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Short presentation of the problem

I Data : Let C be the complex field. Let n be an integer such
that n > 1. Let G be a subgroup of Sn. (i.e. a group of
permutations)

I Fact : let R = C[x1, x2, . . . , xn]
G be the set of polynomials

invariant under the action of G . R is a graded connected
finitely generated algebra over C. It is also a free module over
the symmetric polynomials C[x1, x2, . . . , xn]

Sn .
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What does we want ?

I Goal : find the polynomials in R invariant under the action of
G which generates R as an algebra.

I Example : The family {x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3}
generate C[x1, x2, x3]

s3 .
I Find the secondary invariants

(polynomials invariants under the action of G but not
invariants under Sn).

I x2
1 x2 + x2

2 x3 + x2
3 x1 is invariant under C3 =< (1, 2, 3) > but

not under the action of S3.
I (2009) algorithms and computers can compute it efficiently up

to n = 7 in characteristic 0.
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Using Groëbner basis

Choosing an order on the variables, the usual way to dealt the
problem is using Groëbner basis. (an average limit is 7-8
variables...).

I Groëbner basis break the symmetries.

I Very heavy cost for products of two polynomials.

|G | = 100 (
100∑
i=1

αiX i )(
100∑
j=1

βjX j) =
10000∑
k=1

. . . (1)

I We make calculations in the whole algebra C[x1, x2, . . . , xn].
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Using SAGBI-Groëbner basis

To go further in the computation, we can use an analogue of
Groëbner basis for Ideals. With this, we keep the use of
symmetries. (an average limit is 7-8-9 variables...)

I SAGBI-Groëbner basis preserves the symmetries.

I Relatively heavy cost for products of two polynomials.
I We make calculations in the algebra C[x1, x2, . . . , xn]

G
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Products in symbolic computation

The regular trick to simplify products in symbolic computation is
divided the problem . For univariate polynomials, the Fast Frourier
Transform appears today as one of the best method. (O(n log(n)))

I How put the calculation inside
a quotient C[X ]G/ < (C[X ]Sn)+ > ?

I How many points do we have to set ?
I How choosing evaluation points ?
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Goals of a new method

I We want to work in C[x1, x2, . . . , xn]
G/C[x1, x2, . . . , xn]

Sn or a
like (the important thing is to get rid of primary invariant)

I A controlled product relatively light. (a fixed cost not heavy...)
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Some interesting point

Let ρ a n-th primitive root of unity. Let A = (1, ρ, ρ2, . . . , ρn−1) be
a point of Cn.

n∏
k=1

(X − ρk) = X n − 1

= (X − ρ)(X − ρ2) . . . (X − ρn)

= X n − (
n∑

k=1

ρk)X n−1 + · · ·+
n∏

k=1

ρk

= X n − e1(1, ρ, ρ2, . . . , ρn−1)X n−1 + . . .
· · ·+ (−1)nen(1, ρ, ρ2, . . . , ρn−1)
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The trick for evaluation

Let ρ be a nth−primitive root of unity. Let e1, e2, . . . , en be the
elementary symmetric functions. We have

e1(1, ρ, ρ2, . . . , ρn−1) = 0
e2(1, ρ, ρ2, . . . , ρn−1) = 0

. . . = 0
en−1(1, ρ, ρ2, . . . , ρn−1) = 0

en(1, ρ, ρ2, . . . , ρn−1) = (−1)n+1
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Evaluations points

Let L = {σ((1, ρ, ρ2, . . . , ρn−1))|σ ∈ Sn/G}
I It define n!

|G | point as the rank of the module :
C[x1, x2, . . . , xn]

G/C[x1, x2, . . . , xn]
Sn

I Symmetric polynomials vanishes of the computations (They
are send onto C(1, 1, 1, . . . , 1) )

I The product of two polynomials in completely controlled, it is
a pointwise product of two vectors of evaluations of size n!

|G |
with element in C(ρ).

I Theorem
The vectors of evaluation of secondary invariants span C

n!
|G |
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Implementation in Sage
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Benchmark

I really need a standard machine to run my computations and make
acceptable comparisons.

Benchmark : TODO
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The End.

Thank you.

A powerful system of sharing :
http://www.sagemath.org/

A friendly community :
http://combinat.sagemath.org/
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