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Simultaneous Cast Shadows, Illumination &
Geometry Inference Using Hypergraphs
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Abstract—The cast shadows in an image provide important information about illumination and geometry. In this paper, we utilize
this information in a novel framework, in order to jointly recover the illumination environment, a set of geometry parameters and
an estimate of the cast shadows in the scene, given a single image and coarse initial 3D geometry. We model the interaction
of illumination and geometry in the scene and associate it with image evidence for cast shadows using a higher-order Markov
Random Field (MRF) illumination model, while we also introduce a method to obtain approximate image evidence for cast
shadows. Capturing the interaction between light sources and geometry in the proposed graphical model necessitates higher-
order cliques and continuous-valued variables, which make inference challenging. Taking advantage of domain knowledge, we
provide a two-stage minimization technique for the MRF energy of our model. We evaluate our method in different datasets,
both synthetic and real. Our model is robust to rough knowledge of geometry and inaccurate initial shadow estimates, allowing
a generic coarse 3D model to represent a whole class of objects for the task of illumination estimation, or the estimation of
geometry parameters to refine our initial knowledge of scene geometry, simultaneously with illumination estimation.

Index Terms—Markov random fields, Photometry, Shading, Image models
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1 INTRODUCTION
The appearance of a scene depends considerably on
the illumination conditions, which therefore influence
a large number of computer vision tasks. Illumination
is one of the three components of the image formation
process, along with the 3D geometry of the scene and
the reflectance properties of the surfaces in it. The
interaction among these three components means that
estimation of one or two of them requires knowledge
or strong assumptions about the rest ([18], [23], [26],
[28], [29]). Previous work in illumination estimation
usually assumes known scene geometry and makes
strong assumptions about reflectance. Our goal in
this work is, through a statistically robust inference
approach, to diminish the effect violations of such
assumptions have on the final illumination estimate,
based on the information contained in cast shadows.
Compared to illumination cues such as shading or
specularities, cast shadows are relatively stable in the
presence of large inaccuracies in the knowledge of
geometry and reflectance.

Estimating illumination from cast shadows implies
obtaining an estimate of the cast shadows in the
image, which can be challenging in complex images.
Shadow detection, in the absence of illumination esti-
mation or knowledge of 3D geometry is a well stud-
ied problem. Salvador et al. [25] use invariant color
features to segment cast shadows in still or moving
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images. Finlayson et al. [5], [4] propose illumination
invariant features to detect and remove shadows from
a single image. Their method makes several assump-
tions about the lights and the camera and its perfor-
mance reduces in lower-quality consumer-grade pho-
tographs. Recently, Zhu et al. [31] combine a number
of different features in a probabilistic framework to
recognize shadows in monochromatic images, while
in [16], Lalonde et al. propose a learning approach
to detect shadows in consumer-grade photographs,
focusing on shadows cast on the ground. Guo et al.
[22] consider image regions, combining classifiers for
individual regions as well as region pairs in a graph
in order to label the shadow regions.

Much research in the computer vision community
has dealt with extracting illumination from shading,
specular reflections or cast shadows. Yang and Yuille
[29] estimate multiple light sources from the intensity
along occluding boundaries and critical points; Wang
et al. [28] estimate multiple directional illuminants
utilizing both shading and shadows, assuming known
scene geometry. Sato et al. [26] estimate illumination
from cast shadows, assuming known geometry illumi-
nated by a set of infinitely distant light sources, cast-
ing shadows onto a planar lambertian surface. Their
method uses non-negative least squares optimization
to obtain an illumination estimate. Hara et al. [9]
remove the distant illumination assumption, while es-
timating simultaneously illumination and reflectance.
In [30], Zhou et al. propose a unified framework to
estimate both distant and point light sources.

The prior art on illumination estimation from shad-
ows cast on textured surfaces is limited. Sato et al.
[26] require an extra image to deal with texture. Li
et al. [18] propose a method that integrates multiple
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cues from shading, shadow, and specularities, utiliz-
ing physical consistencies between lighting cues to
handle textured surfaces. Kim et al. [12] use regular-
ization by correlation to estimate illumination from
shadows in the presence of texture, but require ex-
tra user-specified information and assume lambertian
reflectance and known geometry. Panagopoulos et al.
[19] propose a method able to deal with inaccurate ge-
ometry and texture, but the shadow detection results
on textured surfaces are limited. In the more special
case of daytime outdoor scenes, Lalonde et al. [15]
propose an approach that combines cues from the sky,
cast shadows on the ground and surface brightness to
estimate illumination where the sun is the single light
source, which does not require known 3D geometry
but is not applicable to general scenes.

In general, illumination estimation necessitates
strong assumptions about geometry. The main goal
of this paper is to relax such assumptions, so that
simplistic geometry approximations, like the ones that
can be extracted automatically or provided from lim-
ited user input, will suffice to estimate the illuminants
in a scene. To this end, we propose a novel framework
to recover the illumination environment of a scene,
a rough cast shadow estimate and a set of geome-
try parameters from a single observed image, given
coarse initial 3D geometry. With our method, very
coarse approximations of geometry, such as bounding
boxes, are enough to estimate illumination, while the
geometry of the occluders can be refined as part of
the illumination estimation process. The initial ap-
proximate geometric information we require could be
derived as part of more general scene understanding
techniques, while enabling illumination estimation to
be incorporated in the scene understanding loop;
the obtained illumination and geometry information
could be a crucial contextual prior in addressing
various other scene understanding questions.

Graphical models can efficiently incorporate differ-
ent cues within a unified framework [27]. In order
to deal with the complex illumination/geometry/
shadows estimation problem robustly in a flexible and
extensible framework, we jointly model the geometry,
light sources, and shadow values within an MRF
model. All the latent variables can then be simultane-
ously inferred through the minimization of the energy
of the MRF. This work was originally reported in [21].

The MRF model we propose captures the interac-
tion between geometry and light sources and com-
bines it with image evidence of cast shadows. Cast
shadow detection is well-posed in terms of graph
topology, since it can be expressed using a graph in
the form of a 2-dimensional 4-connected lattice, where
each image pixel corresponds to a graph node. Mod-
eling in the MRF model the creation of cast shadows
from the interaction of light sources and geometry, on
the other hand, implies a potential dependence be-
tween each pixel and all nodes representing the light

sources and the occluder geometry. This generally re-
sults in higher-order cliques in the graph representing
our MRF model. Further complications arise by the
fact that the number of light sources is unknown,
resulting in unknown MRF topology, and that the
search space is continuous. We are able to reduce the
search space and identify the MRF topology through
an initial illumination estimate obtained using a vot-
ing algorithm. Inference in higher-order MRF models
has received a lot of attention recently [11], [13]; here
we take advantage of domain knowledge to describe a
two-stage minimization approach that can effectively
minimize the MRF energy. Our approach is based on
a decomposition of the energy and requires solving
only pairwise MRF problems. We make the following
assumptions (common in illumination modeling): an
initial coarse 3D geometry is known, the illumination
environment can be approximated by a set of distant
light sources, the reflectance of surfaces is roughly
lambertian and there are no interreflections. Further-
more, if estimation of occluder geometry parameters
is desired, these occluders have to be identified in the
original image by providing a 2D bounding box, and
one or more candidate geometric models. The shadow
detection method of Sec. 5 assumes that shadows are
cast on flat surfaces. Our illumination MRF model
does not rely on this assumption, however.

To obtain the initial shadow estimate required by
our method, we describe a method based on the
observation that illumination affects the whole image
in a consistent way. Therefore, features such as hue
or brightness changes across shadow edges are con-
sistent across the whole image, a fact that we exploit
to detect shadows. Our approach is also aided by a
simple measure of image brightness, the bright channel
[20]. It should be noted, however, that the proposed
MRF model can incorporate other shadow cues.

We provide qualitative evaluation of our method
on different datasets, including images captured in
a controlled environment, car images collected from
Flickr and images from the Motorbikes class of Cal-
tech 101 [17]. We also provide quantitative results on a
synthetic dataset. The experimental evaluation shows
that our method is robust enough to be able to use
geometry consisting of bounding boxes or a common
rough 3D model for a whole class of objects, while
it can also be applied to scenes where some of our
assumptions are violated. Results on geometry param-
eter estimation show that through our model we can
extract useful information about object geometry and
pose from the cast shadows.

This paper is organized as follows: Sec. 2 presents
related fundamentals; Sec. 3 describes the MRF model
to jointly estimate the shadows, illumination and ge-
ometry parameters. In Sec. 4 we discuss the inference
process. Section 5 presents the shadow cue we used,
the bright channel cue. Experimental evaluation is
provided in Sec. 6, and Sec. 7 concludes the paper.
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2 PROBLEM DESCRIPTION

The input required by our method is a single color
image I, an approximate 3D model of the geometry
G of the scene and approximate camera parameters.
If geometry parameter estimation is desired, a 2D
bounding box and a set of candidate geometric mod-
els should be provided for each identified occluder,
as described in Sec. 2.1.

We adopt a commonly used set of assumptions: the
surfaces in the scene exhibit lambertian reflectance,
and the scene is illuminated by N point light sources
at infinity, as well as some constant ambient illumi-
nation term. Under these assumptions, the outgoing
radiance at a pixel i can be expressed as:

Lo(p) = ρp

(
α0 +

N∑
i=1

Vp(di)αi max{−di · np, 0}

)
,

(1)
where ρp is the albedo at point p with normal np, α0 is
the ambient intensity, αi, i ∈ {1, ..., N} is the intensity
of the i-th light source, di is the illumination direction
of the i-th light source, and Vp(di) is a visibility term
for direction di at point p:

Vp(di) =

{
1, if ray to p along di intersects G
0, otherwise (2)

Therefore, illumination information is fully captured
by parameters θL = {α0, α1, ..., αN ,d1, ...,dN}, where
the set of lights L includes the ambient light.

If we assume a simplified linear model for the
camera sensors, the observed value at pixel (x, y) is:

I(x, y) = cLo(p) + ε, (3)

where c is an exposure parameter and ε is noise. Since
we can only estimate light source intensities up to
scale, we can safely assume that c = 1.

In our method, we first obtain an initial cast shadow
estimate from the input image I (see Sec. 5). This
estimate should contain the shading intensity at each
pixel in shadow, without any variations due to albedo
ρ, and the non-shadow pixels of I should be masked
out. Ideally, therefore, the value of each shadow pixel
(x, y) in such a shadow image Is would be the shading
at that point due to the non-occluded light sources:

Is(x, y) = α0 +

N∑
i=1

Vp(di)αi max{di · np, 0}, (4)

where p is the 3D point where (x, y) projects to. In
practice we can obtain a cast shadow cue Îs which is
a rough approximation of Is.

2.1 Geometry modeling
One of the goals of this work is to provide a model
that allows reasoning about illumination to be incor-
porated in more complex scene understanding tasks.
Towards this goal, we describe here how we can in-
corporate objects with unknown parameters to be es-
timated to our model. Estimation of these parameters

happens jointly with the estimation of illumination
and cast shadows. Different parametrizations of the
scene geometry could be handled by our model with-
out significant changes, as long as the total number
of geometry parameters remains small.

As mentioned, G is the known, approximate 3D
geometry which is provided as input. We assume
that there may also exist a (small) set of objects O,
which are the parametric objects to be estimated. The
information we assume as known about the objects
O is restricted, for each object i, to a 2D bounding
box that bounds the object in the image, and a set
GO(i) of potential approximate 3D models for this
object. The potential 3D models can be thought as the
geometric models representing common instances of
the class to which object i belongs (e.g. if the object
is a car, we could assume a small number of 3D
models representing common car shapes). Our goal is
to recover, concurrently with illumination estimation,
the most probable geometry and the pose (orienta-
tion/translation/scale) for each of these objects, in
order to best approximate the real scene geometry.

In the following sections we will present a model to
jointly estimate the shadows, the illumination param-
eters θL and a set of geometry parameters from the
approximate shadow cue Îs. In section 5 we present
the shadow cue which we used to obtain our results.

3 GLOBAL MRF FOR CAST SHADOW FOR-
MATION

We associate the image-level evidence for cast shad-
ows with high-level information about geometry and
the lights through the MRF model described below.

3.1 Markov Random Field Formulation
The proposed MRF consists of one node for each
image pixel i ∈ P , one node for each light source
l ∈ L, one node for the ambient intensity α0 and one
node for the geometry of each object k in the set of
objects O. Each pixel node, all the light nodes and all
the object nodes compose a high-order clique c ∈ C.
The 4-neighborhood system [1] composes the edge set
E between pixels. The energy of our MRF model has
the following form:

E(x) =
∑
i∈P

φp(xi) +
∑

(i,j)∈E

ψp(xi, xj) +
∑
k∈O

φk(xk)

+
∑
l∈L

φl(xl,xO) +
∑
i∈P

ψc(xi,xL,xO), (5)

where φp(xi) and φk(xk) are the singleton poten-
tials for pixel nodes and object nodes respectively,
ψp(xi, xj) is the pairwise potential defined on a pair
of neighboring pixels, φl(xl,xO) is the clique poten-
tial expressing a shadow shape-matching prior, and
ψc(xi,xL,xO) is the high-order potential associating
all lights in L, all objects in O and a pixel xi.
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The latent variable xi for pixel node i ∈ P repre-
sents the intensity value for that pixel. We uniformly
discretize the real intensity value [0, 1] into N bins
to get the candidate set Xi for xi. The latent variable
xl for light node l ∈ L is composed of the intensity
and the direction of the light. We sample the space
in the vicinity of the light configuration obtained by
the voting approach explained later, to initialize the
candidate set Xl for xl (see details later in this section).

By xO we signify the labels corresponding to the
objects in O. The label xOk of object node k determines
a set of parameters (gk, φk, tx, ty, tz, sx, sy, sz), where
gk is an index into GO(k) that determines which of the
potential object geometries is selected for label xOk , φk
is the azimuth orientation of the object, (tx, ty, tz) is
the translation and (sx, sy, sz) is the scale of the object.

3.1.1 Singleton Potentials for Pixel Nodes
This term encodes the similarity between the esti-
mated intensity value at pixel i and the shadow cue
value Îs(i) and is defined as:

φp(xi) = ws min{
∣∣∣xi − Îs(i)∣∣∣ , tp}. (6)

where an upper bound tp for this cost term is used
to avoid over-penalizing outliers and ws is a positive
weight coefficient (same for wl, wp and wc below).

3.1.2 Singleton Potentials for Geometry
In our attempt to extract information about the geom-
etry of object k, in the model of Eq.5 we obviously take
into account the information in the shadow cast by
object k. However, the cast shadow provides only one
projection of the object, which is often insufficient to
extract useful information about the object shape. We
can, however, obtain a second projection of the object,
the one onto the image plane, which will provide us
with extra information to make reasoning about the
object pose and shape possible.

To obtain the shape of the object on the image
plane, we use GrabCut [24] with the user-provided 2D
bounding box for the object as input. GrabCut gives
us a foreground/background segmentation, where
pixels in the foreground F are the pixels most likely
to belong to the object contained in the initial 2D
bounding box.

The singleton potentials φk(xk) penalize geometry
labels xk that are inconsistent with the extracted shape
F of the object k ∈ O in the image. This potential
also penalizes geometry labels xk that correspond to
a scale that significantly deforms the initial geometry.
The form of the potential is:

φk(xk) =
∑
i∈P

(F(i)−Mxk
(i))

2
+ws

∥∥∥x(scale)
k − [1, 1, 1]

∥∥∥
2
,

(7)
where x

(scale)
k is a vector (sx, sy, sz) determining the

object scale corresponding to label xk, F is the object

mask obtained by GrabCut:

F(i) =

{
−1 if i ∈ background
+1 if i ∈ foreground (8)

andM is the mask corresponding to the projection IOk
of the geometry assigned to object k from label xk, at
the corresponding rotation, translation and scale:

M(i) =

{
−1 if i /∈ IOk
+1 if i ∈ IOk

. (9)

As demonstrated in our experiments (Fig.10), the
obtained mask M is not by itself adequate for deter-
mining the geometry parameters. The combination of
M with the information contained in shadow regions
in our MRF model, however, allows us to obtain a
good estimate of the geometry parameters.

3.1.3 Pairwise Potentials
We adopt the well-known Ising prior [7] to define the
pairwise potential between neighboring pixels (i, j) ∈
E to favor neighboring pixels having the same value:

ψp(xi, xj) =

{
wp if xi 6= xj
0 if xi = xj

(10)

3.1.4 Shadow Shape-matching Prior
Terms φl(xl,xO) incorporate into the MRF model a
shadow shape-matching prior for light l, in order to
favor illumination/geometry configurations generat-
ing shadows that match observed shadow outlines.

We apply gaussian smoothing and the Sobel edge
detector [8] to detect edges in the shadow cue image.
Let τ(i) ∈ [0, 2π) be the angle of the gradient at pixel
i with the x-axis, and τ̂(i) ∈ {0,K− 1} a quantization
of τ(i). For each possible direction d ∈ {0,K − 1}, we
compute a distance map υd so that, for pixel i, υd(i)
is the distance from pixel i to the closest edge pixel
of orientation d.

For pixel i with gradient angle τ(i), the distance
function is computed by interpolating between the
distance map values for the two closest quantized
orientations:

distτ(i)(i) = (1− λ) · υτ̂(i)(i) + λ · υτ̂(i)+1(i), (11)

λ =

{
K · τ(i)

2π

}
, (12)

where {.} indicates the fractional part. In our experi-
ments, we chose K = 4.

The shape-matching prior expresses the quality of
the match between the observed edges in the shadow
cue image and the edges of the synthetic shadow Sl
associated with xl and geometry configuration xO:

φl(xl,xO) = wl
1

|ESl(xl,xO)|
∑

i∈ESl (xl,xO)

distτSl (i)(i),

(13)
where ESl(xl,xO) is the set of all pixels that lie on
edges of the shadow Sl generated by light label xl and
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τSl(i) is the gradient angle of the synthetic shadow
edge generated by xl at pixel i. To determine the set
of shadow edge pixels ESl(xl,xO), we generate the
shadow Sl created by light label xl and the geometry
xO and then apply gaussian smoothing and the Sobel
edge detector. The set ESl(xl,xO) contains all pixels
whose gradient magnitude is above θe.

3.1.5 Higher-order Potentials
The higher-order terms ψc(xi,xL,xO) impose consis-
tency between the light source labels xL, the geometry
labels xO and the pixel intensity values.

Let S be the synthetic shadow, generated by light
configuration xL and geometry configuration xO. The
intensity at pixel i ∈ S is:

s′i(xL,xO) = xα0 +
∑
l∈L

xαl Vi(x
dir
l |xO)max{−xdirl · n(i), 0},

(14)
where xα0 corresponds to the ambient intensity, xαl is
the light intensity component of xl, xdirl is the light
direction component, n(i) is the normal at 3D point p
imaged at pixel i and Vi(x

dir
l ) ∈ {0, 1} is the visibility

term for light direction xdirl at 3D point p (cf. Eq.2).
For pixels i /∈ S , we set s′i(xL) = 1, according to the
definition of our shadow cue Is. The clique potential
is defined as:

ψ(1)
c (xi,xL,xO) = wc min{(s′i(xL,xO)−xi)2, tc}, (15)

where tc is also an upper bound to avoid over-
penalizing outliers.

In cases where the geometry G is far from the real
scene geometry, a light configuration that does not
generate any visible shadows in the image might re-
sult to a lower MRF energy than the true light source.
Similarly, if there are falsely identified shadows cover-
ing a large portion of the image, a configuration where
the whole image is in shadow (light source under the
ground plane) might correspond to a lower energy. To
avoid these degenerate cases, we introduce the term
ψ

(2)
c (xL,xO), which assigns a very high penalty to

light configurations that do not generate any visible
shadows or that generate shadows at every pixel. The
final form of the clique potential is:

ψc(xi,xL,xO) = ψ(1)
c (xi,xL,xO) + ψ(2)

c (xL,xO). (16)

3.2 Initializing the MRF Model
As mentioned earlier, the continuous search space
complicates inference in our MRF model. Further-
more, in our discussion of the model so far, we
assumed that the number of light sources |L| is
known. In practice, however, |L| may be unknown,
which results in unknown MRF topology. To deal with
these two issues, we use a rough initial illumination
estimate both to determine |L|, if it is unknown, and
to set the initial values of the light source variables,
before inference begins.

To obtain this rough illumination estimate, we use
the greedy approach described in Algorithm 1, based

Algorithm 1 Voting for initial illumination estimate
Lights Set: L ← ∅
Direction Set: D ← all the nodes of a unit geodesic sphere
Pixel Set: P ← all the pixels in the observed image
loop

votes[d] ← 0, ∀d ∈ D
for all pixel i ∈ P do

for all direction d ∈ D \ L do
if Is(i) < θS and ∀d′ ∈ L, Vi(d′) = 0 then

if Vi(d) = 1 then votes[d]← votes[d] + 1
else

if Vi(d) = 0 then votes[d]← votes[d] + 1
d∗ ← argmaxd(votes[d])
Pd∗ ← {i|ci(d∗) = 1 and ∀d 6= d∗, ci(d) = 0}
αd∗ ← median

{
1−Is(i)

max{−n(p(i))·d∗,0}

}
i∈Pd∗

if αd∗ < εα then
stop the loop

L ← L ∪ {(d∗, αd∗)}

on the shadow cue Îs and geometry G. We examine
a fixed set of possible illumination directions, corre-
sponding to the nodes of a geodesic sphere [26]. In
each iteration of this algorithm, the pixels in shadow,
which are not explained by already discovered light
sources, vote for all occluded illumination directions.
Pixels not in shadow vote for all directions that are not
occluded. After all pixels cast a vote, the most popular
direction is chosen as the direction of the new light
source. Having the light source direction, we estimate
the light source intensity using the median of local
intensity estimates from each pixel in the shadow of
this light source, and the new light source is added
to the set of discovered light sources. The algorithm
stops when the estimated intensity of the new light
source is near zero, meaning that it has no significant
contribution to the observed shadows.

4 INFERENCE

We simultaneously estimate the cast shadows, illumi-
nation and geometry parameters by minimizing the
MRF’s energy defined in Eq. 5:

xopt = arg min
x
E(x) (17)

Minimizing this energy, however, is challenging, be-
cause our MRF model contains high-order cliques of
size up to |L|+ |O|+ 1.

To efficiently perform inference, we can split the
minimization of the energy in Eq.5 in two stages [2].
In the light and geometry parameter selection stage,
we choose a candidate set of light and geometry pa-
rameters for which we will compute the MRF energy,
and if this energy is lower than the current minimum,
we accept them. In the pixel label selection stage,
assuming fixed light and geometry parameters, we
compute the MRF energy solving a pairwise MRF.

If we assume that the light parameters are fixed, the
high-order clique potentials ψ(1)

c in Eq.15, which are
part of ψc, become singleton potentials of the form:
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ψ(1)
c (xi|xL,xO) = wc min{(s′i(xL,xO)− xi)2, tc}. (18)

This way, for a fixed light configuration xL and a
fixed geometry configuration xO, after we split ψc in
ψ

(1)
c and ψ

(2)
c as in Eq.16, we can rewrite the energy

of the MRF model in Eq.5 as:

E(x) = EI(x|xL,xO) + EL(xL,xO) + EG(xO), (19)

where

EI(x|xL,xO) =
∑
i∈P

(
φp(xi) + ψ(1)

c (xi|xL,xO)
)

+
∑

(i,j)∈E

ψp(xi, xj) (20)

EL(xL,xO) =
∑
l∈L

(
φl(xl) + |P|ψ(2)

c (xL,xO)
)
, (21)

EG(xO) =
∑
k∈O

φk(xk) (22)

are the energy terms associated with the (fixed) light
configuration xL and the (fixed) geometry configura-
tion xO but independent of the per-pixel variables.

For a given light configuration xL and geometry
configuration xO, the energy EI(x|xL,xO) can be
minimized using any inference algorithm for pairwise
MRFs. The speed of the chosen algorithm is, however,
important, because the energy EI(x|xL,xO) is mini-
mized many times (for different light and geometry
configurations). The FastPD algorithm [14] is a fitting
choice and was adopted in our experiments.

The energy minimum minx{EI(x|xL,xO)} changes
with different light configurations and different ge-
ometry configurations. To minimize E(x), a (blocked)
coordinate descent approach in the light and geome-
try parameter domain is used.

Let x̂
(s−1)
L , x̂(s−1)

O be the set of light and geometry
parameters that correspond to the minimum energy
encountered up to iteration s − 1. At iteration s,
we generate proposed light labels x

(s)
L and geometry

labels x
(s)
O by sampling the light parameter space

around the current light estimate x̂
(s−1)
L and the ge-

ometry parameter space around the current geometry
configuration estimate x̂

(s−1)
O . We then compute the

total MRF energy as

E(s)(x) = min
x
{EI(x|x(s)

L ,x
(s)
O )}

+EL(x
(s)
L ,x

(s)
O ) + EG(x

(s)
O ), (23)

which includes minimizing the pairwise energy
EI(x|x(s)

L ,x
(s)
O ). If the new energy E(s)(x) is lower

than the previous lowest energy, we keep the pro-
posed illumination and geometry labels x

(s)
L and x

(s)
O ,

otherwise they are discarded.
As the number of geometry and illumination pa-

rameters is increasing, the choice of which dimensions
of the illumination-geometry parameter domain to
re-sample in order to generate proposals x

(s)
L and

x
(s)
O becomes crucial for the effectiveness of the min-

imization. In our experiments we used the following
proposal schedule: At some iteration s, a single light
source l is chosen, and new values are generated only
for the parameters of light source l and the ambient
intensity to produce x

(s)
L . At iteration s+1, new values

for the azimuth rotation and geometry class label of
a single object k are generated to produce x

(s+1)
O . At

iteration s+2 new values are generated for the 6 scalar
parameters defining the 3D translation and 3D scale
of a single object k to produce x

(s+2)
O . This proposal

schedule is repeated every 3 iterations.
The proposed labels at each iteration are generated

in the following way:
Light directions: Proposed light source direction

xdirl is generated by drawing a sample from a von
Mises-Fisher distribution [6] with mean direction x̂dirl
and concentration parameter κsample, where x̂dirl is the
current light direction estimate. The estimate from the
voting algorithm is used for the first iteration. In our
experiments, κsample = 200 was chosen and samples
were drawn using the accept-reject algorithm.

Light intensities: The proposed intensity for light
source l is computed from the current light source
intensity estimate adding a random offset, drawn
from a normal distribution. The same method is used
for ambient intensity proposals xα0 .

Geometry parameters: The parameters used to de-
fine the geometry of an object are azimuth rotation,
3D translation, 3D scale and a geometry class label.
This means that geometry for an object is defined
by 7 scalars and 1 discrete value. The scalar values
are drawn from normal distributions with the current
value of the respective parameters used as the distri-
bution mean. The geometry class label is drawn from
a uniform distribution for each proposal.

The final solution corresponds to the light param-
eter sample s that generated the labeling with the
lowest energy:

xopt = arg min
s
E(s)(x). (24)

This method is more tolerant to local minima in the
model energy (which appear often in practice) and it
requires a limited number of the costly evaluations of
energy EI(x|xL,xO).

5 SHADOW CUES

In our discussion so far, we have assumed that some
per-pixel estimate Îs of the shadow image Is is avail-
able to be used as input in our MRF model. In this
section we explain how we obtain this initial estimate
of shadow intensity.

We detect shadows by examining the change of
image features across the borders of potential shadow
regions. We start from the observation that light
sources affect the whole image in a consistent way;
therefore, edges due to cast shadows will generally
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exhibit characteristics that are consistent across the
whole image, while edges due to other effects, such
as albedo variations, will exhibit a more random
behavior. To aid in the detection of shadows, we
also utilize an appropriate measure of brightness, the
bright channel [20]. In this section, we explain our
approach to initial shadow detection in detail.

5.1 Bright Channel
We first extract a measure of brightness from the
image, the bright channel cue [20] (similar to [10]):

Ibright(i) = maxc∈{r,g,b}
(
maxj∈Ω(i)(I

c(j))
)

(25)

where Ic(j) is the value of color channel c for pixel j
and Ω(i) is a rectangular patch of size m ×m pixels,
centered at pixel i (in our experiments, m = 6).

The bright channel cue is based on the follow-
ing intuition: The image values in patch Ω(i) are
bounded by the incident radiance and modulated by
the albedo at each pixel. However, in natural images,
often a patch will contain some pixels with albedo
that has high values in at least one color channel.
By maximizing over color channels over all pixels in
the patch, we reduce the effect of local variations of
albedo within the image patch, getting a measure of
brightness which is closer to the incident radiance at
pixel i than the brightness at that pixel only.

We post-process the bright channel by choosing a
white point Iβbright, such that at least β % of the pixels
are fully illuminated, corresponding to bright channel
values of 1.0 (in our experiments, β = 20%). Then the
adjusted bright channel values İbright are:

İbright(i) = min
{
Ibright(i)/I

β
bright, 1.0

}
(26)

Furthermore, the max operator in Eq. 25 implies a
dilation operation, meaning that the dark regions in
the bright channel image appear shrunk by m/2 pixels
(m × m is the size of patches Ω(i)). We correct this
by expanding the dark regions in the bright channel
image by m/2 pixels, using an erosion morphological
operator [8]. An example of the bright channel is
shown in Fig. 1.b.

5.2 Shadow detection
As mentioned above, we take advantage of the global
nature of the effects of illumination to detect cast
shadows. For example, if we examine features like
the brightness ratio or the hue difference across the
two sides of shadow edges, in a scene with a single
light source we will notice that the values we observe
are concentrated around a clearly defined center. In-
tuitively, the shadows are similarly dark and exhibit
a similar color change everywhere when they are
caused by the same light source. On the other hand,
the same features across the sides of non-shadow
edges are distributed in a much more random way

in most images, because they are caused by albedo
variations and other effects that are local in the image.
The distribution of such features exhibits peaks that
correspond to shadow borders in the image. Our goal
is to detect such peaks.

All our computations to obtain confidence values
for shadows are based on comparing image features
on the two sides of potential shadow borders. To
improve the robustness of such computations, when
examining values on the two sides of pixel i lying
on the border of segment Sj , we compare the average
of values on two semi-circular patches P iin and P iout
centered at pixel i, and oriented so that P iin is inside
segment Sj and P iout is outside, as seen in Fig.1.d.
We examine only border pixels where the ratio of the
average bright channel value between the two patches
P iin and P iout is larger than θe or smaller than 1/θe, to
ignore pixels that do not correspond to image edges
(in our experiments, θe = 1.2).

We first obtain a segmentation S of the bright
channel image İbright [3]. From the set of segments
in S, we choose a subset of segments that are ”good
candidates” to correspond to shadow regions. We
define a ”good candidate” for shadow as a segment
where all three RGB color channels reduce in value
across most of its edges, as we move from outside
the segment towards the inside. We compute the
confidence qcand(Sj) that a segment Sj is a ”good
candidate” to be a shadow as:

qcand(Sj) = 1/|Sj |
∑
i∈Sj

q(i;Sj), (27)

where q(i;Sj) = 1 if the average of r, g and b color
channels in P iin is darker than P iout, and 0 otherwise.

Let f be the chosen feature across segment borders
(bright channel ratio or hue difference in our exper-
iments) that depends on illumination. We create a
histogram hallf of the values of feature f at all segment
border pixels. We also create a histogram hgoodf of the
values of feature f at each border pixel i of each seg-
ment Sj , where each border pixel i contributes to the
histogram proportionally to the confidence qcand(Sj).
These two histograms represent the distribution of
the values of feature f over all segment borders and
over only segment borders that may be shadows.
Normalizing them and taking their difference gives us
a third histogram hdifff which corresponds to peaks
in the distribution of feature f at borders in the set
of ”good candidates” that are not prominent in the
distribution of f in the set of all segment borders.
We expect that these peaks will correspond to the
characteristics of the shadows: for example, if f is
the bright channel ratio, then the peaks in hdifff will
indicate how dark the shadows in the image are.

Based on the extracted histograms, we compute
a confidence for each segment to correspond to a
shadow. We approximate the distribution of feature
f in hdifff by a mixture of normal distributions. Each
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Fig. 1. Shadow detection: a. original image (from [31]); b. bright channel; c. segmentation; d. for each segment border pixel,
feature values are compared between two patches inside (yellow) and outside(blue) the segment; then we form histograms of
the features observed for all segments, and for segments that are good candidates to correspond to shadows, and compute
the difference of the two distributions; e. the final shadow estimate.

component k of this mixture model is characterized
by mean µfk , variance σfk and mixing factor πfk . We
estimate these parameters through an Expectation-
Maximization algorithm. To choose the number of
distributions in the mixture we minimize a quasi-
Akaike Information Criterion (QAIC). The confidence,
based on a feature f , for segment Sj ∈ S is then
defined as:

pf (Sj) =
1

|Bj |
max
k

∑
i∈Bj

Pk
(
∆f(Pi1,Pi2)

)
, (28)

where Bj is the set of all border pixels of segment
Sj , k identifies the mixture components, and, for
patches Pi1 and Pi2 on the two sides of border pixel
i, Pk

(
∆f(Pi1,Pi2)

)
is the probability of observing the

difference ∆f(Pi1,Pi2) in the average value of feature
f between the two patches Pi1 and Pi2, according to
mixture component k (and weighed by the mixture
factor πk).

If we know that there is only a single light source, as
in the case of outdoor scenes, we can improve perfor-
mance further by fitting a single normal distribution
centered at the highest peak of hdifff .

The features used in our work are the bright chan-
nel value ratio and hue difference across patches Pi1
and Pi2. We compute the final confidence p(Sj) that
segment Sj is a shadow as:

p(Sj) = qcand(Sj)
(
pbright(Sj) + phue(Sj)

)
/2. (29)

The shadow intensity for a segment Sj is computed
as the median of the bright channel value ratio of
patch pairs inside and outside the segment (Fig.1.e),
assuming shadows are cast on a roughly flat surface.

This process is based on a segmentation of the im-
age. In order to reduce our method’s dependency on
the quality of segmentations, we compute confidence
values for different initial segmentations of the image.
The final confidence value at pixel i is the mean of
confidence values computed from each segmentation.
Shadow detection can then be performed by thresh-
olding the confidence value at each image pixel. In
our experiments, we chose the threshold for shadow
detection to maximize the classification rate on 100
training images from the UCF dataset [31].

6 EXPERIMENTAL VALIDATION

In this section we present results with our approach.
We first evaluate our shadow detection approach

used to obtain an initial shadow estimate. We then
evaluate illumination estimation with the proposed
MRF model, both quantitatively in a synthetic dataset,
as well as qualitatively in real datasets. Finally, we
present results when geometry parameters are esti-
mated jointly with shadows and illumination.

6.1 Shadow Cue Evaluation
We evaluated our shadow detection approach quanti-
tatively on the UCF dataset [31], which consists of 356
images and manually annotated ground truth for the
cast shadows, using the same set of 123 test images
as [31]. We also evaluated our approach on the 135
image dataset of [16]. In Fig.2 we show ROC curves
with our method on both datasets and compare with
[31], [4] and [16].

Our method performs similarly to [31] and sig-
nificantly better than [4], which is affected by the
low image quality and unknown camera sensors. One
reason for the difference in performance to [16] is that
the annotation of the ground truth in the dataset of
[16] generally includes edges of cast but not attached
shadows, whereas our method does not differentiate
between the two. When the shadow is partially cast
and partially attached, the ground truth in [16] con-
tains only the partial boundary that corresponds to
the cast shadow and thus cannot be matched correctly
by our method that produces always closed shadow
borders. In Tab. 1 we show pixel classification rates on
the 123 test images from UCF dataset. To obtain these
classification rates, we chose the decision threshold
(see Sec.5.2) as the optimal threshold for a different
set of 100 training images from the UCF dataset. The
results show that our method is comparable to much
more complex approaches. The average running time
of our method for the test images in the UCF dataset
is 2.7 sec which compares very favorably to the other
methods.

The results in Fig.2 also justify our choice of the
bright channel compared to simple image brightness
(from the HSV color model), by examining the perfor-
mance of each in shadow detection when used with
simple thresholding.

6.2 Illumination Estimation
We used three different datesets to evaluate the per-
formance of illumination estimation: images collected
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method our method (bright channel ratio) our method (hue) our method (combined) [31]
classification rate 87.7% 86.7% 89.1% 88.7%

TABLE 1
Pixel classification results with our method using different features, and with [31], on the UCF dataset ([31]).

Fig. 2. Comparison of our shadow detection method with
different features and methods ([31], [16], [4]). ROC curves
computed on the datasets of [31] (top) and of [16] (bottom).

under controlled illumination conditions, real-world
images of cars collected from Flickr, and the Motor-
bike images from Caltech 101 [17]. We overlayed a
synthetic vertical pole (sun dial) onto the original
images, rendered under the illumination estimated by
our method, in order to visualize the results.

The weights used in our experiments were:
(ws, wl, wp, wc) = (8, 1, 1, 4). The upper bounds for
the truncated potentials were (tp, tc) = (0.5, 0.5). Pixel
node labels were quantized to 8 values and 1000
iterations of our algorithm were performed. Illumi-
nation estimation takes 5 to 30 minutes per image
for the images in this paper, depending on image
size. However, 60% to 70% of the running time is
spent performing raytracing, which can be sped up
significantly with a faster raytracer implementation.

6.2.1 Synthetic Dataset
To evaluate our method quantitatively we used a set
of synthetic images, rendered using a set of known
area light sources. The number of light sources was
randomly chosen from 1 to 3. The direction and in-
tensity of the light sources was also chosen randomly.
We examined three different cases:

Exact geometry: We used the same 3D model to
render the image and to estimate illumination.

Fig. 3. Convergence of our algorithm. Left: The energy
E(x) for each iteration, averaged over a set of synthetic test
images (using approximate geometry and added noise to the
initial shadow estimate); right: the angular error per iteration,
averaged over the same test set.

Fig. 4. Behavior for soft shadows. Illumination was modeled
by a vMF distribution of varying concentration κ to produce
sets of images with shadows of varying ”softness”. Even for
very ”soft” shadows, the error (in degrees) in the light source
direction estimate is relatively small. Examples of the images
produced for sample κ values are shown on the top.

Approximate geometry: We used a bounding box
and a ground plane that coarsely approximated the
original geometry to estimate illumination.

Approximate geometry and noisy shadow input:
We estimated illumination parameters using a coarse
3D model, as above, and a noisy initial shadow es-
timate. The latter was obtained by adding random
dark patches to the rendered shadow (Tab. 2.c). We
used such noise because, on one hand our methods
are relatively insensitive to spatially-uniform random
noise, and on the other hand, in real data the errors
generally affect large image regions which get misla-
beled, which is emulated by this patch-based noise.

We computed the difference between the estimated
light source parameters and the parameters of the
true light source that was closest in direction to
the estimated one. The average light source direc-
tion errors are presented in Tab. 2. We compare the
results from the voting method used to obtain the
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a. Exact geometry b. Approx. geometry c. Approx. geometry +
noisy shadow input

#lights: 1 2 3 1 2 3 1 2 3
Voting 7.06 6.94 8.23 5.83 11.51 13.31 20.78 28.61 29.30
NNLS [26] 3.84 6.20 6.35 13.95 15.21 14.15 33.69 32.10 33.96
MRF(HOCR [11]) 3.29 5.41 8.13 5.14 14.67 13.99 14.35 20.60 22.83
MRF(2-stage minim.) 0.44 1.31 2.36 2.53 9.06 8.57 6.97 12.36 17.77
MRF(2-stage minim.) -
w/o shadow shape prior

1.27 3.82 5.40 3.11 11.12 11.95 10.81 12.24 17.91

Number of light sources:
mean error (error %)

0 (0%) 0.047
(4.7%)

0.143
(14.2%)

0 (0%) 0.309
(17.6%)

0.32
(23.8%)

0 (0%) 0.285
(26.7%)

0.33
(38%)

TABLE 2
Synthetic results. From left to right, we show the mean error (in degree) for the estimated light directions on a synthetic
dataset: a) using the exact geometry; b) using geometry approximated by bounding boxes (blue) and a ground plane; c)

using approximate geometry and a noisy initial shadow estimate. For each case, we show results for scenes rendered with
1, 2 or 3 light sources. We show results obtained with the voting algorithm used for the initialization; with NNLS [26]; with our

MRF model, when the MRF energy is minimized using [11]; and when the MRF energy minimized using our 2-stage
approach, which achieves the best results. We also include results with our MRF model and 2-stage approach without the

shadow shape-matching prior, which shows the benefits of this term. In the bottom we show the mean error in the estimated
number of light sources and in what portion of images that the number was estimated inaccurately.

initial estimate, and our MRF model. We compare
the proposed inference method with a state-of-the-art
method to perform inference on higher-order MRF
models, the higher-order clique reduction (HOCR)
technique of [11]. The results show that our method,
taking advantage of the topology of this particular
MRF model to efficiently perform inference, is able to
achieve significantly better results, compared to our
initialization method, HOCR inference on our model,
as well as the non-negative least squares optimization
approach of [26] (NNLS).

Furthermore, Tab. 2 shows that the shadow shape-
matching prior significantly improves illumination
estimates. This is more pronounced in the case of
inaccurate input data, where a large number of pixels
may be different between the noisy observed shadow
and the one produced by the coarse geometry and
true illumination. However, when there are multiple
light sources, leading to a large number of potential
shadow edges, the benefits of the shadow shape-
matching prior are reduced.

We also evaluated the estimation of the number of
light sources through our voting procedure on our
synthetic dataset. Tab. 2 shows the mean error in the
estimated number of light sources in that dataset.
We are generally able to get a good estimate of the
number of light sources. The accuracy of that estimate
is reduced when the true number of light sources and
the errors in the initial shadow estimate increase. We
further evaluated our light source number estimation
on the motorbike images of Caltech 101. The images
we selected contained a single light source (the sun)
and the average estimated number of light sources
was 1.17, with the number of light sources correctly
estimated 91% of the time. We should also note that

any extraneous light sources identified by our vot-
ing algorithm are generally assigned low intensities
during MRF inference, resulting in small errors in the
synthesized cast shadows.

We further quantitatively evaluated the behavior of
our method in the case of soft shadows. We rendered
the set of synthetic scenes under illumination pro-
duced by a single light source modeled by a vMF dis-
tribution of varying concentration parameter κ. Lower
values of κ mean a more spread-out light distribution
and softer shadows. Fig.4 shows the error in the
estimated light source direction as the concentration
parameter of the light source changes. Even in the case
of very soft shadows, our method is able to estimate
the direction of illumination with good accuracy.

6.3 Geometry Reasoning

6.3.1 Real Datasets
To evaluate our approach in real images, we used the
class ”Motorbikes” of the Caltech 101 dataset [17] and
images of cars we collected from Flickr.

In the case of ”Motorbikes”, we used the same
coarse 3D model (Fig.11) corresponding to an average
motorbike and the same average camera parameters
for every image. In this dataset there are significant
variations in geometry, pose and camera position in
each individual image, deviating from our average
3D model and camera parameters. Despite these vari-
ations, our results in Fig.5 show that our algorithm
is robust enough to effectively estimate illumination
using the same generic 3D model for all instances of
a class of objects.

In the case of car images collected from Flickr
(Fig.6), the geometry was limited even further to a
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Fig. 5. Results for the Motorbikes class of the Caltech101 dataset. We rendered a synthetic sun dial (orange) under the
estimated illumination and overlayed it on each original image. The geometry used for all instances was the same 3D model
capturing an average motorbike, with the same common camera parameters.

Fig. 6. Results with car images from Flickr. Top row: the original image and a synthetic sun dial rendered with the estimated
illumination; Bottom row: the final shadow values. The geometry consists of the ground plane and a bounding box for the car.

Fig. 7. Examples of scenes with more objects: the orange bounding boxes show the geometry provided as input to our
method, and the synthetic orange sundial rendered using the estimated illumination shows our light source estimate. The
illumination estimate is very stable regardless of which part of the scene we choose to model.

bounding box approximating to the car body and
a ground plane (Fig.11). Camera parameters were
matched manually. For both Fig.6 and Fig.8 we as-
sumed known number of light sources. Despite our
initial assumption of Lambertian reflectance, the re-
sults show that our algorithm can cope with the abun-
dance of non-lambertian surfaces in these images.

We further evaluated our algorithm in a set of
images captured under controlled illumination con-
ditions in the lab. This set includes shadows cast on
a variety of textured surfaces, under 1, 2 or 3 light

sources. Results on images from this dataset can be
found in Fig.8. To estimate the illumination in this im-
ages we used rough approximate geometry, which can
be seen in Fig.11. In Fig.8 we also show two synthetic
examples of illumination estimation where shadows
are cast on arbitrary geometry, demonstrating that we
do not make any assumptions about scene geometry.

Fig.9 shows common cases where our algorithm
fails. One general reason is challenges in shadow de-
tection. While the shadow shape-matching prior helps
our method differentiate between adjacent shadows
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Fig. 8. Results on images captured using different background textures and number of lights. The vertical image pairs
(a,h),(b,i),(c,j),(d,k),(e,l),(f,m) are captured under the same illumination. An orange synthetic sundial has been rendered under
the estimated illumination and inserted into the original image. We also show two results on synthetic images (g,n) where the
input image was used as the initial shadow estimate, without using the shadow detection method of Sec. 5. These images
show that our MRF illumination model can be applied to arbitrary scene geometry, where shadows are not cast on a flat
ground (mean light direction error for g,n is 2.27 degrees).

Fig. 9. Common failure modes. Errors due to shadows (top):
(a) shadows of other objects not modeled may overlap the
shadows of the objects of interest, or (b) very dim shadows
may not be detected, in which case our algorithm tries
to use other dark image regions. Errors due to geometry
(bottom): (c) approximate geometry (in blue) cannot explain
the observed shadows for any choice of illumination direction,
since the approximate geometry (blue) fully covers the cast
shadow. (d) Large errors in the positioning of geometry in the
scene (when geometry parameters are not estimated) affect
the relative position of shadows in the image to the object
geometry.

from different occluders, it can still be challenging to
correctly estimate illumination when shadows from
objects that are not modeled by the geometry are very
close to or overlap shadows of interest. Furthermore,
very dim shadows, as in the case of cloudy outdoor
scenes, can be hard to detect, therefore not allowing us
to obtain a good solution. On the other hand, coarse
geometry knowledge can sometimes lead to observed
shadows that cannot be explained under any illumi-
nation configuration given the coarse geometry (as in
Fig.9.c). Inaccuracies in the placement of 3d models
in the scene (e.g. with the Caltech 101 ”Motorbike”
images ) or in the camera parameters can also lead
to inaccurate illumination estimates (Fig.9.d). Light
sources close to the horizon also cause inaccuracies,
because they generate long shadows which reside in
large part out of the image, offering ambiguous image
evidence about the illumination direction.

We evaluate joint illumination and geometry/pose
estimation qualitatively on the car images we col-
lected from Flickr, as seen in Fig.10. The input to
our algorithm in this case was the original image,

a 2D bounding box around the object of interest
(in this case, the car), a common ground plane, the
camera parameters and a common set of 4 candidate
geometric models for cars (shown in Fig.10). The ge-
ometric models represent 4 common car shapes. The
2D bounding box can be provided by a car detector.
The camera parameters are very similar across these
images, probably because of the common subject, and
could approximated automatically using the informa-
tion in the image EXIF tag, along with horizon line
estimation (and assuming the camera is at eye level
of an average human). In our experiments shown in
Fig.10 however, we set camera parameters manually.

For experiments with geometry parameter estima-
tion we did not use our voting initialization method,
because the random initial geometry reduces the ben-
efits of such an initialization. We assumed a single
light source and used a random initialization of the
other parameters. A larger number of iterations (4000)
was performed to obtain a solution, with larger vari-
ance for the generation of light parameter proposals.
Despite the random initialization, our MRF model is
able to obtain a satisfactory solution.

Our results show that we can approximate the
orientation of the object with good accuracy (around
10 degrees), and get visually convincing estimates of
scale and orientation. The object geometry is identi-
fied correctly in 3 of the 4 images of Fig.10. Notice
that although we could fit an infinite number of
very different (and mostly incorrect) combinations
of geometry/rotation/translation/scale values to the
object outline obtained by GrabCut, as shown in
Fig.10.b, the combination of the object outline and the
shadow leads our algorithm to select parameter com-
binations close to the truth (Fig.10.c), while estimating
the illumination at the same time. In some cases the
pose estimate further improves when when combined
with geometry class estimation.

An important observation is that, as the number
of free parameters that define geometry grows, local
minima in the energy become a bigger issue. An ex-
ample of this problem is the fourth image in Fig.10.d,
where the geometry class used for the pick-up truck
corresponds to ”jeep”, and at the same time the size
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Fig. 10. Results of joint estimation of shadows, illumination and geometry parameters. The geometry used in this case
consists of a ground plane and a bounding box for the object. The geometry parameters estimated are the azimuth rotation,
3D translation and 3D scale of the object’s bounding box. a) input: the original image and the initial configuration of the
geometry; b) the estimated geometry when only fitting the object to the mask obtained by GrabCut; c) the geometry estimated
by our method. While the object silhouette is not enough to estimate the geometry parameters, the combination of the object
silhouette with information in the shadows allows us to obtain a good geometry estimate. d) Here we also allow our model to
select the most probable of 4 candidate geometry classes. The estimated geometry class for each image is, from left to right:
box, jeep, sedan, jeep. The 4 geometry classes are shown on the right.

Fig. 11. The 3D models for the experiments on cars (Fig.6), motorcycles (Fig.6), and the images of Fig.8.

chosen for the model omits the rear part of the pick-
up truck. In this case our algorithm has found a local
minimum of the energy; to continue to the global
minimum, a large change in scale and translation
along with the change in the selected geometry class
is needed. A clever selection of the dimensions which
change to produce the new step on each iteration can
help as the number of geometry parameters grow -
for example, the geometry class could be locked to
the simple bounding box for a number of iterations,
expecting that the bounding box will be positioned
properly over the object before we begin examining
more specific geometry classes. Random initializa-
tions of geometry very far from the true geometry can
also affect the final result, but constraining the initial
pose within the GrabCut mask is often sufficient.

7 CONCLUSIONS

In this paper, we introduced a higher-order MRF
model of illumination, which allows us to jointly
estimate the illumination parameters, cast shadows
and a set of geometry parameters for the occluders
in a scene, given a single image. Our model incor-
porates both high-level knowledge about the scene,
such as illumination and geometry, and low-level
image evidence. Although this leads to a complex

formulation that makes inference challenging, we
demonstrate that inference can be performed effec-
tively. Our results in various datasets demonstrate
the potential of the proposed model. We are able to
estimate the illumination parameters using the same
geometry, pose and camera parameters for a large
number of scenes which belong to the same class,
as shown by the results on Caltech101. Bounding
boxes can be sufficient approximations of occluders
for our method, as is the case with our experiments
with car images from Flickr. Geometry reasoning is
also incorporated in our model to allow estimation of
the object pose in the 3D scene, as well as reasoning
about the 3D geometry that best represents the object.
Our experiments show that the proposed approach
is more general and more applicable in real-world
images where other methods fail. In the future, we
are interested in incorporating our method in more
general scene understanding applications. Geometry
parameter estimation, as presented here, is the first
step towards this direction.
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