I Goal : find the polynomials in R invariant under the action of
G which generates R as an algebra.

I Example : The family {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3}
generate C[x1, x2, x3]

s3 .
I Find the secondary invariants

(polynomials invariants under the action of G but not
invariants under Sn).

I x2
1 x2 + x2

2 x3 + x2
3 x1 is invariant under C3 =< (1, 2, 3) > but

not under the action of S3.

I (2009) algorithms and computers can compute it efficiently up
to n = 7 in characteristic 0.

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

What does we want ?

I Goal : find the polynomials in R invariant under the action of
G which generates R as an algebra.

I Example : The family {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3}
generate C[x1, x2, x3]

s3 .
I Find the secondary invariants

(polynomials invariants under the action of G but not
invariants under Sn).

I x2
1 x2 + x2

2 x3 + x2
3 x1 is invariant under C3 =< (1, 2, 3) > but

not under the action of S3.
I (2009) algorithms and computers can compute it efficiently up

to n = 7 in characteristic 0.

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the
problem is using Groëbner basis. (an average limit is 7-8
variables...).

I Groëbner basis break the symmetries.

I Very heavy cost for products of two polynomials.

|G | = 100 (
100∑
i=1

αiX i)(
100∑
j=1

βjX j) =
10000∑
k=1

. . . (1)

I We make calculations in the whole algebra C[x1, x2, . . . , xn].

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the
problem is using Groëbner basis. (an average limit is 7-8
variables...).

I Groëbner basis break the symmetries.
I Very heavy cost for products of two polynomials.

|G | = 100 (
100∑
i=1

αiX i)(
100∑
j=1

βjX j) =
10000∑
k=1

. . . (1)

I We make calculations in the whole algebra C[x1, x2, . . . , xn].

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the
problem is using Groëbner basis. (an average limit is 7-8
variables...).

I Groëbner basis break the symmetries.
I Very heavy cost for products of two polynomials.

|G | = 100 (
100∑
i=1

αiX i)(
100∑
j=1

βjX j) =
10000∑
k=1

. . . (1)

I We make calculations in the whole algebra C[x1, x2, . . . , xn].

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of
Groëbner basis for Ideals. With this, we keep the use of
symmetries. (an average limit is 7-8-9 variables...)

I SAGBI-Groëbner basis preserves the symmetries.

I Relatively heavy cost for products of two polynomials.
I We make calculations in the algebra C[x1, x2, . . . , xn]

G

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of
Groëbner basis for Ideals. With this, we keep the use of
symmetries. (an average limit is 7-8-9 variables...)

I SAGBI-Groëbner basis preserves the symmetries.
I Relatively heavy cost for products of two polynomials.

I We make calculations in the algebra C[x1, x2, . . . , xn]
G

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of
Groëbner basis for Ideals. With this, we keep the use of
symmetries. (an average limit is 7-8-9 variables...)

I SAGBI-Groëbner basis preserves the symmetries.
I Relatively heavy cost for products of two polynomials.
I We make calculations in the algebra C[x1, x2, . . . , xn]

G

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Products in symbolic computation

The regular trick to simplify products in symbolic computation is
divided the problem . For univariate polynomials, the Fast Frourier
Transform appears today as one of the best method. (O(n log(n)))

I How put the calculation inside
a quotient C[X]G/ < (C[X]Sn)+ > ?

I How many points do we have to set ?
I How choosing evaluation points ?

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Products in symbolic computation

The regular trick to simplify products in symbolic computation is
divided the problem . For univariate polynomials, the Fast Frourier
Transform appears today as one of the best method. (O(n log(n)))

I How put the calculation inside
a quotient C[X]G/ < (C[X]Sn)+ > ?

I How many points do we have to set ?

I How choosing evaluation points ?

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Products in symbolic computation

The regular trick to simplify products in symbolic computation is
divided the problem . For univariate polynomials, the Fast Frourier
Transform appears today as one of the best method. (O(n log(n)))

I How put the calculation inside
a quotient C[X]G/ < (C[X]Sn)+ > ?

I How many points do we have to set ?
I How choosing evaluation points ?

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Goals of a new method

I We want to work in C[x1, x2, . . . , xn]
G/C[x1, x2, . . . , xn]

Sn or a
like (the important thing is to get rid of primary invariant)

I A controlled product relatively light. (a fixed cost not heavy...)

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Goals of a new method

I We want to work in C[x1, x2, . . . , xn]
G/C[x1, x2, . . . , xn]

Sn or a
like (the important thing is to get rid of primary invariant)

I A controlled product relatively light. (a fixed cost not heavy...)

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Some interesting point

Let ρ a n-th primitive root of unity. Let A = (1, ρ, ρ2, . . . , ρn−1) be
a point of Cn.

n∏
k=1

(X − ρk) = X n − 1

= (X − ρ)(X − ρ2) . . . (X − ρn)

= X n − (
n∑

k=1

ρk)X n−1 + · · ·+
n∏

k=1

ρk

= X n − e1(1, ρ, ρ2, . . . , ρn−1)X n−1 + . . .
· · ·+ (−1)nen(1, ρ, ρ2, . . . , ρn−1)

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

The trick for evaluation

Let ρ be a nth−primitive root of unity. Let e1, e2, . . . , en be the
elementary symmetric functions. We have

e1(1, ρ, ρ2, . . . , ρn−1) = 0
e2(1, ρ, ρ2, . . . , ρn−1) = 0

. . . = 0
en−1(1, ρ, ρ2, . . . , ρn−1) = 0

en(1, ρ, ρ2, . . . , ρn−1) = (−1)n+1

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Evaluations points

Let L = {σ((1, ρ, ρ2, . . . , ρn−1))|σ ∈ Sn/G}
I It define n!

|G | point as the rank of the module :
C[x1, x2, . . . , xn]

G/C[x1, x2, . . . , xn]
Sn

I Symmetric polynomials vanishes of the computations (They
are send onto C(1, 1, 1, . . . , 1))

I The product of two polynomials in completely controlled, it is
a pointwise product of two vectors of evaluations of size n!

|G |
with element in C(ρ).

I Theorem
The vectors of evaluation of secondary invariants span C

n!
|G |

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Evaluations points

Let L = {σ((1, ρ, ρ2, . . . , ρn−1))|σ ∈ Sn/G}
I It define n!

|G | point as the rank of the module :
C[x1, x2, . . . , xn]

G/C[x1, x2, . . . , xn]
Sn

I Symmetric polynomials vanishes of the computations (They
are send onto C(1, 1, 1, . . . , 1))

I The product of two polynomials in completely controlled, it is
a pointwise product of two vectors of evaluations of size n!

|G |
with element in C(ρ).

I Theorem
The vectors of evaluation of secondary invariants span C

n!
|G |

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Evaluations points

Let L = {σ((1, ρ, ρ2, . . . , ρn−1))|σ ∈ Sn/G}
I It define n!

|G | point as the rank of the module :
C[x1, x2, . . . , xn]

G/C[x1, x2, . . . , xn]
Sn

I Symmetric polynomials vanishes of the computations (They
are send onto C(1, 1, 1, . . . , 1))

I The product of two polynomials in completely controlled, it is
a pointwise product of two vectors of evaluations of size n!

|G |
with element in C(ρ).

I Theorem
The vectors of evaluation of secondary invariants span C

n!
|G |

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Evaluations points

Let L = {σ((1, ρ, ρ2, . . . , ρn−1))|σ ∈ Sn/G}
I It define n!

|G | point as the rank of the module :
C[x1, x2, . . . , xn]

G/C[x1, x2, . . . , xn]
Sn

I Symmetric polynomials vanishes of the computations (They
are send onto C(1, 1, 1, . . . , 1))

I The product of two polynomials in completely controlled, it is
a pointwise product of two vectors of evaluations of size n!

|G |
with element in C(ρ).

I Theorem
The vectors of evaluation of secondary invariants span C

n!
|G |

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Implementation in Sage

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

Benchmark

I really need a standard machine to run my computations and make
acceptable comparisons.

Benchmark : TODO

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

Introduction
Classical algorithms

Using Fourier Transform
Work of implementation

The End.

Thank you.

A powerful system of sharing :
http://www.sagemath.org/

A friendly community :
http://combinat.sagemath.org/

Nicolas Borie Computing invariants of permutation groups using Fourier Transform

	Introduction
	Classical algorithms
	Using Fourier Transform
	Work of implementation

