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Abstract

A new algorithm is introduced to estimate the number
of distinct flows (or connections) in a data stream. The
algorithm maintains an accurate estimate of the number
of distinct flows over a sliding window. It is simple to
implement, parallelizes optimally, and has a very good trade-
off between auxiliary memory and accuracy of the estimate:
a relative accuracy of order 1/y/m requires essentially a
memory of order mln(n/m) words, where n is an upper
bound on the number of flows to be seen over the sliding
window. For instance, a memory of only 64kB is sufficient
to maintain an estimate with accuracy of order 4 percents for
a stream with several million flows. The algorithm has been
validated both by simulations and experimentations on real
traffic. It proves very efficient to monitor traffic and detect
attacks.

1 Introduction

A multiset is a set where each element can appear sev-
eral times. The cardinality n of the multiset is the
number of distinct elements, while the size N of the
multiset is the total number of elements, counting the
repetitions. An important issue in computer science is
to estimate the cardinality of a multiset having a very
large size. This problem has arisen in the 1980’s, moti-
vated by optimisation of classical algorithmic operations
on data bases (union, intersection, sorting,...). As the
data sets to be measured have mostly a very large size
N, far beyond the RAM capacities, a natural require-
ment is to treat the data in one pass using a simple
loop, and with a small auxiliary memory (constant or
logarithmic in N). The crucial point, first developed by
Flajolet and Martin [FM83] in their algorithm PROB-
ABILISTIC COUNTING, is to relax the contraint of giv-
ing the exact number of distinct values in the multiset
and to build only a probabilistic estimate of n. This
algorithm as well as the recent LOGLOG COUNTING
algorithm [DF03] build the estimate by maintaining a
bitmap pattern. Even more recently, a whole family of
estimators —based on the minimal hashed value over
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the elements of the multiset— has been introduced by
the second author [Gir05]. All these algorithms perform
a single pass on the data, use a constant auxiliary mem-
ory, and return an unbiased estimate of n (i.e., the ex-
pectation of the estimate is n). In addition, they have a
similar trade-off between accuracy and memory: a mem-
ory of m words is required to have an estimate with a
relative accuracy of order 1/y/m. Another type of algo-
rithm, based on the principle of Adaptative Bitmap, has
been introduced by Estan and Varghese [EVFO03]. Tt is
very efficient in practice, but the analysis requires some
assumptions on the regularity of the traffic, in contrast
to the algorithms [DF03, FM83, Gir05].

In the past decade, the problem of counting dis-
tinct elements in a multiset has appeared as a crucial
algorithmic operation in the context of data streams. In
contrast to a data base, the elements of a data stream
have a time stamp indicating their time of arrival. Typ-
ically, the elements are packets, each packet belonging
to a flow (also called connection) identified by a source-
adress and a destination-adress. In this framework, the
packets are the elements of the multiset and the flows
are the distinct elements of the multiset. Estimating the
number of distinct flows in a data stream has many ap-
plications in network monitoring and network security,
see the detailed survey of Estan and Varghese [EVF03].
For instance, the system FlowScan [Plo00] counts dis-
tinct flows on a traffic (using an unoptimized algorithm)
to detect Denial Of Service attacks, where abnormally
many distinct connections are opened in a short period
of time. In the context of data streams, the multiset
to be treated is not fixed (as it is the case in applica-
tions of data bases) but evolves with the time, getting
a new element at each packet arrival and losing ele-
ments that become outdated. Hence, the problem is to
be solved over a sliding window of size W (W is the
lapse of time after which a packet is outdated). Pre-
cisely, one has to be able to answer at any time t a
request of the form “What is the approximate number
of distinct flows on the traffic over the last w units of
time (w < W)”. Notice that the previous “static” al-
gorithms [FM83, DF03, EVF03, Gir05] can not answer
such requests: they should be launched at time ¢ — w



and be run until time ¢, i.e., they should know a priori
at time ¢ —w that there will be a request w units of time
later.

In this article, we develop an efficient algorithm,
called SLIDING MINCOUNT, to solve the problem of es-
timating the cardinality of a multiset over a sliding win-
dow. Our algorithm builds upon the “static” algorithm
——called MINCOUNT— of [Gir05], where the estimate
is based on the minimal hashed value of the elements.
The idea is to maintain a list of values that may be-
come a minimum over a future window of time (includ-
ing the current one). In particular, the current mini-
mum over [t — W,t] is always in the list at time ¢, so
that the estimate can be calculated a posteriori. The
list, called LFPM (for List of Future Possible Minima)
is very simple to maintain and surprisingly short: the
precise analysis over the whole execution of the algo-
rithm (Theorem 4.1) ensures that its size is logarith-
mic in the maximal number of distinct flows to be seen
over a window of time. The idea of using the minimal
hashed value is fruitful, being also exploited by Datar
and Muthukrishnan in [DMO02] to measure a so-called
rarity parameter. Let us mention that it is also possible
to make the probabilistic algorithms based on bitmap
patterns [DF03, FM83] work with a sliding window.
The process is briefly explained in the seminal article
of Datar et al [DGIMO02]. They obtain the same or-
der of complexity as our algorithm, though no detailed
analysis nor experimental results are provided. In con-
trast, we give a thorough analysis of the required mem-
ory. This includes the analysis of the maximal required
memory over a long period of time, a relevant question
to get sure that there is no chance of overflooding the
memory.

In addition, we provide various experimental vali-
dations of our algorithm. Simulations with ideal traffic
show good agreement between the algorithm behaviour
and what the analysis predicts. Using only 64kB of
memory, SLIDING MINCOUNT succeeds in estimating
the number of distinct flows in a data stream of 5 mil-
lion elements for a sliding window of one million ele-
ments within a precision of 4%. Observations of real
traffic reveal that SLIDING MINCOUNT would readily
monitor in real time at the rate of several millions of
packets per second. Over traces of one day (containing
150 millions of packets), the algorithm detects peaks
of the number of connections that are invisible by just
looking at the number of packets. This is of first interest
to detect Denial of Service attacks as they generate lots
of connections with few packets. An automatic detec-
tion of unusual traffic can be easily set up by triggering
an alarm when the estimate of SLIDING MINCOUNT ex-
ceeds a given threshold.

2 Preliminaries

In this section, we present the algorithm MIN-
CoUNT [Gir05] that estimates the cardinality of a fixed
multiset. As our algorithm SLIDING MINCOUNT —to
be presented in Section 3— operates on data streams,
we will from now on use the terminology of packets (el-
ements of the multiset) and flows (distinct elements of
the multiset), to be defined next.
Definitions. A flow is identified by a set of header
fields. Such an identifier, shortly called FlowID, is typ-
ically a pair <source IP, destination IP>, but can also
be of the form <source IP, destination IP, destination
Port> if the port information is taken into account (e.g.
to detect port scans). A packet consists of a header,
containing header fields, and a body, containing the in-
formation transported. Two packets are said to belong
to the same flow if their FlowID is the same. From now
on, we assume to have at our disposal a hash function h
mapping a FlowID to a real value that “looks like” uni-
formly distributed in the interval [0, 1] (see the detailed
study of Knuth [Knu98g]).

Let S = (p1,...,pn) be a set of packets and let
n be the number of distinct flows in S. Under the as-
sumption on the hashed function h, and without mak-
ing any assumption on the nature of the traffic, the
set (h(p1),...,h(pn)) of hashed packets can be consid-
ered as built from n real values taken independently
uniformly at random in [0, 1], and then replicated and
permuted in an arbitrary way. Such a set of uniform ran-
dom values in [0, 1] with arbitrary replications and order
of appearance is called an ideal multiset. Thus, FEsti-
mating the number of distinct flows in a set of packets
without making any assumptions on the traffic amounts
to estimating the cardinality of an ideal multiset.
The MinCount algorithm. We present a recently in-
troduced probabilistic algorithm [Gir05] that estimates
the number of distinct values in an ideal multiset with
a very good trade-off between memory and accuracy.
The idea is that the minimum of the values of an ideal
multiset does not depend on the replication structure
of the data nor on their order of appearance, and gives
an indication on the number n of distinct values of the
multiset (basically, the minimum of n independent uni-
form values on [0, 1] has more chances of being small if
n is large). The principle is then to build an observ-
able based on the minimum, and to combine it with a
stochastic averaging process, as introduced in [FM83],
in order to have an accurate estimate of n. Stochastic
averaging consists in simulating the effect of m = 2°
experiments on the multiset and then averaging an ob-
servable over the m experiments. The first b bits of a
value x of the multiset are used to direct x to one of m
buckets (the one whose index 4, written in binary base,



Algorithm MINCOUNT (with m = 2° buckets)
Input: (p1,...,pN) a set of packets;
Initialize MM ..., M™ to 0;
for i from 1 to N
u; < h(p;); [hash p; to a real value in [0, 1]]
j < integer corresponding to the first b bits of u;;
Uy 2%u; — | 2%u;]; [ @; is u,; truncated of its first b bits]
MG — min(MYD,%;);
return € := mI(2 — 1/m) ™ exp <7L Z;":l ln(M(j))

m

as estimate of the number of distinct flows

Figure 1: Pseudo-code of the algorithm MINCOUNT.

corresponds to the b bits), and the value directed to
the bucket is the original value = truncated of its b first
bits (thus this value is also uniform in [0, 1]). The algo-
rithm then builds an accurate estimate of the number
of distinct values from the minima of the buckets, see
Figure 1 for a summary given in pseudo-code.

THEOREM 2.1. (GIROIRE [GIR05]) Let Z be an ideal
multiset and let n be the cardinality of T. Let m = 2° be
the number of buckets to be used by the estimate. For
1<j<m, let M) be the minimum of the values that
are directed to the bucket of index j. Then, writing T’
for Euler’s Gamma function, the quantity

(2.1)

{i=ml(2=1/m)"" exp ( (In(MD)+.. + ln(M(m)))

1

m
can be computed with a memory of m words and is an
accurate estimate of the cardinality of T in the sense
that:

e [t is asymplotically unbiased, i.e., E(§) ~ n.

n—oo

o [ts relative accuracy, defined as /V(&)/E(E), is
about 1.3/y/m.

3 Presentation of the

MinCount

We have seen in the last section that the number of
distinct flows in a fixed set of packets can be accurately
estimated with a small auxiliary memory using an
estimate that is computed from the minima of the
hashed values in each of m buckets. In this section, we
build upon this idea to estimate the number of distinct
flows over a sliding window. What we consider here is
not a fixed data set as in Section 2, but a data stream.
A data stream is an infinite sequence of packets. In
addition, each packet has a timestamp indicating its
time of arrival (timestamps are for instance given in
traces of routers). Thus, using a hash function A as in
Section 2, a data stream can be formalized as an infinite
sequence < tj, Hy >p>1, where t;, is the timestamp and

algorithm Sliding

Hj, is the hashed value of the kth arrived packed (thus ¢
is increasing). We identify the kth packet with the pair
< tx, Hr >. To maintain an estimate over the sliding
window, we also use the stochastic averaging process:
the first b bits of Hj are used to direct the kth packet
into one of m = 2% buckets, and then the packet directed
into the bucket is < t, H;, > where Hj, is obtained from
Hj, by truncating the first b bits. This process partitions
the datastream < tj, H, > into m datastreams, one for
each bucket. If we are able to maintain the minimum
in each bucket, we will also be able to compute the
estimate of Theorem 2.1 over a sliding window.

3.1 Maintaining the minimum over a sliding
window. The problem of maintaining the minimum
of values of a datastream < ti, Hy > over a sliding
window is formulated as follows: given a maximal-
window parameter W, find a process such that the
minimum of values of the stream in a window [t — w, t]
can be found at any time ¢ and for any w < W.

The solution we propose is to maintain a list of
packets that may become a minimum in a future win-
dow. After completing a first draft of the paper, we
have seen in the article of Datar et al [DGIMO02] that
a similar solution is briefly indicated, but without any
analysis. We provide a more detailed presentation of
the process, with a specific terminology, and analyze
the required memory in Section 4.

At time t, we consider the set of packets of the
stream that are in the window [t — W,t]. We define
the minimum packet of the window as the latest arrived
packet among the set of packets whose hashed value
realizes the minimum over [t — W,t]. A future possible
minimum, shortly called FPM, in the window [t — W, {]
is a packet that may become a minimum packet over a
future window of time, without making any assumption
on the future traffic. The list containing all future
possible minima in the window [t — W,t] is shortly
called the LFPM. In particular, the minimum-packet
of the window [t — W,¢] is in the LFPM Observe that,
for two packets < Hy,tr, > and < Hp/,tp > over
[t — W,t], the packet < Hy,t; > has no chance of
becoming a minimum-packet in the future if ¢, < 5/
and Hy > Hjp. Indeed, in the future, any window
containting < Hy, t; > will also contain < Hy/, ty >, so
that < Hy/, tgr > will prevent < Hy, t; > from being the
minimum packet. Thus an FPM < Hy,t;, > has to be
such that no later arrived packet < ty/, Hy > verifies
Hyp < Hy; ie., an FPM has to be a strict minimum
record of the list of packets of the window taken in
reverse chronological order. Conversely, if a packet
< Hy, ty, > is such a reverse-time strict minimum record
over [t — W,t] and if the traffic is such that no packet
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Figure 2: LFPM and minimum records.

while(true) do
1) Read packet (Hg,tx).
2) Delete the packets (H;, t;) of L
with ¢t; <t — W.
3) Delete the packets (H;,t;) of L
with H; > Hy.
4) Add (Hg,ty) at the end of L.
end do

Figure 3: Loop maintaining the LFPM.

arrives anymore after time ¢, then the packet < Hy, t; >
will be the minimum packet at time ¢ + W. As a

consequence, we have the following characterization of
the LFPM, see Figure 2:

Fact 3.1. The LFPM contains the strict minimum
records of the list of packets over [t — W,t] taken in
reverse chronological order.

In particular, the elements of the LFPM are strictly
increasing from left to right, see Figure 2.

Fact 3.2. If the LEPM can be maintained for a sliding
window of length W, then at any time t and for any
w < W, the minimum packet over the window [t — w,t]
can be extracted from the LEPM: it is the oldest packet
of the LEPM whose timestamp is larger than t — w.

Fact 3.1 and Fact 3.2 make it possible to obtain
a simple internal loop to maintain the LFPM over a
sliding window of length W. The internal loop is given
in Figure 3: when a packet arrives, the packets that
are outdated are deleted in Step 2, and the packets
that cease to be future possible minima (due to the
arrival of the new packet) are deleted in Step 3. As a
consequence, it is easily seen that the following invariant
is maintained at each packet arrival:

Fact 3.3. The list maintained by the internal loop of
Figure 3 is the LEPM.

Finally, Fact 3.2 and Fact 3.3 ensure that our
internal loop provides a solution to the problem of
maintaining the minimum over a sliding window, as
formulated a the beginning of Section 3.1. In addition,
our solution is optimal in the sense that, to maintain the
minimum without making any assumption on the future
traffic, one has to have all the FPM’s of [t — W, t] stored
at any time ¢. Indeed, if one of the FPM < Hy, t; > is
missing at a time ¢ and if the traffic is empty after time
t, then < Hy,t; > will be the unique packet realizing
the minimum shortly before time ¢, + W.

The very nice result which we will prove in Section 4
is that the size of the list is surprisingly short: at any
time ¢, it is of logarithmic order in the number of distinct
values over [t — W,t]. In addition, the length of the
LFPM does not fluctuate much over a long period of
time.

3.2 The algorithm Sliding MinCount. The algo-
rithm SLIDING MINCOUNT, given in Figure 4, simply
combines the method to maintain the minimum of a
data stream over a sliding window with the stochas-
tic averaging process used by MINCOUNT. This means
that we use m = 2° buckets and split the datastream
into m datastreams, depending on the first b bits of the
hashed value of a packet. For each bucket, we keep the
minimum over a sliding window of length W by main-
taining the LFPM associated to the bucket, thanks to
the internal loop of Figure 3. Then, when there is a
request at a time ¢ asking for an estimate of the num-
ber of distinct flows in the last w units of time (with
w < W), we extract the minimum over [t — w,t] from
the LFPM of each bucket. We do it in the way in-
dicated by Fact 3.2, i.e., by taking the oldest packet
whose timestamp is larger than ¢ — w in the LFPM of
each bucket. From these minima, the same estimate as
the one of MinCount is computed. Thus, the estimate
returned by SLIDING MINCOUNT is ezactly the same as
the one that would have been obtained by running a
priori the MINCOUNT algorithm from ¢ —w to t. Hence
it has exactly the same accuracy as MINCOUNT, as is
recapitulated in Theorem 3.1.

THEOREM 3.1. (ACCURACY OF SLIDING MINCOUNT)
For any request asking for the number of distinct flows
over the last w wunits of time (with w < W), the
estimate & returned by SLIDING MINCOUNT has a

relative accuracy /V(&)/E(§) about

1.3
vm:

~
~



INTERNAL LOOP:
Li—0...Ly — 0 [m = 2"
while(true) do
1) Read packet (Hg,ty).
2) j « first b bits of Hy
3) Truncate Hj, of its first b bits
4) Delete the packets (Hj,t;) of L;
with ¢; <t — W.
5) Delete the packets (H;,t;) of L;
with H; > Hj,.
6) Add (Hy,ty) at the end of L;.
end do

REQUEST:

Input: “what is approximately the

number of distinct flows in the last

w units of time ?”

Answer:

for j from 1 to m do
M) — leftmost hashed value of L;
with timestamp larger than ¢t — w

end for
_ 1w iy )
& —ml(2 m) exp ( - len(M )>
J=
return &

Figure 4: The algorithm SLIDING MINCOUNT

For instance, taking m = 29 will provide estimates with
a precision of order 4 percents.

3.3 Distributivity. An important feature of SLID-
ING MINCOUNT (as well as the previous “static” algo-
rithms [FM83, DF03, Gir05]) is to be very suitable for
parallelization. If the data stream to be measured is
split among several routers, each router maintains its
own LFPMs from the packets it receives. Then, to an-
swer a request on the number of distinct flows in the
whole traffic, each router extracts the minimal hashed
values from its own LFPMs and sends them to a central
calculator that computes the estimate. Such a situation
is encountered very often in practice. For instance, in
Backbone Networks, the quantity of traffic is too huge to
be concentrated on a single machine, so that the packets
arriving to a Point of Presence are distributed among
several routers.

3.4 Counting the number of packets with a
sliding window. Giving the number of packets in a
fixed set is straightforward, using a simple counter.
However, answering the same request over a sliding
window is more complex, as one should keep in memory

the time of arrival of the packets. With only a slight
change of SLIDING MINCOUNT, we can estimate the
number of packets of a data stream over a sliding
window: instead of hashing the FlowlIDs, we hash
the timestamps of the packets. As each timestamp
is unique, the modified algorithm now estimates the
number of packets over a sliding window.

4 Analysis of the algorithm

As the accuracy of SLIDING MINCOUNT is the same
as MINCOUNT, the main point that remains to be
analyzed is the memory. The memory used by SLIDING
MINCOUNT consists of the m LFPMs (one for each
bucket). We first study the probability distribution of
the memory at a fixed time t. Then we analyze the
evolution of the size of the LFPM over the time. Indeed,
it comes out handy for the implementation to store the
LFPMs in arrays instead of lists. To decide which size of
array is sufficient to avoid overflooding, it is thus crucial
to know the distribution of the maximum of the size of
the LFPM over a long period (e.g. one week or even
one year). The proofs are given in the appendix.

Study of the memory at a fixed time. We start
the analysis by investigating the size of a single LFPM.

LEMMA 4.1. (THE REPETITIONS HAVE NO EFFECT)
Over a giwven window [t — W,t], the LFPM is the same
as the one built by applying the internal loop of Figure 3
only on the latest arrived packet of each flow.

Proof. All the packets of a flow are hashed to the same
value. Thus, a packet that is not the latest in his
connection can not be a strict minimum record for the
list of packets taken in reverse chronological.

LEMMA 4.2. (FORMULATION ON PERMUTATIONS) At
a given time t, let n be the number of distinct flows
over the current window [t — W, t]. Then, the probability
distribution of the size of the LFPM is the same as the
distribution of the mumber of minimum records in a
random permutation of size n.

Proof. Tt follows from corollary 4.1 and from the perfect
randomness assumed for the hash function that the
LFPM is the same as the one built with n i.i.d. random
variables uniform over [0, 1].

LEMMA 4.3. (SIZE OF A SINGLE LFPM) Let L, be
the random wvariable giving the size of a single LFPM
at a time t, knowing that the number of distinct flows
over [t — W, t] is equal to n. Then the distribution of L.,
satisfies

~ In(n).

(42)  E[L,] = Hy, with H, ="
k=1

gl



n
1
(4.3) V[L,] = Z: .~ In(n),
Asymptotically inn, L, is a gaussian law of expectation
Inn and variance Inn, i.e.,

(4.4) L, n) ++/In(n)Z, with Z € N(0,1).

Proof. Lemma 4.2 ensures that the distribution of L,
is the same as the distribution of the number X, of
minimum records in a random permutation of size n.
The analysis of X,, is a classical problem in combina-
torics, first studied by Goncharov, see [FS, I11.6,IX.5]: a
concise solution is obtained from the closed form of the
characteristic function f(u) = 3", P(X,, = k)u* of X,
f(u) = Lu(u+1)...(u+n—1). Then the expectation
and variance are extracted using E(X,) = f/(1) and
V(X)) = f"(1) + f'(1) — f/(1)%. The asymptotic gaus-
sian distribution is obtained by rescaling X,, around its
mean and contracted by a factor \/V(X,,), and proving
that the rescaled characteristic function converges to the
characteristic function of a standard gaussian law.

From the study of the size of a single LFPM, we can
analyze the memory required by SLIDING MINCOUNT,
which is the sum of the sizes of the LFPMs of the m
buckets.

LEMMA 4.4. (TOTAL SIZE OF THE m LFPMSs) Let
LY be the random variable giving, at time t, the sums
of the sizes of the m LFPMss (one for each bucket),
knowing that the number of distinct flows over [t — W, t]
is equal to n. Then the distribution of L'°" satisfies

(4.5) IE[L:L"t]n:OOmHLn/mJ ~ mln(n/m)
(4.6) V[LPY] ~ mln(n/m),

n—oo

Asymptotically in n, LY is a gaussian law of expecta-
tion mIn(n/m) and variance mlIn(n/m), i.e.,

(4.7)

LY = mln(n/m)++/mln(n/m)Z, with Z € N(0,1).

Proof. Asymptotically in n, the number of flows falling
in each of the m buckets is equal to n/m, up to fluctu-
ations of order \/n/m. Thus, the calculations are still
valid (but much more simple) by stating that, at the first
order, the number of distinct flows falling in each bucket
is equal to |n/m]. In this equirepartition calculation
model, L is the sum of m i.i.d. random variables that

are each the size of an LFPM built from |[n/m| distinct
values. According to Lemma 4.3, the distribution of the
size of such an LFPM is, asymptotically in n, equal to
In(n/m) + \/In(n/m)Z, where Z is a Gaussian normal
law. Thus the distribution of L't is, asymptotically in
n, equal to mIn(n/m) + /In(n/m)>."" | Z;, where the
Z; are m ii.d. normal gaussian laws. Finally, it is well
known that the sum of m i.i.d. normal gaussian laws
has the same distribution as v/mZ, where Z is a normal
gaussian law.

PROPOSITION 4.1. (MEMORY AT A FIXED TIME) Let
Nmax b€ an upper bound on the number of distinct flows
to be observed over a window of length W. Then, at
time t, the memory used by SLIDING MINCOUNT is
of order mlIn(n/m) (Ing(nmax/m) + Ina(W)), where
m = 2% is the number of buckets used by SLIDING
MINCOUNT and n is the number of distinct flows in
the window [t — W, t].

Proof. First, Lemma 4.4 ensures that the sum of the
lengths of the LFPMs is of order mln(n/m). Each
element of an LFPM is a packet consisting of a hashed
value truncated of its first b bits. As we have seen in
Section 2, the hash function has to map a FlowID to
a bit string of length a little more than Ins(npax) in
order to avoid collisions. Moreover, as the packets are
outdated after W units of time, the timestamps can be
stored on Iny (W) bits.

Study of the maximal required memory over a
long running time.

In this section, we investigate on the maximum of
the total size L*! of the LFPMs over a long running
time of SLIDING MINCOUNT. Indeed, even if L*°t is
small at a fixed time —of order mIn(n/m)— it could
happen that, over a very long running time, L% has a
high peak at some time. As we prove next, this situation
does not arise. What happens is that L'°' fluctuates
rapidly from one packet to a few packets later, but these
fluctuations are small and remain small even over a very
long running time of SLIDING MINCOUNT.

THEOREM 4.1. (MEMORY OVER WHOLE EXECUTION)

Let nyax be an upper bound on the number of distinct
flows to be observed over a window of length W.
Consider a long but finite datastream, with S packets
(S >> 1), on which the internal loop of SLIDING
MINCOUNT is applied. Then the maximal value taken
by the sum L*t of the sizes of the m LFPMs is of order
at most

mIN(Nmax/m) + VmIn(nmax/m)2 In(S),

i.e., with very high probability, it will never be larger
than this value up to a few units. As a consequence, the



mazximal memory used by SLIDING MINCOUNT over its
execution is of order at most

(m In(nm,) +v/mn(ng,)2 ln(S)) (Ing(ny,) + Ing (W),

WheEre Ny 1= Nmax /M.

Proof. Proposition 4.4 ensures that, at each arrival of
a packet < Hy,tx >, the distribution of the sum of
the sizes of the m LFPMs is close to the distribution

of In(n/m) + y/mIn(n/m)Z, where n is the number of

distinct flows in [ty — W,t;] and Z is a normal law.
As there are S packets in the data streams, bounding
the maximum of L'** over the data stream amounts to
bounding the maximum of S normal laws. This last
task is readily carried out, based on the fact that the
tail of a normal law decays very fast: for x > 1, P(Z >
x) < e /2, Thus, for S normal laws Ny,..., Ng, we
have the simple formula

P(max(Z1,...,Zs)>xz) = P(Z1 >22)U...U(Zs > z))

< S P(Z>z)< 82

As a consequence, the probability that the maximum is
larger than = decays very fast toward 0 when x gets larger

than y/21In(S).

As we see, the maximal fluctuation over a whole
data stream with S packets is only v2InS times the

typical fluctuation at fixed time, of order \/mIn(n/m).
As the fonction S — v/21In S grows extremely slowly, the
maximal fluctuation of the total size of the LEFPMs will
be small even for very long running times. For instance,
a running time of several years instead of one hour will
have little effect on the maximal auxiliary memory used
by SLIDING MINCOUNT.

5 Validation and Experimentations on real
traffic

Validation by simulations. At first, we validate
SLIDING MINCOUNT with ideal traffic: the packets
arrive at a constant rate and all belong to distinct
connections. We simulate a data stream of 5 millions
packets and ask the algorithm, every 100 read packets,
for an estimate of the number of distinct flows seen in
a window of 1 M packets. Figure 5 (left) shows these
estimates and Figure 5 (right) the memory used by the
algorithm (corresponding to the number of elements in
all LFPMs). The algorithm estimates the number of
connections with no bias and the experimental standard
error is within the expected value of 4% (for m =
210) with few excursions to 6%. Same remark for
the size of the LFPMs. Observe that the evolution
of the memory is burstier than the evolution of the
estimate. Indeed, the LFPMs change at each packet

arrival while the estimate is modified only when the
minimal hashed value changes. Results of the tables of
Figure 6 correspond to simulations for different values of
m (the number of buckets) with two different windows
(100,000 packets for the left figure and 1M packets for
the right figure). They show good agreement between
the algorithm behaviour and what is predicted by the
analysis. Ly, the average of the total size of the LFPMs
over the execution, is very close to its expected value
mH |y, /|- Lmaz,the maximal value of the total size of
the LFPMs over the execution, is close to the mean
size, validating the fact that a long running time has
little effect on the maximal auxiliary memory used by
SLIDING MINCOUNT. We also see that the experimental
standard error (Stderr) is close to its expected value
(= 1.3/y/m). Tt decreases by a factor of 2 when we
use 4 times more memory, as predicted by the analysis.
The algorithm succeeds in estimating the number of
connections within 4% percents using only 64kB (the
LFPMs have less than 8,000 elements with a 32 bit
timestamp and a 32 bit hashed value).

Traffic Analysis. We captured traces of packets
arriving at a gate router of the campus of INRIA
in Rocquencourt. This traffic is an aggregate of the
activity of 400 computers and has a typical rate of 150
millions packets per day. The analysis of two traces is
presented here: Trace A corresponds to the traffic of
monday April 3" and Trace B to the one of sunday
April 274, The algorithm is very fast: the one-day
traces are treated in three minutes with a CPU of 1 GHz
(1M packets per second) even with a non optimized
implementation. Hence, it would face no problem for
real-time monitoring of such traffics. Figure 7 shows the
estimates given every second by SLIDING MINCOUNT
for two different windows: one hour (bottom) and one
minute (top). With the sliding window of one hour, we
see that the traffic of monday (left) has a shape very
different from the one of sunday (right). We are able to
distinguish peaks of activity corresponding to backups
of data that take place during the night (at 2 am and
6:30 am for Trace A) as well as the working hours. With
the sliding window of one minute, we see that, in fact,
these evolutions are mostly caused by very sharp peaks,
in the scale of the minute.

Figure 8 gives the comparison between the number
of distinct connections (Figure 8 left) and the number
of packets (Figure 8 right) over a sliding window of one
hour using Trace A, see Section 3.4 for the methodology
to estimate the number of packets. The number of
packets for one hour ranges between 3 millions and 12
millions and in average a connection has 30 packets.
Note that the number of connections may increase a lot
even when the number of packets remains almost con-
stant (for example, observe the traffic between 20,000s
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Figure 5: Behaviour of SLIDING MINCOUNT during a simulation on an ideal traffic of 5 million elements, with a window
of one million elements. The left figure shows the estimates given every second by SLIDING MINCOUNT. The right figure

gives the memory used by the algorithm during the execution (m = 210).

| logy m | 4 6 8 10 |
mH |, m) | 149 508 1676 5288
Ltot 148.9 507 1676 5293
Lmax 199 605 1815 5503
1.3/v/m | 0.32 0.16 0.08 0.04
StdErr | 0.32 0.14 0.09 0.03

| logy m | 4 6 8 10 |
mH |, m) | 186 655 2265 7641
Ltot 185.9 653.5 2264 7648
Lmax 245 752 2430 7933
1.3/v/m | 035 0.16 0.08 0.04
StdErr | 0.35 0.15 0.07 0.04

Figure 6: The average memory and precision of SLIDING MINCOUNT for a data stream of 5 millions packets of ideal traffic,
with a window of 100,000 connections (right) and a window of one million connections (left) for different values of the

number m of buckets.

and 28,000s). This confirms the fact that counting the
number of distinct connections gives more informations
than the number of packets. As stated in the intro-
duction, this has important applications in network
monitoring (e.g., detection of Denial of Service attacks).
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Figure 7: Estimates of the number of distinct flows given every second by
April 37%) (Left) and for Trace B (Sunday, April 2"?) (Right) for a sliding window of one hour (top) and a sliding window
of one minute (bottom).
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