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Abstract

We introduce a general method to count and randomly

sample unlabeled combinatorial structures. The approach

is based on pointing unlabeled structures in an “unbiased”

way, i.e., in such a way that a structure of size n gives

rise to n pointed structures. We develop a specific Pólya

theory for the corresponding pointing operator, and present

a sampling framework relying both on the principles of

Boltzmann sampling and on Pólya operators. Our method

is illustrated on several examples: in each case, we provide

enumerative results and efficient random samplers. The

approach applies to unlabeled families of plane and non-

plane unrooted trees, and tree-like structures in general, but

also to cactus graphs, outerplanar graphs, RNA secondary

structures, and classes of planar maps.

1 Introduction

Pointing is an important tool to derive decompositions
of combinatorial structures, with many applications in
enumerative combinatorics. Such decompositions can
for instance be used in polynomial-time algorithms that
sample structures of a combinatorial class uniformly
at random. For the enumeration of labeled structures,
pointing is reflected by taking the derivative of the cor-
responding (typically exponential) generating function.
In other words, each structure of size n gives rise to n
pointed (or rooted) structures. Other important opera-
tions on classes of structures are the disjoint union, the
product, and the substitution operation – they corre-
spond to addition, multiplication, and composition of
the associated generating functions. Together with the
usual basic classes of combinatorial structures (finite
classes, Set, Sequence, Cycle), this collection of con-
structions is a powerful device to define all sort of com-
binatorial families.

If a class of structures can be described by recursive
specifications involving pointing, disjoint unions, prod-
ucts, substitutions, and the basic classes, then the tech-
niques of analytic combinatorics can be applied to ob-
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tain enumerative results, to study statistical properties
of random structures in the class and to derive efficient
random samplers. An impressive account for this line
of research is [7]. A recent development in the area
of random sampling are Boltzmann samplers [6], which
are an attractive alternative to the recursive method of
sampling [8,16]. Both frameworks provide random gen-
erators of decomposable combinatorial classes in an au-
tomatic way, the generators being uniform (two objects
with the same size have same probability) and having
low polynomial complexity. The advantage of Boltz-
mann samplers over the recursive method of sampling,
is that they operate in linear time if a small relative tol-
erance is allowed for the size of the ouput, and they have
a small preprocessing cost, making it possible to sample
very large structures. Let us mention that a third gen-
eral sampling framework based on Markov chains covers
a wider range of combinatorial classes, as it does not re-
quire a decomposition. But the random generators are
mostly limited to approximate uniformity. Moreover,
it is usually difficult to obtain bounds on the rate of
convergence to the uniform distribution. See [14] for a
general approach dealing with unlabeled structures.

All the results in this paper concern classes of unla-
beled combinatorial structures, i.e., structures are con-
sidered up to isomorphism. Our aim is to provide a
general decomposition strategy for unlabeled combina-
torial classes. In the case of the class of all graphs,
the labeled and the unlabeled model do not differ a lot,
which is due to the fact that almost all graphs do not
have a non-trivial automorphism (see e.g. [12]). How-
ever, for many interesting classes of combinatorial struc-
tures, and in fact for all classes studied in this paper,
the difference between the labeled and the unlabeled set-
ting matters. To enumerate unlabeled structures, typi-
cally the ordinary generating function is the appropriate
tool. Disjoint unions and products then still correspond
to addition and multiplication of the associated gener-
ating functions. Correspondingly, Boltzmann samplers
for classes described by recursive specifications involv-
ing these operations are available [10].

However, for unlabeled structures the substitution
operation no longer corresponds to the composition of



generating functions, due to the symmetries an unla-
beled structure might have. This problem is solved by
Pólya theory, where cycle index sums are introduced,
which extend generating functions and take care of po-
tential symmetries. Pólya theory provides a computa-
tion rule for the cycle index sum associated to a sub-
stitution construction. The presence of symmetries also
entails problems with the pointing operator: the funda-
mental property that a structure of size n gives rise to
n pointed (or rooted) structures does not hold. Indeed,
if a structure of size n has a non-trivial automorphism,
then it gives rise to less than n pointed structures (be-
cause rooting at two vertices in symmetric position pro-
duces the same rooted structure). Thus, for unlabeled
structures, the classical pointing (or rooting) operator
does not correspond to the derivative of the ordinary
generating function.

In this paper, we introduce an unbiased pointing
operator for unlabeled structures. It is unbiased in
the sense that a structure of size n gives rise to n
pointed structures. The operator consists in pointing
not only an atom but a cycle of atoms associated with
a symmetry of the structure. Precisely, a cycle-pointed
structure is a combinatorial structure A together with
a marked cyclic sequence of atoms of A that is a
cycle of an automorphism of A. Accordingly, we call
our operator cycle-pointing. The idea is inspired by
Pólya theory and is related to a result of group theory
known as Parker’s lemma [5]. We develop techniques to
apply this new pointing operator to enumeration and
random sampling of unlabeled combinatorial classes.
The crucial point is that cycle-pointing is unbiased. As
a consequence, performing both tasks of enumeration
and uniform random sampling on a combinatorial class
is equivalent to performing these tasks on the associated
cycle-pointed class.

To understand the way in which we use our oper-
ator, it is instructive to look at the class of free trees,
i.e., unrooted and nonplane trees (equivalently, acyclic
connected graphs). Building on the work of Cayley and
Pólya, Otter [17] determined the exact and asymptotic
number of free trees. To this end, he developed the
by-now standard dissimilarity characteristic equation,
which relates the number of free trees with the num-
ber of rooted nonplane trees; see [11]. The best-known
method to sample free trees uniformly at random is due
to Wilf [20], and uses the concept of the centroid of
a tree. The method is an example of application of
the recursive method of sampling and requires a pre-
processing step to compute a table of quadratic size.

Cycle-pointing provides a new way to count and
sample free trees. Both tasks are carried out on cycle-
pointed (nonplane) trees. The advantage of studying

cycle-pointed trees is that the pointed cycle gives a
starting point for a recursive decomposition. In the
case of cycle-pointed trees, we can formulate such a de-
composition using the standard operations of disjoint
union, product, and substitution (these operations be-
ing defined on cycle-pointed structures). We want to
stress that, despite some superficial similarities, this
method of enumerating free trees is fundamentally dif-
ferent from the previously existing methods mentioned
above. Indeed, the dissimilarity characteristic equation
leads to generating function equations involving subtrac-
tion. The existence of subtraction yields massive rejec-
tion when translated to a random generator for the class
of structures (e.g., using Boltzmann samplers or the re-
cursive method). In contrast, the equations produced
by the method based on cycle-pointing have only posi-
tive signs, and the existence of a Boltzmann sampler for
free trees, with no rejection involved, will follow directly
from the general results derived in this paper. As usual,
the Boltzmann samplers we obtain have a running time
that is linear in the size of the structure generated, and
have small pre-processing cost.

Similarly, we can decompose plane and non-plane
trees, and more generally all sorts of tree-like structures,
such as RNA secondary structures. By the observation
that the block decomposition of a graph has also a tree-
like structure, we can apply the method to classes of
graphs where the two-connected components can be ex-
plicitly enumerated. This leads to efficient Boltzmann
samplers for instance for cactus graphs and outerplanar
graphs, improving on the generators of [4]. Finally, we
sketch how the method can be applied to count and sam-
ple certain classes of planar maps. This demonstrates
that our strategy is not limited to tree-like structures,
but can also be applied to other classes of structures
that allow for a recursive decomposition.

2 Preliminaries

This paper deals with the enumeration and random
generation of families of combinatorial structures [11],
such as graphs, trees, plane trees, maps, etc. These
structures are constituted of atoms (e.g. nodes of a
tree, vertices of a graph). The size of a structure is
defined as its number of atoms. It is often convenient
to use the same letter A for a combinatorial structure
and for its set of atoms; for example, we write v ∈ G
if v is a vertex of a graph G. Two structures A and
B are isomorphic if there exists a bijection σ from
A to B that is structure-preserving; σ is then called
an isomorphism between A and B. An isomorphism
between A and itself is called an automophism, and the
set of automorphisms of A is denoted by Aut(A). From
now on, all combinatorial structures are assumed to be



well labeled, i.e., a structure of size n has [1..n] as its set
of atoms.

We are interested in unlabeled structures, i.e., we
consider the structures up to isomorphism. For enumer-
ation, this means that we count isomorphism classes of
a family. These isomorphism classes can be viewed as
unlabeled combinatorial structures. For random gener-
ation, we are looking for efficient algorithms that pro-
duce, given a number n, a structure from this family
such that each isomorphism class of structures (i.e., each
unlabeled structure) with n atoms is selected with the
same probability.

If A is a family of combinatorial structures (also
called a combinatorial class), An denotes the subset of
structures of A with exactly n atoms, and an := |An|
denotes the number of such structures. Correspond-
ingly, we use Ã, Ãn, and ãn for unlabeled combinatorial
structures. The series a(x) :=

∑
n≥0

1
n!anxn is called

the exponential generating function of A, and the series
ã(x) :=

∑
n≥0 ãnxn is called the ordinary generating

function of Ã.

2.1 Cycle index sums. For each n ≥ 0, a symmetry
of A of size n is a pair (A, σ) where A is from An and σ is
an automorphism of A. Notice that the automorphism
σ can be the identity. The set of all symmetries (A, σ)
where A ∈ A is denoted by S(A). The weight-monomial
of a symmetry (A, σ) of size n is defined as

(2.1) w(A,σ) :=
1

n!

n∏

i=1

sci

i ,

where ci is the number of cycles of σ of length i, and
the si are formal variables. The cycle index sum of A,
denoted by ZA(s1, s2, . . .), or shortly ZA, is the formal
power series defined as the sum of the weight-monomials
of the symmetries of A:

(2.2) ZA(s1, s2, . . .) :=
∑

(A,σ)∈S(A)

w(A,σ).

Cycle index sums have been introduced by Pólya. A
detailed definition and many examples and applications
can be found in [2] and [11]. The following lemma, which
relies on Burnside’s lemma, ensures that cycle index
sums are a refinement of ordinary generating functions.

Lemma 2.1. (Pólya) Let A be a combinatorial class.

For n ≥ 0, each unlabeled structure Ã ∈ Ãn gives rise to
n! symmetries, i.e., there are n! symmetries (A, σ) such
that the unlabeled structure of A is Ã. As a consequence,

(2.3) ZA(x, x2, x3, . . .) = ã(x).

2.2 Combinatorial Constructions. We now re-
call fundamental constructions to define combinatorial
classes from other classes. We start with the description
of some basic classes, and then introduce the three con-
structions: disjoint union, product, and substitution.

Basic classes. Basic finite classes are the class ε
consisting of one structure of size 0, with cycle index
sum Zε = 1, and the atom class Z consisting of one
structure of size 1, with cycle index sum ZZ = s1.
The class Seq consists of structures that are sequences
of atoms (i.e., the atoms are linearly ordered). It has
cycle index sum ZSeq = 1/(1 − s1); similarly, the class
Cyc consists of structures that are non-empty cyclic
sequences of atoms, having cycle index sum ZCyc =∑

i≥1 φ(i)/i·log(1/(1−si)); finally, the class Set consists
of all structures that are sets of atoms. It has cycle
index sum ZSet = exp(

∑
i≥1 si/i) (the expressions of

cycle index sums are given in [2]).
Disjoint union. The disjoint union (also called

sum) of two classes A and B is denoted by A + B. If A

and B are setwise not disjoint, we implicitly make them
disjoint by attaching one label to all members of A and
a different label to all members of B.

Product. The cartesian (often also called parti-
tional or dinary) product M = A × B of two classes
A and B is the set of all pairs M = (A, B), where
A is isomorphic to a structure of A and B is isomor-
phic to a structure of B (and the atoms of M are
[1, . . . , |A|+ |B|]).

Substitution. Given two classes A and B such
that B has no structure of size 0, M = A◦B is the family
of combinatorial structures M that can be obtained by
replacing each atom v of a structure of A (called the core
structure) by a structure Bv isomorphic to a structure
of B. Again M is well labeled, so that the atoms of M
are [1..

∑
v∈A |Bv|].

Together with the basic classes, these constructions
provide an extremely powerful device for the description
of combinatorial families. We can also express other
combinatorial constructions, such as the formation of
sequences, cycles, and sets of structures of A, which are
specified as Seq ◦A, Cyc ◦A, and Set ◦A, respectively.

Proposition 2.1. (Pólya, Bergeron et al.) For
each of the constructions Sum, Product, and Substitu-
tion, there is an explicit rule to compute the associated
cycle index sum:

ZA+B = ZA + ZB(2.4)

ZA×B = ZA · ZB(2.5)

ZA◦B = ZA(ZB(s1, s2, . . .), ZB(s2, s4, . . .), . . .).(2.6)



3 Cycle-pointed Classes

In this section we introduce the concept of cycle-pointed
families, which allows us to define our unbiased pointing
operator. A cycle-pointed structure P = (A, C) is a
combinatorial structure A together with a distinguished
cycle of atoms C = (v1, . . . , vl) such that there exists
at least one automorphism of A having C as one of
its cycles (i.e., (v1, . . . , vl) is mapped to (v2, . . . , vl, v1)).
The cycle C is called the marked cycle (or pointed cycle)
of P , and A is called the underlying structure of P . An
automorphism σ of A having C as one of its cycles is
called a C-automorphism of P , and the other cycles of
σ are called unmarked.

A cycle-pointed combinatorial family P is a class
of cycle-pointed structures. As for classical structures,
the size of a structure P ∈ P is its number of atoms.
For l ≥ 1, we denote by P(l) the set of structures of P

whose marked cycle has length l. For n ≥ 0, the set of
structures of P of size n is denoted by Pn. Two cycle-
pointed structures P and P ′ of P are isomorphic if there
exists an isomorphism from the underlying unpointed
structure of P to the underlying unpointed structure
of P ′ that maps the marked cycle of P to the marked
cycle of P ′ (i.e., the marked cycle of P is mapped to the
marked cycle of P ′ in such a way that the cyclic order
is preserved). We denote by P̃ the class of structures

of P considered up to isomorphism. The class P̃ is
called the unlabeled class of P and we define the ordinary
generating function of P̃ as p̃(x) :=

∑
n |P̃n|x

n.
To develop Pólya theory for cycle-pointed classes,

we introduce the terminology of C-symmetry and rooted
C-symmetry. Given a cycle-pointed class P, a C-
symmetry on P is a pair (P, σ) where P ∈ P and σ
is a C-automorphism of P . A rooted C-symmetry is a
triple (P, σ, v), where (P, σ) is a C-symmetry, and v is
one of the atoms of the marked cycle of P ; this atom
is called the root of the rooted C-symmetry. The set of
rooted C-symmetries of P is denoted by R(P).

The weight-monomial of a rooted C-symmetry of
size n is defined as

(3.7) w(P,σ,v) :=
1

n!
tl

n∏

i=1

sci

i ,

where l is the length of the marked cycle, tl and
s1, . . . , sn are formal variables, and ci is the number
of unmarked cycles of σ of length i. We define the cycle
index sum ZP(s1, t1; s2, t2; . . .) of P (shortly written ZP)
as the sum of the weight-monomials over all rooted C-
symmetries of P:

(3.8) ZP(s1, t1; s2, t2; . . . ) :=
∑

(P,σ,v)∈R(P)

w(P,σ,v).

The following lemma is the counterpart of
Lemma 2.1 for cycle-pointed classes.

Lemma 3.1. Let P be a cycle-pointed class. For n ≥ 0,
each unlabeled structure P̃ ∈ P̃ of size n gives rise to
exactly n! rooted C-symmetries, i.e., there are n! rooted
C-symmetries (P, σ, v) such that the unlabeled structure
of P is P̃ . As a consequence,

(3.9) p̃(x) = ZP(x, x; x2, x2; . . .).

3.1 Combinatorial Constructions. We now adapt
the constructions of disjoint union, product and substi-
tution to cycle-pointed structures.

Disjoint union. The definition is the same as in
the unpointed case. The disjoint union (or sum) of two
cycle-pointed classes P and Q, denoted by P + Q, is the
union of P and Q, where we again assume that P and Q

are disjoint sets.
Product. Given a cycle-pointed class P and a non

cycle-pointed class A, the family P×A (A×P) consists
of all pairs (P, A) ((A, P ) respectively) where P is
isomorphic to a structure of P and A is isomorphic to
a structure of A. Note that exactly one of the two
families has to be cycle-pointed to produce a cycle-
pointed family (i.e., the product of two cycle-pointed
classes is not allowed).

Cycle-pointed substitution. To describe cycle-
pointed substitution, we need to define compositions of
cycles. If C = (v1, . . . , vl) is a cycle of atoms, and
C1, . . . , Ck is a sequence of k copies of C, then the
composed cycle of C1, . . . , Ck is the cycle of atoms of
length lk such that, for 1 ≤ i < k and 1 ≤ j ≤ l, the
follower of the atom vj in Ci is the atom vj in Ci+1; and
for 1 ≤ j ≤ l, the follower of the atom vj in Ck is the
atom v(j+1) mod l in C1.

Let P and Q be cycle-pointed classes and A a non
cycle-pointed class, such that A and Q have no object
of size 0. Then P⊙ (A, Q) is the family of cycle-pointed
structures that can be obtained as follows (see Figure 1
for an example).

1. Take a structure P ∈ P and let C = (u1, . . . , uk)
be the marked cycle of P . (We implicitly choose a
starting vertex u1 in the cycle.)

2. Substitute the atoms of C by structures of Q and
the unmarked atoms of P by structures of A,
so as to respect a symmetry induced by C. In
other words, there exists a C-automorphism Γ of
P such that, for each atom v of P , the structures
substituted at v and at Γ(v) are isomorphic. In
particular, the structures substituted at u1, . . . , uk

are isomorphic copies of a structure Q ∈ Q.



Figure 1: A cycle-pointed structure obtained from a
substitution.

3. Let C1, . . . , Ck be the marked cycles of the copies
of Q substituted respectively at u1, . . . , uk. Then
the marked cycle of the composed structure is the
composed cycle D of C1, . . . , Ck.

It is easily shown that there exists a symmetry of
the composed structure having D as one of its cycles, as
required by the definition of cycle-pointed structures.

We now define a composition of cycle index sums
that reflects cycle-pointed substitution. The cycle-
pointed plesthystic composition ZP ⊙ (ZA, ZQ) is the
formal power series

ZP ⊙ (ZA, ZQ) := ZP(si → Z
[i]
A

, tl → Z
[l]
Q

),

with Z
[i]
A

:=ZA(si, s2i, . . .) and Z
[l]
Q

:=ZQ(sl, tl; s2l, t2l; . . .).
In other words, each monomial tls

c1
1 sc2

2 . . . scr
r of ZP is

replaced by Z
[l]
Q

(ZA)
c1

(
Z

[2]
A

)c2

. . .
(
Z

[r]
A

)cr

.

Proposition 3.1. (Computation rules) For each
of the constructions Sum, Product, and cycle-pointed
Substitution, there is an explicit rule to compute the
associated cycle index sum,

ZP+Q = ZP + ZQ [Sum](3.10)

ZP×A = ZA×P = ZA · ZP [Product](3.11)

ZP⊙(A,Q) = ZP ⊙ (ZA, ZQ). [Substitution](3.12)

3.2 Pointing. Given a combinatorial class A, we de-
fine its cycle-pointed class A• to be the set of all pos-
sible cycle-pointed structures P where the underlying
unpointed structure is in A.

Observe that a rooted C-symmetry of A• is ob-
tained from a symmetry (A, σ) of A by choosing an
atom v of A and marking the cycle of σ containing v.
Equivalently, it is obtained by marking a cycle of atoms
corresponding to a cycle of σ and choosing an atom
of the cycle as the root of the rooted C-symmetry. The
first observation shows that each symmetry (A, σ) of An

gives rise to n rooted C-symmetries of A•
n. The second

observation yields

(3.13) ZA•

(l)
= ltl

∂

∂sl
ZA, for each l ≥ 1.

For the particular case l = 1, corresponding to struc-
tures of A with a unique distinguished vertex (the root),
we recover the well-known equation relating the cycle in-
dex sum of a combinatorial class and of the associated
rooted class; see [2, Sec.1.4.] and [11].

Theorem 3.1. (unbiased pointing) Let A be a com-
binatorial class. Then, for n ≥ 0, each unlabeled struc-
ture of Ãn gives rise to exactly n non-isomorphic struc-
tures in Ã•

n. Hence, the ordinary generating functions

ã(x) of Ã and ã•(x) of Ã• satisfy the relation

(3.14) ã•(x) = x
d

dx
ã(x).

Proof. Given Ã ∈ Ãn, let S be the set of structures of
Ã• whose underlying structure (obtained by unmarking
the pointed cycle) is Ã. Thus the proof of the lemma
reduces to proving that S has cardinality n. Let S(Ã)
be the set of symmetries for the structure Ã, and let
R(S) be the set of rooted C-symmetries for structures
from S. Lemma 2.1 ensures that Ã gives rise to n!
symmetries and Lemma 3.1 ensures that each structure
of Ã•

n gives rise to n! rooted C-symmetries. Hence
|S(Ã)| = n! and |R(S)| = |S|n!. In addition, we have
seen that a symmetry (A, σ) of An gives rise to n rooted
C-symmetries of A•

n. Hence, |R(S)| = n|S(Ã)|. Since
|S(Ã)| = n! and |R(S)| = |S|n!, we obtain |S|n! = nn!,
and therefore |S| = n.

Our pointing operator is easily injected in the
three operations Sum, Product, and Substitution. By
construction, we have the three following rules:

(A + B)• = A• + B•(3.15)

(A×B)
•

= A• ×B + A×B•(3.16)

(A ◦B)• = A• ⊙ (B, B•) .(3.17)

4 Applications

A cycle-pointed family is partitioned into structures
with pointed cycle of size 1 (corresponding to rooted
structures, i.e., with a unique pointed atom), and struc-
tures with a pointed cycle of length at least 2. These
are called symmetric cycle-pointed structures, because
the cycle is associated with a nontrivial automorphism.
The subclass of symmetric cycle-pointed structures in a
cycle-pointed class P is denoted by P≥2. In all exam-
ples given here, the strategy of decomposition of cycle-
pointed structures is the following: the decomposition



of rooted structures starts at the root; and the decom-
position of symmetric cycle-pointed structures starts at
a so-called centre of symmetry.

4.1 Trees. We first illustrate the method on un-
rooted trees, starting with the precise definition of cen-
tre of symmetry. Let T be a symmetric cycle-pointed
tree, and let (v1, . . . , vl) be the marked cycle of T
(l ≥ 2). For 1 ≤ i ≤ l, let Pi be the path of T join-
ing vi to v(i+1) mod l. Then it is easily shown that the
paths Pi share the same middle. If the paths Pi have
odd (even) length, then the common middle is the mid-
dle of an edge e (is a vertex v, respectively). In the first
(second) case e (v, respectively) is called the centre of
symmetry of T . Clearly, the centre of symmetry is fixed
by any C-automorphism of T .

Let F be the class of free trees, i.e., unrooted
nonplane trees (equivalently, acyclic connected graphs),
and let R be the class of rooted nonplane trees. Rooted
nonplane trees are decomposed at the root. As the
children of the root node are unordered, we have
R = Z × Set ◦ R. Symmetric cycle-pointed trees are
decomposed at the centre of symmetry, which can be
an edge or a vertex. In the first case, the structure can
be described as a cycle-pointed substitution in the one-
element cycle-pointed class L•

2, where L•
2 consists of the

edge-graph e endowed with a pointed cycle exchanging
the two extremities of e. In the second case, let the
vertex v be the centre of symmetry. Then a collection
of at least 2 isomorphic copies of a cycle-pointed rooted
tree are attached to v at their root, and other rooted
nonplane trees (with no pointed cycle) may also be
attached at v. This yields F•

≥2 = L•
2 ⊙ (R, R•) + Z ×

Set•
≥2 ⊙ (R, R•). To summarize, the class F• has the

following 4-lines decomposition grammar,

(4.18)



F• = R + F•
≥2

R = Z× Set ◦ R

F•
≥2 = L•

2 ⊙ (R, R•) + Z× Set•
≥2 ⊙ (R, R•)

R• = Z• × Set ◦ R + Z× Set• ⊙ (R, R•),

where the 4th line, which is necessary to make the gram-
mar completely recursive, is obtained from the second
line using the derivative rules (3.15), (3.16), and (3.17).
Let f(x) and R(x) be the ordinary generating functions
of unlabeled free trees and unlabeled rooted nonplane
trees. Then, the decomposition grammar (4.18) trans-
lates —via the computation rules of Pólya operators and
then the specialization (si → xi, ti → xi)— to

(4.19)8
<
:

R(x) = x exp
“P

i≥1
1
i
R(xi)

”

xf ′(x) = R(x) + x2R′(x2) +
“P

l≥2 xlR′(xl)
”
R(x).

Using xR′(x) = R(x)(1+
∑

l≥1 xlR′(xl)), this simplifies

to xf ′(x) = xR′(x)(1−R(x)) + x2R′(x2), which agrees
with Otter’s formula f(x) = R(x) − 1

2 (R2(x) −R(x2)).
The main difference between our method and Otter’s
dissimilarity method is that our expressions (4.19) have
only positive signs, as they reflect a decomposition
grammar. This is crucial to obtain random generators
without rejection.

Our method works as well with unrooted plane
trees, yielding a similar 4-lines decomposition grammar.
The only difference is that the neighbours of a node are
cyclically ordered, so that the Set construction is re-
placed by a Seq construction for rooted trees, and the
Set•

≥2 is replaced by a Cyc•
≥2 construction for symmet-

ric cycle-pointed trees. The same technique can also be
applied to enumerate any family of unrooted nonplane
or plane trees where the degrees of the nodes are con-
strained to be in a finite integer set Ω containing 0.
In particular unrooted plane and nonplane binary trees
and ternary trees can be enumerated. Notice that the
case of unrooted nonplane ternary trees has attracted
a lot of attention, as it corresponds to the number of
acyclic carbon alkanes [18]. Finally, RNA secondary
structures have been given a tree-like decomposition
grammar [13], so that our techniques also easily apply
in this case.

4.2 Graphs. In the more general case of a family C

of connected graphs, there is a decomposition, called
block decomposition (see e.g. [11, p.10]), of the graphs
of C into 2-connected components that are articulated
at separating vertices of the connected graph. (A
separating vertex is a vertex whose removal disconnects
the graph; a graph is called 2-connected if it has
no separating vertex.) This decomposition yields a
bicolored tree with nodes corresponding to 2-connected
components and nodes corresponding to vertices, where
separating vertices have degree at least 2. We denote
by Ĉ the family of graphs of C rooted at a vertex that
does not count in the size, and we denote by D (D̂)

the family of graphs of C (Ĉ, respectively) that are 2-

connected. A structure of Ĉ is called simple if it has at
least two vertices and if the root vertex is not separating.
The family of simple structures of Ĉ is denoted by Ĉs.
Then, decomposing structures of Ĉ at the root yields
Ĉ = Set ◦ Ĉs, Ĉs = D̂ ◦ (Z× Ĉ).

Given a symmetric cycle-pointed graph in C•
≥2, we

consider the induced symmetric cycle-pointed bicolored
tree T given by the block-decomposition. As T is
bicolored, the centre of symmetry of T can not be an
edge (because a C-automorphism of T would exchange
the two extremities of the edge, which have different
colors). Hence, the centre of symmetry of T is a node



of T , i.e., it is either a 2-connected component or a
separating vertex of the connected graph. Accordingly,
it is called the centre of symmetry of the connected
graph. Decomposing structures of C•

≥2 at the centre
of symmetry yields
C•
≥2 = D•

≥2 ⊙ (Z× Ĉ, (Z× Ĉ)•) + Z× Set•
≥2 ⊙ (Ĉs, Ĉ

•
s).

Finally, we obtain the following decomposition grammar
for C• in terms of D and the classes derivated from D:

(4.20)8
>>>>>><
>>>>>>:

C
• = Z

•
× bC + C

•
≥2

bC = Set ◦ bCs, bCs = bD ◦ (Z × bC)

C
•
≥2 = D

•
≥2 ⊙ (Z × bC, (Z × bC)•) + Z × Set•

≥2 ⊙ (bCs, bC•
s)

bC• = Set•
⊙ (bCs, bC•

s), bC•
s = bD•

⊙ (Z × bC, (Z × bC)•).

If the class D and its rooted and cycle-pointed
classes are combinatorially tractable (i.e., the cycle in-
dex sums have explicit expressions), then the decom-
position grammar (4.20) translates —via the compu-
tation rules of Pólya operators and the specialization
(si → xi, ti → xi)— to an equation system on ordinary
generating functions similar to (4.19), from which the
coefficients counting unlabeled structures of C accord-
ing to the size can be extracted. Many classes of graphs
have simple 2-connected components: e.g. free trees are
such that D is the edge-graph, and cactus graphs are
such that D = Cyc. For outerplanar graphs (graphs
embeddable in the plane so that all vertices are incident
to the outer face), the class D consists of dissections of
convex polygons and is combinatorially tractable [3].

4.3 Maps. A map is a planar graph embedded on a
sphere up to isotopic deformation, i.e., it is a planar
graph together with a cyclic order of the neighbours
around each vertex. Maps have motivated a huge
literature since the pioneer works of Tutte [19]. Due to
the rigidity given by the embedding, the decomposition
grammar (4.20) simplifies: there is one equation for each
length l ≥ 1 of the pointed cycle. Taking half-edges as
atoms (instead of vertices), we obtain
(4.21){

Ĉ = Seq ◦ Ĉs, Ĉs = D̂ ◦ (Z× Ĉ)

C•
(l) = D•

(l) ⊙ (Ĉ, Ĉ•) + Cyc•
(l) ⊙ (Ĉs, Ĉ

•
s), for l ≥ 2.

In the case of maps, the decomposition grammar is
used in the other direction. Indeed, unconstrained
maps are easy to count using the quotient method [15].
Then, Grammar (4.21) translates to equations from
which the coefficients counting 2-connected maps can be
extracted. This method of extracting the enumeration
at the centre of symmetry is carried out for maps in [9].
Cycle-pointing and the related constructions provide a

general framework to deal with such decompositions and
translate them to compact formulas in a systematic way.

5 Random generation

This section provides a general framework to obtain
random generators on unlabeled combinatorial classes.
We give simple sampling rules associated with each
construction, Sum, Product, and Substitution. Then,
these rules can be combined to produce in an automatic
way a random generator for a class specified from
explicit classes using our constructions. The framework
we develop is an extension of Boltzmann samplers, as
introduced and formalized by Duchon et al. [6].

5.1 The principle of Boltzmann samplers. Let
F̃ be a family of unlabeled structures (F is either an
unpointed class or a cycle-pointed class). Let f̃(x) :=∑

γ∈eF
x|γ| be the corresponding ordinary generating

function, and ρ the radius of convergence of f̃(x). A real
value x > 0 is said to be admissible if the sum defining
f̃(x) converges (so x ≤ ρ). Given a fixed admissible

value x > 0, a Boltzmann sampler ΓF̃(x) is a random

generator on F̃ that draws each structure γ ∈ F̃ with
probability

(5.22) P(γ) =
x|γ|

f̃(x)
.

The fundamental property of this probability distribu-
tion, called Boltzmann distribution, is that two unla-
beled structures with the same size have the same prob-
ability of being drawn.

As described in [6], there are simple rules to assem-
ble Boltzmann samplers for the two classical construc-
tions Sum and Product (rnd(0, 1) stands for a uniform
random variable in the interval (0, 1)):

Γ(F̃ + G̃)(x): if rnd(0, 1) <
ef(x)

ef(x)+eg(x)
return ΓF̃(x)

else return ΓG̃(x)

Γ(F̃ × G̃)(x): return (ΓF̃(x), ΓG̃(x))

These rules can be used recursively. For instance
the class T of rooted binary trees is specified by T =
Z + T × T, which translates to the Boltzmann sampler

ΓT̃(x): if rnd(0, 1) < x/T (x) return leaf

else return < ΓT̃(x), node, ΓT̃(x) >

Definition. Given an unlabeled class F̃ and a fixed
tolerance ratio ǫ > 0, an approximate-size sampler for
F̃ is a procedure that, given a target size n ≥ 0,
generates a structure of F̃ at random such that the
size of the structure generated is in [n(1 − ǫ), n(1 + ǫ)]
and the distribution is uniform on each size k ∈ [n(1 −

ǫ), n(1 + ǫ)]. An exact-size sampler for F̃ is a procedure



that, given a target size n ≥ 0, generates at random
a structure of F̃ of size n, with equal chances for all
structures of F̃n.

Lemma 5.1. (Duchon et al) Let F̃ be an unlabeled

combinatorial class, such that the coefficients f̃n := |F̃n|
are asymptotically f̃n ∼ cρ−nn−3/2 for some constant c.
Assume that there exists a Boltzmann sampler for F̃ at
x = ρ, such that the cost of generating a structure is
linearly bounded by the size of the structure all along
the generation process. Then, for any fixed ǫ > 0,
there exists an approximate size sampler for F̃ with
expected complexity bounded by λn/ǫ for some constant
λ (i.e., the complexity is linear when ǫ is fixed); and

there exists an exact-size sampler for F̃ with expected
quadratic complexity.

The approximate-size and exact-size samplers are ob-
tained by running ΓF̃(ρ) until the size of the output is
in the target domain Ωn (Ωn = [n(1 − ǫ), n(1 + ǫ)] for
approximate size sampling and Ωn = {n} for exact-size
sampling). To get the stated complexity, it is necessary
that the generation of too large structures is aborted as
soon as the size of the generated object gets larger than
Max(Ωn).

The asymptotic behaviour in cρ−nn−3/2 is called
universal [1], as it is very widely encountered in com-
binatorics (e.g. in all classical families of rooted trees).
This asymptotic form occurs in all examples of cycle-
pointed structures given in Section 4, except maps.

5.2 Pólya-Boltzmann samplers. Let A be a com-
binatorial class (not cycle-pointed). Similarly as for
the one-variable case, a vector (si)i≥1 of nonnegative
real values is said to be admissible if the sum defining
ZA(s1, s2, . . .) converges at (si)i≥1. Given an admissible
vector (si)i≥1, a Pólya-Boltzmann sampler is a proce-
dure ΓZA(s1, s2, . . .) that samples symmetries on A at
random such that each symmetry (A, σ) is drawn with
probability

(5.23) P(A, σ) =
w(A,σ)

ZA((si)i≥1)
,

with w(A,σ) as defined in (2.1). Lemma 2.1 ensures
that if si = xi and x is admissible for ã(x), then
ZA = ã(x). In addition, the probability of each
symmetry (A, σ) ∈ S(An) is xn/(n!ã(x)). As each
unlabeled structure Ã ∈ Ãn gives rise to n! symmetries,
the procedure of calling ΓZA(x, x2, x3, . . .), and then
returning the underlying unlabeled structure, yields a
Boltzmann sampler ΓÃ(x). Hence, Pólya-Boltzmann
samplers are an extension of Boltzmann samplers. This
extension makes it possible to have a simple sampling
rule for the substitution construction.

Sampling rules:

ΓZA+B(si)i≥1

if rnd(0, 1) < ZA(s1,s2,...)
ZA(s1,s2,...)+ZB(s1,s2,...) then

return ΓZA(si)i≥1

else
return ΓZB(si)i≥1

end if

ΓZA×B(si)i≥1

return ΓZA(si)i≥1 × ΓZB(si)i≥1

ΓZA◦B(si)i≥1

Compute (A, σA)← ΓZA(Z
[i]
B

)i≥1.

(Recall that Z
[i]
B

= ZB(si, s2i, . . .).)
for each cycle C = (u1, . . . , uk) of σA do

Compute (B, σB)← ΓZB(sk, s2k . . .).
Replace each atom of C by a copy of B
for each cycle D of σB do

Let E be the cycle composed from the copies
of D at u1, . . . , uk.

end for
end for
return the resulting structure and the automor-
phism consisting of the composed cycles E

In all these procedures, as well as in the procedures
for cycle-pointed classes, the resulting structure S is
made well labeled by choosing the atoms from 1, . . . , |S|
uniformly at random. The sampling rule for substitu-
tion entails the choice of a starting atom u1 in each
cycle C of A. This atom is chosen uniformly at random
among the atoms of C. In the sampling rule for Prod-
uct, the product of two symmetries (A, σA) and (B, σB)
is ((A, B), σ), where σ is the automorphism of (A, B)
that consists of the cycles of σA and the cycles of σB.
Cycle-pointed classes. Given a cycle-pointed class P,
a vector (si, ti)i≥1 of nonnegative real values is said to be
admissible if the sum of weight-monomials defining ZP

converges when evaluated at this vector. Given a fixed
admissible vector (si, ti)i≥1, a Pólya-Boltzmann sampler
is a procedure ΓZP(si, ti)i≥1 that generates a rooted C-
symmetry on P at random such that each rooted C-
symmetry (P, σ, v) of R(P) is drawn with probability

(5.24) P(P, σ, v) =
w(P,σ,v)

ZP((si, ti)i≥1)
,

with w(P,σ,v) as defined in (3.7). Similarly as for
classical unlabeled classes, the procedure of calling
ΓZP(xi, xi)i≥1 (with x admissible for the ordinary gen-

erating function p̃(x) of P̃), and then returning the un-
derlying unlabeled structure of the rooted C-symmetry
generated, yields a Boltzmann sampler ΓP̃(x). The
following sampling rules make it possible to assemble
Pólya-Boltzmann samplers for cycle-pointed classes.



Sampling rules (cycle-pointed constructions):

ΓZP+Q(si, ti)i≥1

if rnd(0, 1) < ZP (s1,t1;s2,t2;... )
ZP (s1,t1;s2,t2;... )+ZQ(s1,t1;s2,t2;... )

then
return ΓZP(si, ti)i≥1

else
return ΓZQ(si, ti)i≥1

end if

ΓZP×A(si, ti)i≥1

return ΓZP(si, ti)i≥1 × ΓZA(si)i≥1

ΓZA×P(si, ti)i≥1

return ΓZA(si)i≥1 × ΓZP(si, ti)i≥1

ΓZP⊙(A,Q)(si, ti)i≥1

Compute (P, σP , v)← ΓZP(Z
[i]
A

, Z
[i]
Q

)i≥1.

(Recall that Z
[i]
Q

= ZQ(si, ti; s2i, t2i; . . .).)
for each unmarked cycle C = (u1, . . . , uk) of σP

do
Compute (A, σA)← ΓZA(sk, s2k, . . .).
Replace each atom of C by a copy of A.
for each cycle D of σA do

Let E be the cycle composed from the copies
of D at u1, . . . , uk.

end for
end for
Let F =(v1 =v, . . . , vl) be the marked cycle of P .
Compute (Q, σQ, q)← ΓZQ(sl, tl; s2l, t2l; . . .).
Replace each atom of F by a copy of Q.
for each cycle G of σQ do

Let H be the cycle composed from the copies
of G at v1, . . . , vl.

end for
In the resulting structure R, mark the cycle
composed from the copies of the marked cycle
of Q.
return (R, σR, r), where σR is the automor-
phism consisting of the cycles E and the cycles
H , and where r is the atom q in the copy of the
marked cycle of Q substituted at v.

Note that the evaluation of cycle index sums is only
needed for the disjoint union constructions.

Example. Our sampling rules can be used recursively.
Consider the class R of rooted nonplane trees, specified
by R = Z × Set ◦ R. From the expression ZSet =
exp(

∑
i≥1 si/i) it is easy to guess (and then to check)

that a Pólya-Boltzmann sampler ΓZSet(si)i≥1 consists
in drawing an assembly of cycles with αi cycles of length
i, such that αi follows a Poisson law Pois(si/i) for
i ≥ 1. This is realized by the following procedure, which
operates in linear time (see the complexity model given
next):

ΓZSet(si)i≥1

Draw an integer k ≥ 0 under the distribution

P(k ≤ K) = exp
(∑K

i=1
1
i si

)
/ZSet(si)i≥1

for each 1 ≤ i ≤ k − 1 do
αi ← Pois(si/i)

end for
αk ← Pois>0(sk/k) [Poisson conditioned to be not 0]

return the assembly of cycles with αi cycles of length
i for 1 ≤ i ≤ k.

Using the sampling rule for substitution, we obtain a
(recursive) Pólya-Boltzmann sampler for R. Via the
specialization (si → xi), this simplifies to the following

Boltzmann sampler for R̃:
ΓR̃(x) :

Draw an integer k ≥ 0 under the distribution

P(k ≤ K) = x exp
(∑K

i=1
1
i R(xi)

)
/R(x)

for each 1 ≤ i ≤ k − 1 do
αi ← Pois(R(xi)/i)
for each 1 ≤ j ≤ αi do

T ← ΓR̃(xi)
attach i copies of T as children of the root

end for
end for
αk ← Pois>0(R(xk)/k)
for each 1 ≤ j ≤ αk do

T ← ΓR̃(xk)
attach k copies of T as children of the root

end for
return the obtained rooted tree.

This Boltzmann sampler is also described in [10] using
an approach based completely on generating functions
(it provides sampling rules for the constructions Multi-
set and Cycle, but not for substitution).
Oracle-assumption and complexity model. Given
a class F (cycle-pointed or not), we assume that an
oracle provides the exact value of ZF at each admissible
vector. As in [6], this assumption, called oracle-
assumption, allows us to separate the discussion on
the combinatorial complexity of the algorithms and the
complexity related to the evaluations of the cycle index
sums. Then the computational cost is defined as the
number of combinatorial operations (e.g., creating a
vertex or linking two vertices) added to the number of
arithmetic operations (comparisons, additions) on real
values assumed to be known exactly.
Evaluation-implementation. We frequently use
Pólya-Boltzmann samplers as intermediate tools to
derive Boltzmann samplers, using ΓZF(x, x2, . . .) ≃

ΓF̃(x). Under this specialization, ZF(x, x2, . . .) = f̃(x).
Hence, we will not need to evaluate cycle-index sums in
full generality, but only generating functions, as illus-



trated in the example of ΓR̃(x). In practice, we work
with a fixed precision for all real values. For instance, a
precision of 20 digits is sufficient to have a negligible bias
from uniformity. There exist efficient (recursive) meth-
ods to evaluate generating functions such as R(x) with
high precision. These techniques also apply to the other
classes to be sampled, e.g. the class of cycle-pointed
trees, ensuring a small preprocessing cost in each case.

Definition. A class F is said to have linear sampling
complexity if there exists a Pólya-Boltzmann sampler
ΓZF for any admissible vector of F, such that the cost
of generating a structure is linearly bounded by the size
of the structure all along the generation.

Correctness and efficiency of our sampling rules
imply the following general theorem, which covers the
examples given in Section 4 (see Proposition 5.1 after).

Theorem 5.1. Let F be a combinatorial class recur-
sively specified from classes G1, . . . , Gk using the con-
structions {+,×, ◦,⊙}, i.e., there exists a decompo-
sition grammar {F1 = Ψ1(F1, . . . , Fm), . . . , Fm =
Ψm(F1, . . . , Fm)} such that F = F1 and the Ψi are
operations on F1, . . . , Fm involving the constructions
{+,×, ◦,⊙} and the classes G1, . . . , Gk. If the classes
G1, . . . , Gk have linear sampling complexity, then F has
linear sampling complexity as well.

Proposition 5.1. Under the oracle assumption, for
each of the following unlabeled combinatorial classes
there exist an approximate-size sampler with expected
linear-time complexity and an exact-size sampler with
expected quadratic complexity: unrooted (as well as
rooted) plane and nonplane trees; any class of unrooted
(and rooted) plane and nonplane trees such that the de-
gree of nodes lies in a finite integer set Ω (in particu-
lar, acyclic carbon alkanes); RNA secondary structures;
connected cactus graphs; connected outerplanar graphs.

Proof. We give the proof for connected outerplanar
graphs. Grammar (4.20) is a decomposition grammar
for the class C• of cycle-pointed outerplanar graphs.
The terminal nodes (the classes G1, . . . , Gk) are the

classes Z, Z•,Set,Set•
≥2,Set•,D̂,D•

≥2,D̂
•, which have

linear sampling complexity. Hence, Theorem 5.1 ensures
that C• has linear sampling complexity. This gives via
(si→ xi, ti→ xi) a linear Boltzmann sampler ΓC̃•(x).
It is proved in [3] that |C̃n| has the asymptotic form
cρ−nn−5/2, so that |C̃•

n| has the universal asymptotic
form cρ−nn−3/2 (by |C̃•

n| = n|C̃n|). Hence, Lemma 5.1
ensures that there exist linear approximate-size and
quadratic exact-size samplers for C•. These are also
approximate-size and exact-size samplers for C, since
the pointing operator is unbiased.
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