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Abstract

We present a bijection between some quadrangular dissec-
tions of an hexagon and unrooted binary trees. This cor-
respondence has interesting consequences for enumeration,
mesh compression and random graph sampling.

It yields a succinct representation for the set P(n) of n-
edge 3-connected planar graphs matching the entropy bound
1

n
log |P(n)| = 2+o(1) bits per edge. This solves a theoretical

problem in mesh compression, as these graphs abstract the
combinatorial part of meshes with spherical topology.

Once the entropy bound is matched, the guaranteed
compression rate can only be improved on subclasses: we
achieve the optimal parametric rate 1

n
log |P(n, i, j)| bits per

edge for graphs of P(n) with i vertices and j faces. This
effectively reduces the entropy as soon as |i− j| � n1/2, and
achieves the optimal rate for triangulations.

It also yields an efficient uniform random sampler for

labeled 3-connected planar graphs. Using it, the amortized

complexity of sampling labeled planar graphs is reduced

from the best previously known O(n6.5) to O(n3).

1 Introduction

One origin of this work can be traced back to an article
of Ed Bender in the American Mathematical Monthly
[3], where he asked for a simple explanation of the
remarkable asymptotic formula

(1.1) |P(n, i, j)| ∼
1

3524ijn

(
2i− 2

j + 2

)(
2j − 2

i + 2

)

for the cardinality of the set of 3-connected planar
graphs1 with i vertices, j faces and n = i+j−2 edges, n
going to infinity. By a theorem of Whitney these graphs
have essentially a unique embedding on the sphere up
to homeomorphisms.

Graphs, dissections and trees Another well known
property of 3-connected planar graphs with n edges is
the fact that they are in direct one-to-one correspon-
dence with dissections of the sphere into n quadrangles
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1Unless when explicitly mentioned, all graphs are unlabeled.

that have no non-facial 4-cycle faces. The heart of our
paper lies in a further one-to-one correspondence.

Theorem 1.1. There is a one-to-one correspondence

between unrooted binary trees with n nodes and quadran-

gular dissections of an hexagon with n interior vertices

and no non-facial 4-cycle.

The application from binary trees to dissections,
which we call the closure, is easily described and resem-
bles constructions [27, 6, 25] that were recently proposed
for simpler kinds of dissections. Conversely, recovering
the tree from the dissection can be done in linear time by
a traversal akin to Kant’s canonical ordering [18, 9, 5, 8].
The proof that these algorithms are correct is rather
sophisticated, relying on new properties of constrained
orientations as used by Schnyder for triangulations [29]
and by Felsner [11] for 3-connected planar graphs.

Theorem 1.1 leads directly to the implicit repre-
sentation of the numbers |P (n, i, j)| due to Mullin and
Schellenberg and from which Formula 1.1 derives. It
partially explains the combinatorics of the occurrence
of the cross product of binomials, since these are typi-
cal of bicolored binary tree formulas.

Random sampling A first byproduct of Theorem 1.1
is an efficient uniform random sampler for labeled 3-
connected planar graphs, that is an algorithm that given
n – respectively, given (n, i, j) – outputs a random
element of P(n) – respectively, of P(n, i, j) – with equal
chances for all elements.

The uniform random generation of classes of dis-
sections of the sphere like triangulations or 3-connected
graphs was first considered in mathematical physics (see
refs in [2, 25]), and various types of random planar
graphs are commonly used for testing graph drawing
algorithms (see [14]).

The best previously known algorithm [28] had ex-
pected complexity O(n5/3) for P(n), and was much less
efficient for P(n, i, j), having even exponential complex-
ity for i/j or j/i tending to 2. In Section 7, we show
that our generator for P(n) or P(n, i, j) performs in lin-
ear time except if i/j or j/i tends to 2 where it becomes
at most quartic.



From the theoretical point of view, it is also desir-
able to work with the uniform distribution on planar
graphs. However, random planar graphs appear to be
challenging mathematical objects [24, 21]. A Markov
chain converging to the uniform distribution on planar
graphs with i vertices was given in [10], but it resists
known approaches for perfect sampling [32], and has
unknown mixing time. As opposed to this, a recur-
sive scheme to sample planar graphs was proposed in
[4], with amortized complexity O(n6.5). This result is
based on recursive sampling (aka the method of branch-
ing probabilities) [23, 13, 33]. Our new random gener-
ator for 3-connected planar graphs allows to reduce the
amortized cost to O(n3).

Succinct representations A second byproduct of
Theorem 1.1 is the possibility to encode in linear time
a 3-connected planar graph with n edges by a binary
tree with n nodes. In turn the tree can be encoded by
a balanced parenthesis word of 2n bits. This code is
optimal in the information theoretic sense: the entropy
per edge 1

n log2 |P(n)| of this class of graphs tends to 2
when n goes to infinity, so that a code for P(n) cannot
give a better guarantee on the compression rate.

Applications calling for compact storage and fast
transmission of 3D geometrical meshes have recently
motivated a huge literature on compression, in particu-
lar for the combinatorial part of the meshes. The first
compression algorithms dealt only with triangular faces
[26, 30], but many meshes include larger faces, so that
polygonal meshes have become prominent (see [1] for a
recent survey).

The question of optimality of coders was raised
in relation with exception codes produced by several
successful heuristics when dealing with meshes with
spherical topology [15, 19]. Since these meshes are
exactly triangulations (for triangular meshes) and 3-
connected planar graphs (for polyhedral ones), the
coders of [25] and of the present paper respectively prove
that traversal based algorithms can achieve optimality.

On the other hand, in the context of succinct data
structures, almost optimal algorithms have been pro-
posed [17, 20], that are based on separator theorems.
However these algorithms are not truly optimal (they
get ε close to the entropy but at the cost of an uncon-
trolled increase of the constants in the linear complex-
ity). Moreover, although they rely on a sophisticated
recursive structure, they do not support efficient adja-
cency requests.

As opposed to that, our algorithm shares with
[16, 5] the fact that the code produced is essentially
the code of a spanning tree. More precisely it is just
the balanced parenthesis code of a binary tree, and
adjacencies of the initial dissection that are not present
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Figure 1: Relations between involved objects.

in the tree can be recovered from the code by a simple
variation on the interpretation of the symbols. It should
thus be possible to deal with adjacency queries in time
proportional to the degree of vertices using the approach
of [22, 16].

Finally we show that the code can be modified to
be optimal on the class P(n, i, j). Since the entropy of
this class is strictly smaller than that of P(n) as soon
as |i − n/2| � n1/2, the resulting parametric coder is
more efficient in this range. In particular in the case
j = 2i − 4 our new algorithm specializes to an optimal
coder for triangulations.

Outline of the paper We first present a bijective
application between binary trees and some dissections
of the hexagon by quadrangular faces; then we deduce
from this bijection sampling algorithms for 3-connected
planr maps and planar graphs, and finish with the
description of a coding algorithm for 3-connected planar
maps. The connections between the different families of
objects we consider are shown on Figure 1.

2 Definitions

2.1 Planar maps A planar map is a proper embed-
ding of a connected graph in the plane, where proper
means that edges are smooth simple arcs which meet
only at their endpoints. A planar map is said rooted

if one edge of the outer face, called the root-edge, is
marked and oriented such that the outer face is on the
right of the edge. The origin of the root-edge is called
root-vertex. Vertices are said outer or inner depending
on whether they belong to the outer face or not.

A planar map is said 3-connected if it can not be
disconnected by the removal of two vertices. We denote
by P ′

n (resp. P ′
ij) the set of rooted 3-connected planar

maps with n edges (resp.i vertices and j faces).



(a) A binary tree, (b) its partial closure, (c) and its complete closure.

Figure 2: The closure application.

2.2 Plane trees They are planar maps with a single
face – the outer one. A vertex is called a leaf if it has
degree 1, and node otherwise. Edges incident to a leaf
are called stems, and the other inner edges. Observe
that rooted plane trees are exactly usual trees, with the
root-edge oriented from the usual root to its first son.
It is convenient anyway to add a root-leaf “above” the
root-vertex (for symmetry reasons in the case of regular
trees). Hence in the following rooted plane trees are
always rooted on a stem oriented toward its leaf.

Binary trees are plane trees whose nodes have
degree 3. We denote respectively by Bn and B′

n the sets
of binary and rooted binary trees with n nodes (and
hence (n + 2) leaves by a recursive proof).

There is a unique bicoloration of the nodes of a
rooted binary tree in black and white such that adjacent
nodes have distinct colors and the node connected to the
root-leaf is black. We denote by Bij and B′

ij the set of
(rooted) binary trees with i black nodes and j white
nodes for this bicoloration (and hence 2i − j + 1 white
leaves and 2j − i + 1 black ones by a recursive proof).

2.3 Quadrangulations and dissections A quad-

rangulation is a planar map whose faces (even the outer
face) have degree 4. A dissection of the hexagon by

quadrangular faces is a planar map whose outer face
has degree 6 and inner faces have degree 4.

Any cycle of a map but the one that delimits the
outer face is said proper. Proper cycles that do not
delimit a face are said separating.

A quadrangulation or a dissection of the hexagon
by quadrangular faces is said irreducible if it has no
separating 4-cycle. We denote by Qn (Q′

n) the set
of (rooted) irreducible quadrangulations with n faces
(including the outer face, and hence n + 2 vertices by

Euler relation), and by Dn (D′
n) the set of (rooted)

irreducible dissections of the hexagon with n inner
vertices (and hence n + 2 quadrangular faces by Euler
relation). From now on, irreducible dissections of the
hexagon by quadrangular faces will be shortly called
irreducible dissections.

As faces of dissections and quadrangulations have
even degree, vertices of these maps can be bicolored
(say, in black and white), such that each edge connects
a black vertex to a white one, and such a bicoloration is
unique up to the choice of the colors. We denote by Q′

ij

the set of rooted bicolored irreducible quadrangulations
with i black vertices and j white vertices and such
that the root-vertex is black, and by D′

ij the set of
rooted bicolored irreducible dissections with i black
inner vertices and j white inner vertices and such that
the root-vertex is black.

3 Closure application: from binary trees to

irreducible dissections of the hexagon

3.1 Partial closure Let T be a binary tree. Let
us define a local closure operation based on a counter-
clockwise traversal of the contour: such a traversal walks
alongside the edges, in an alternating series of stems and
inner edges; if a stem is followed by three inner edges,
its local closure consists in merging its leaf with the
extremity of the third edge, so as to create (or close) a
quadrangular face. The involved stem is then considered
as an inner edge of the obtained map, on which further
local closures may be performed greedily until no more
is possible. It is easy to see that the final map, called
partial closure of T , does not depend on the order of the
local closures. An example is shown in Figure 2(b).
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Figure 3: End of the complete closure when r = s = 2.

3.2 Complete closure We want here to complete
the closure operation to obtain a dissection of the
hexagon with quadrangular faces. Observe that a binary
tree T with n nodes has (n+2) leaves and (n−1) inner
edges. Hence there are (n + 2) stems and (2n− 2) sides
of edges incident to the outer face at the beginning. As
each local closure decreases by 1 the number of stems
and by 2 the number of sides of inner edges which are
incident to the outer face, if k denotes the number of
unmatched stems in the partial closure of T , there are
(2k − 6) sides of inner edges incident to the outer face.
Moreover, stems delimit intervals of inner edges on the
contour, with length at most 2, otherwise a local closure
would be possible. Let r be the number of such intervals
of length 1 and s be the number of intervals of length 0
(that is, the number of nodes incident to two unmatched
stems). Then r and s are clearly related by the relation
r + 2s = 6.

The complete closure consists in attaching all un-
matched stems to vertices of the hexagon such that each
pair of consecutive stems creates a quadrangular face.
As illustrated by Figure 3, there is a unique way to do
this up to rotation of the hexagon. An example is given
on Figure 2(c).

Lemma 3.1. The closure of a binary tree is an irre-

ducible dissection of the hexagon.

Proof. Omitted. �

4 Tri-orientations

4.1 Definitions We define a kind of generalized
orientation on maps, in which any edge may be non-
oriented, or (simply) oriented in either direction, or
even oriented in both directions (bi-oriented edges). If
a map is endowed with such a generalized orientation,
the outdegree of a vertex v is defined as the number of
its incident edges that are either bi-oriented or simply
oriented outward v.

The (unique) tri-orientation of a binary tree is
defined as the generalized orientation in which inner
edges are bi-oriented, and stems are simply oriented
toward their leaf (see Figure 4(a) for an example).
Hence each node has outdegree 3.

A tri-orientation of a dissection is a generalized
orientation in which edges of the hexagon are not
oriented and inner edges are either simply or bi-oriented
in such a way that outer and inner vertices have
respectively outdegree 0 and 3.

Let D be a dissection endowed with a tri-
orientation. A clockwise cycle of D is a closed curve
C consisting of edges of D that are either bi-oriented or
simply oriented with the interior of C on their right.

Proposition 4.1. • A tri-orientation of an element

of Dn has (n − 1) bi-oriented edges and (n + 2)
simply oriented edges.

• If a tri-orientation of a dissection has no clockwise

cycle, then its bi-oriented edges form a spanning

tree of the inner vertices.

Proof. Let D ∈ Dn endowed with a tri-orientation,
and let s and r denote the respective numbers of its
simply and bi-oriented edges. Euler characteristic and
the degree of the faces of the dissection ensure that the
dissection has 2n+1 inner edges. Hence 2n+1 = r + s.
Moreover, as all inner vertices have outdegree 3 for the
tri-orientation, 3n = 2r + s. Hence r = n − 1 and
s = n + 2.

The subgraph T consisting of the bi-oriented edges
and their extremities has r = n − 1 edges, no cycle
(otherwise such a cycle could be traversed clockwise as
all its edges are bi-oriented), and at most n vertices since
outer vertices can not belong to T . Hence T is a tree
that spans exactly the n inner vertices. �

4.2 Closure-tri-orientation of a closure-

dissection of the hexagon A dissection of the
hexagon that can be obtained as the closure of a
binary tree will be called a closure-dissection. Let D
be such a closure-dissection, obtained by the closure
of a binary tree T . The tri-orientation of T clearly
induces via the closure operation a tri-orientation of D,
called a closure-tri-orientation. On this tri-orientation,
bi-oriented edges correspond to inner edges of the
original binary tree, see Figure 4(b).

Lemma 4.1. There is no clockwise cycle in a closure-

tri-orientation of a closure-dissection.

Proof. No clockwise cycle can be created during the
completion of the closure (illustrated in Figure 3), since
extremities of stems are merged during this step with



(a) A binary tree with its tri-orientation, (b) and the closure-tri-orientation of its closure.

Figure 4: Examples of tri-orientations.

vertices of the hexagon, which have outdegree 0 in
the tri-orientation, and thus can not belong to any
clockwise cycle. Hence clockwise cycles may only have
been created during a local closure. However such
closure edges have the outer face on their right, which
contradicts the orientation of the cycle. �

5 The opening application

Proposition 4.1 and Section 4.2 give all necessary el-
ements to describe the inverse application of the clo-
sure, which is called the opening application: let D
be a closure-dissection endowed with its closure-tri-
orientation; then the only binary tree whose closure is
D is obtained by removing edges and vertices of the
hexagon and detaching all simply oriented edges at their
extremity.

As the closure-tri-orientation has no clockwise cy-
cle, we define the general opening application of an ir-
reducible dissection D as follows:

• endow D with a tri-orientation without clockwise
cycle;

• remove the vertices and edges of the hexagon;

• disconnect all simply oriented edges of the tri-
orientation at their extremity.

In order for this application to be correctly defined, we
need the following theorem:

Theorem 5.1. Any irreducible dissection has a unique

tri-orientation without clockwise cycle.

Proof. Omitted. (See however Remark 9.1.) �

6 Statement of the main theorem

Theorem 6.1. The closure application is a bijection

between the set Bn of binary trees with n nodes and the

set Dn of irreducible dissections with n inner vertices.

The inverse of the closure application is the opening

application.

Proof. Omitted. �

We can state two analogous versions of Theorem 6.1
for rooted objects:

Theorem 6.2. The closure application allows to define

the following bijections between sets of rooted objects:

B′
n × {1, . . . , 6} ≡ D′

n × {1, . . . , n + 2},

B′
ij × {1, 2, 3} ≡ D′

ij × {1, . . . , 2i − j + 1}.

Proof. The first point can easily be proved using Theo-
rem 6.1 and the fact that a binary tree of Bn has (n+2)
leaves and a dissection of Dn has 6 edges to carry the
root. The proof of the second point is similar. �

|B′
n| is well-known to be the nth Catalan number

1
n+1

(
2n
n

)
, and refinements of the standard proofs yield

|B′
ij | = 1

2j+1

(
2j+1

i

)(
2i
j

)
. Theorem 6.2 thus implies the

following enumerative results:

Corollary 6.1.

|D′
n| =

6

(n + 2)(n + 1)

(
2n

n

)
,

and

|D′
ij | =

3

(2i + 1)(2j + 1)

(
2j + 1

i

)(
2i + 1

j

)
.



7 Counting and sampling rooted 3-connected

maps

7.1 Bijection between 3-connected maps and

irreducible quadrangulations There is a well
known application, which we shall refer to as Tutte’s ap-
plication, between Q′

n and P ′
n (resp. between Q′

ij and
P ′

ij): given a rooted quadrangulation Q ∈ Q′
n endowed

with its bicoloration of vertices, we obtain a rooted map
M by linking, for each face f of Q (even the outer
face), the two diagonally opposed black vertices of f .
M is canonically rooted on the edge corresponding to
the outer face of Q with same root-vertex as Q.

This application is easily invertible: given a roo-
ted map M with (black) vertices, it consists in adding a
(white) vertex called a face-vertex in each face (even the
outer face) of M and linking a vertex v and a face-vertex
vf by an edge if v is incident to the face f corresponding
to vf . By keeping only the edges of incidence face-
vertex, we obtain a quadrangulation. We choose the
root as the edge which follows the root of M in the
counter-clockwise order around the origin of the root
of M .

The following theorem is a classical result in the
theory of maps.

Theorem 7.1. Tutte’s application realizes a bijection

between P ′
n and Q′

n, and between P ′
ij and Q′

ij .

7.2 Injection of rooted irreducible quadrangu-

lations in rooted irreducible dissections of the

hexagon We can easily associate to a rooted irre-
ducible quadrangulation Q a rooted dissection D of the
hexagon in the following way: remove the root-edge of
Q (the outer face becomes thus hexagonal) and carry
the root on the edge of the hexagon that has the same
origin as the origin of the root of Q and the outer face
on its right.

It is easy to see that D is an irreducible dissection of
the hexagon. Indeed the presence of a separating 4-cycle
in D would clearly imply the presence of a separating
4-cycle in the quadrangulation Q from which we have
removed the root edge.

Moreover it is immediate that this application is an
injection (but not a bijection). More precisely, it is an
injection from Q′

n to D′
n−4, and from Q′

ij to D′
i−3,j−3.

7.3 Algorithm to sample rooted 3-connected

maps We deduce from the first application of The-
orem 6.2 the following algorithm:

• sample an object T of B′
n−4;

• perform the closure of T to obtain an irreducible
dissection D ∈ Dn−4;

• choose randomly the root-vertex v on the hexagon;

• add a root-edge e in the outer face of D going, with
the outer face on its right, from v to the vertex
diametrically opposed to v on the hexagon2; the
obtained figure is a rooted quadrangulation Q with
n faces;

• if Q is irreducible, return the rooted 3-connected
map in P ′

n associated to Q by Tutte’s application;
otherwise reject.

Proposition 7.1. We have the asymptotic result:

|P ′
n|

|D′
n−4|

∼
28

36
.

Hence the distribution for the number of rejects is a

geometric law whose mean is c = 36

28 . Hence, as the

closure application has a linear-time complexity, the

sampling algorithm has a linear-time complexity.

Proof. We have obtained in section 6 the enumerative

result |D′
n| = 6

n+2 |B
′
n| = 6(2n)!

(n+2)!n! . Using Stirling

formula, we obtain |D′
n−4| ∼ 3

128
√

π
4n

n5/2 . Moreover,

according to [31], |P ′
n| ∼

2
35

√
π

4n

n5/2 . �

Using the second application of Theorem 6.2, there
is a similar algorithm to sample rooted 3-connected
maps with i vertices and j faces. Using the asymptotic
formula |P ′

ij | ∼
1

3522ijn

(
2i−2
j+2

)(
2j−2
i+2

)
and Corollary 6.1,

it is easy to show that this algorithm has a linear-time
complexity when the quantity α = i/j belongs to a
closed interval included in ]1/2, 2[. In addition, in the
worst case of triangulations where j = 2i− 4, the time-
complexity of this sampling algorithm is quartic.

7.4 The enumeration of rooted 3-connected

maps In order to count rooted 3-connected maps, and
ultimately to recover the asymptotic formula for |P ′

ij |,
let us return to the fact that the injection of Section 7.2
is not a bijection. Observe that an irreducible dissec-
tion belongs to the image of this injection if and only
if it does no contain a path of length 3 connecting the
root vertex and the opposite vertex of the hexagon via
an internal vertex. Such a dissection is called an unde-

composable dissection.
The key of the enumeration is that any irreducible

dissection can essentially be decomposed along the
above mentioned paths of length 3 into undecompos-
able dissections. The analysis of this decomposition, as
presented in the full paper, allows to give a simple ex-
pression of the generating function of undecomposable
dissections (and hence of 3-connected planar maps) in

2This operation is the inverse of the injection of section 7.2.



terms of the generating function of all dissections of the
hexagon (and hence in terms of the generating functions
of binary trees).

This allows to give a derivation of Mullin and Schel-
lenberg generating function expression for 3-connected
planar maps. It explains the occurrence of binary trees
generating functions and thus the form of the binomial
coefficients in the asymptotic formula for |P ′

ij |.

8 Random planar graphs

The algorithm of [4] to generate labeled planar graphs
is based on the decomposition of graphs into a tree-like
structure of 3-connected components. In other terms
there is a decomposition of any planar graph p into
a pair (t, (a1, . . . , a`)), where each ak is a rooted 3-
connected planar graph (i.e. the shape of the kth com-
ponent) and t is the tree-like structure (i.e. the nec-
essary information to glue components and put labels).
A fundamental property of the uniform distribution on
planar graphs is that given t (and in particular the num-
bers of vertices ik and edges nk in each connected com-
ponents), the (ak)k are independent r.v. and ak is uni-
formly distributed on P(nk, ik, jk).

The algorithm of [4] then essentially consists into
generating the tree-like structure with the right proba-
bility, and then generating random 3-connected compo-
nents with an external generator as [28]. The generation
of the tree-like structure can be done by the recursive
method [23] because all branching probabilities can be
explicitly computed. The approach used in [4] consists
in precomputing all the O(n4) entries involved in the
branching probabilities by direct dynamical program-
ming, i.e. applying convolutive recurrences, for a to-
tal cost of O(n6) arithmetic multiplications on numbers
with O(n log n) bits.

Once the precomputation is done, the cost of gen-
erating the tree-like shape is small in front of the cost
of generating the 3-connected graphs. In [4], the gen-
eration is done using the random sampler proposed in
[28], and the cost of this part of the generation was es-
timated to O(n13/2). However this analysis fails for ex-
tremal ranges of values, due to uniformity assumptions
stated in the complexity results of [28], and ignored in
[4]. For instance generating connected planar graphs
with 2n edges and i = n + 2 vertices amounts to gener-
ating triangulations, which are 3-connected. In this case
the whole process boils down to one call of the genera-
tor of [28], that has exponential complexity when used
naively in this range. It is unclear whether this gener-
ator can be fine tuned to remain effective uniformly on
the whole range needed for this application.

On the other hand, the new generator that we
propose here allows both to correct this problem and

to improve the complexity. Indeed, as we have seen
in Section 7.3, the sampler appears to have quartic
complexity in the worst case, and it is called to generate
a linear number of edges. The final complexity of the
generation is thus O(n3).

9 Optimal coding of 3-connected planar maps

9.1 Introduction We shall describe an algorithm
to encode a 3-connected planar map whose outer face
is triangular. Indeed, it can also be used to encode a
general 3-connected planar map G: if the outer face of
G is not triangular, it suffices to fix three consecutive
vertices a2, a1 and a3 on the outer face of G and link a2

and a3 by an edge to obtain a 3-connected planar map
G̃ whose outer face is triangular. Then the coding of G
is obtained as the coding of G̃ and a bit indicating that
we had to add an edge.

To encode a 3-connected map G, the idea of the
algorithm is first to compute a particular orientation,
called minimal α0-orientation, of the edges of the so-
called derivated map G′ of G. Then, using a simple
application, we can associate an irreducible dissection D
to G′. In addition, the minimal α0-orientation of G′ can
be transposed in a tri-orientation of D without clockwise
cycle. Finally, using the computed tri-orientation of D
without clockwise cycle, it just remains to perform the
opening of D and encode the obtained binary tree.

9.2 Derivated map and α-orientation Let G be
a 3-connected planar map whose outer face is triangular.
The derivated map G′ of G is obtained by superposing
G and its dual map G∗ and by removing the dual vertex
v∗∞ corresponding to the outer face of G. Moreover, we
add to each of the three border vertices a1, a2 and a3

of G an half-edge directed toward the outer face.
The map G (resp. G∗) is called the primal map

(resp. the dual map) of G′. To each edge e of G
corresponds an edge-vertex of G′ of degree 4: this edge-
vertex is the intersection of e and its dual edge e∗

in G∗. In addition, e and e∗ respectively yield two edges
in G′. An example of a derivated map can be seen on
Figure 6(a), where the edges of G are darker than the
edges of G∗.

In [12], Felsner introduces the notion of α-orienta-
tion. Let G = (V, E) be a planar map and α : V → N.
An α-orientation of G is an orientation of the edges
of G such that ∀v ∈ V , there are α(v) edges incident
to v which are directed outward. If there exists an
orientation of the edges of G which is an α-orientation,
then the function α is said feasible in G. Felsner obtains
in [12] the following results:

Theorem 9.1. • For a planar map G and a feasible



function α, there exists a unique α-orientation of

G which does not have any clockwise cycle. This

α-orientation is said minimal.

• For the derivated map of a 3-connected planar map

whose outer face is triangular, the function α0 such

that α0(v) = 3 for all primal and dual vertices and

α0(v) = 1 for all edge-vertices is a feasible function.

9.3 An algorithm to compute the minimal α0-

orientation of the derivated map

Introduction To compute the minimal α0-orientation
of G′, we present an iterative linear-time algorithm
which is very similar to Kant’s algorithm of right-
most canonical ordering. Our algorithm also generalizes
an algorithm computing the Schnyder Woods of a
triangulation presented in [7].

The idea is to maintain at each step k a simple cycle
Ck of edges of G such that:

• the edge (a2, a3) is on Ck;

• for each edge e of G outside Ck, the four edges of G′

incident to the edge-vertex ve associated to e have
been oriented at a step j < k and ve has outdegree 1;

• all other edges of G′ are not oriented yet.

Let Gk denote the submap of G obtained by removing
all vertices and edges outside of Ck. In addition, we
order the vertices of the cycle Ck from left to right, i.e.
by doing a traversal of Ck from a3 to a2 without using
the edge (a2, a3).

At each step k of the algorithm, the operation
will consist in removing some vertices of Ck and their
incident edges. This has the effect of merging the
incident bounded faces with the outer face of Gk. For
each removed edge e, we will also orient the 4 incident
edges in G′ of its associated edge-vertex ve.

For this to produce a next planar map Gk+1 such
that the contour Ck+1 of Gk+1 is still a simple cycle
containing (a2, a3), we need to carefully choose some
vertices of Ck: the proper way to do this is explained in
the rest of this section.

Definitions A vertex of Ck is said active if it is incident
to at least one edge of G\Gk. Otherwise, the vertex is
said passive. By convention, before the first step of the
algorithm, the vertex a1 is considered as active.

For each couple of vertices (v1, v2) of Ck ordered
such that v1 is on the left of v2 on the contour of Ck, the
border path on Ck to go from v1 to v2 without passing
by the edge (a2, a3) is denoted by [v1, v2]. We also write
]v1, v2[= [v1, v2]\{v1, v2}

A couple (v1, v2) of vertices of Ck is said separating

if there exists an inner face f of Gk such that v1 and
v2 are incident to f but the edges of [v1, v2] are not all

v(k)

v
(k)
right

v
(k)
left

Figure 5: The operations performed at step k of the

algorithm, when v
(k)
left is active and v

(k)
right is passive.

incident to f . Such a face is called a separating face and
the triple (v1, v2, f) is called a separator.

A vertex v on Ck is said blocked if it is incident to
a separating face of Gk. By convention the vertices a2

and a3 are always considered as blocked.
A vertex v on Ck is said eligible if it is active and

not blocked.
Finally, for each vertex v of Ck, we define its left-

connection vertex vleft as the leftmost vertex on Ck

such that the vertices of ]vleft, v[ all have only two
incident edges in Gk. The path [vleft, v] is called the
left-chain of v and the first edge of [vleft, v] is called
the left-connection edge of v. Similarly, we define the
right-connection vertex, the right-chain, and the right-

connection edge of v (see Figure 5).

Operations of step k First we choose the rightmost
eligible vertex of Ck and we call v(k) this vertex 3.
Remark that this eligible vertex can not be a2 or a3

because a2 and a3 are blocked.
Let f1, . . . , fm be the bounded faces of Gk incident

to v(k) from right to left. Let also e1, . . . , em+1 be the
edges of Gk incident to v(k) from right to left. Hence,
∀1 ≤ i ≤ m, fi corresponds to the sector between ei

and ei+1.
An important remark is that the right-chain of

v(k) is reduced to one edge, which is easy to show
using the fact that v(k) is the rightmost eligible vertex.

Another remark is that all vertices of ]v
(k)
left, v

(k)[ are
active because each vertex of a 3-connected map has at
least degree 3.

We perform the following operations: for each edge
e belonging to the left-chain of v(k) or belonging to
{e1, . . . em}, let ve be its associated edge-vertex in G′.
Then we choose an edge e′ incident to ve and orient e′

outward of ve. We orient the three other edge incident to
ve toward ve, so that the edge-vertex ve has outdegree 1.
The choice of the outgoing edge is made as follows, see
Figure 5, where the active vertices are surrounded:

• if e is an edge of the left-chain different from the

3We will see in Lemma 9.1 that there always exists an eligible
vertex on Ck as long as Gk is not reduced to the edge (a2, a3).



left-connection edge, choose the edge connecting ve

to the dual vertex associated to fm;

• if e is the left-connection edge, two cases can arise;

if v
(k)
left is passive, choose the outgoing edge of ve as

the edge going toward the exterior of Ck; if v
(k)
left is

active, choose the outgoing edge of ve as the edge

going to v
(k)
left;

• similarly, if e = e1 (that is the right-connection

edge), two cases can arise; if v
(k)
right is passive, choose

the outgoing edge of ve as the edge going toward the

exterior of Ck; if v
(k)
right is active, choose the outgoing

edge of ve as the edge going to v
(k)
right.

Finally the graph Gk+1 is obtained from Gk by removing

the edges and vertices of the left-chain except v
(k)
left, and

by removing the edges e1, . . . , em.
As a2 and a3 are blocked on Ck, the contour of Gk+1

still contains the edge (a3, a2).
In addition, if Gk+1 is not reduced to (a2, a3), the

3-connectivity of G and the fact that the chosen vertex
v(k) is not incident to any separating face can be used to
prove easily that the contour Ck+1 of Gk+1 is a simple
closed curve, i.e. it does not contain any separating
vertex.

By construction, the three conditions stated in the
introduction of Section 9.3 are still satisfied by Ck+1.

The following lemma ensures that the algorithm
terminates:

Lemma 9.1. There exists an eligible vertex on Ck.

Proof. Omitted (recursive proof based on the 3-
connectivity of G). �

Last step of the algorithm Lemma 9.1 implies that
there remains just the edge (a2, a3) at the end of the
iteration. To conclude the construction, we bi-orient the
edge (a2, a3), and the outgoing edge of the associated
edge-vertex is chosen to be its incident edge directed
toward the outer face.

The six first drawings of Figure 6 show the exe-
cution of the algorithm of orientation on an example.
At each step the edges of Ck are black and wider, the
active vertices on the border are circled and the next
chosen vertex doubly circled. This algorithm is simi-
lar to the algorithm of [18], which can be implemented
with a linear-time complexity. The adaptation of these
methods of implementation ensures that our algorithm
has also a linear-time complexity.

Theorem 9.2. The algorithm computes the minimal

α0-orientation of the derivated map.

Proof. Omitted. �

9.4 Encode the 3-connected map using the

minimal α0-orientation of its derivated map

Associate an irreducible dissection to the

derivated map We can associate to the derivated
map G′ a dissection D of the hexagon with quadran-
gular faces.

The vertices of D are the primal and dual vertices
of G′. The edges of D are obtained as follows: each inner
face f of G′ is quadrangular and has two diagonally
opposed edge-vertices and has a primal and a dual
vertex which are diagonally opposed.

The edge of D associated to f is obtained by linking
the primal vertex and the dual vertex of f by a new edge,
see Figure 6(g), where the derivated map is superposed
with its associated dissection of the hexagon (ignore the
orientations here). Using 3-connectivity of G, it is easy
to prove that D is irreducible.

Induce a tri-orientation of the irreducible dis-

section from the minimal α0-orientation of the

derivated map Given the minimal α0-orientation X0

of the derivated map G′, we can associate to X0 a tri-
orientation of the associated dissection D of the hexagon
in the following way, see Figure 6(g). For each face f
of G′, noting ef its associated edge on the dissection,
we distinguish the following cases:

• if ef is incident to a vertex v of the outer face of the
dissection, we orient ef toward v;

• otherwise, let v (resp. v∗) be the primal (resp. dual)
vertex of f ; let e′v (resp. e′v∗) be the edge of f
which has v (resp. v∗) as origin when we traverse
the contour of f with the interior of f on our left; as
we work with the α0-orientation without clockwise
cycle, only three cases can arise:

• e′v and e′v∗ are respectively directed outward of
v and v∗; then we bi-orient ef , i.e. we orient
outward of their origin the two half-edges which
form ef ;

• e′v is oriented outward of v and e′v∗ is directed
toward v∗; then we orient ef toward v∗;

• e′v is oriented toward v and e′v∗ is directed
outward of v∗; then we orient ef toward v.

Lemma 9.2. The orientation of the dissection obtained

from the minimal α0-orientation of the derivated map

is a tri-orientation without clockwise cycle.

Proof. Omitted. �

Remark 9.1. This lemma together with Theorem 9.1

are the main tools of the proof of the existence in

Theorem 5.1.

Open the dissection in a binary tree Having
computed the tri-orientation without clockwise cycle of
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Figure 6: A complete example of the encoding of a 3-connected planar map.

the dissection D, we can perform the opening of D as
indicated in Section 5. We obtain thus a binary tree T ,
see Figure 6(i). It is easy to show that T has always n−5
nodes if G has n edges. Similarly, if G has i vertices and
j faces, then the bicoloration of T has always i−3 black
vertices and j − 3 white vertices or i − 3 black vertices
and j−3 white vertices (depending on the choice of the
leaf to place a root).

In addition, the set of binary trees with n edges
and the set of binary trees with i black vertices and
j white vertices can both be easily optimally encoded
using parenthesis words.

As
|B′

n|
|P′

n| is bounded by a constant and
|B′

ij |
|P′

ij |
is

bounded by a fixed (quadratic) polynomial, the asymp-
totic entropy of B′

n and P ′
n (resp. of B′

ij and P ′
ij) are

equal. Hence the encoding of P ′
n (resp. of P ′

ij) is opti-
mal.
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[24] D. Osthus, H. J. Prömel, and A. Taraz. On random
planar graphs, the number of planar graphs and their
triangulations. J. Combin. Theory Ser. B, 88(1):119–
134, 2003.

[25] D. Poulalhon and G. Schaeffer. Optimal coding and
sampling of triangulations. In ICALP, pp. 1080–1094,
2003.

[26] J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes. IEEE Transactions on Visualiza-
tion and Computer Graphics, 5(1):47–61, 1999.

[27] G. Schaeffer. Bijective census and random generation
of Eulerian planar maps with prescribed vertex degrees.
Electron. J. Combin., 4(1):Research Paper 20, 14 pp.,
1997.

[28] G. Schaeffer. Random sampling of large planar maps
and convex polyhedra. In STOC, pp. 760–769, 1999.

[29] W. Schnyder. Embedding planar graphs on the grid.
In SODA, pp. 138–148, 1990.

[30] C. Touma and C. Gotsman. Triangle mesh compres-
sion. In Graphic Interface Conference, pp. 26–34, 1998.

[31] W. T. Tutte. A census of planar maps. Canad. J.
Math., 15:249–271, 1963.

[32] D. B. Wilson. An annotated bibliography of perfectly
random sampling with markov chains. Maintained on
http://dimacs.rutgers.edu/~dbwilson/exact.

[33] D. B. Wilson. Determinant algorithms for random
planar structures. In SODA, pp. 258–267, 1997.


