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This extended abstract introduces a new algorithm for theam generation of labelled planar graphs. Its princi-
ples rely on Boltzmann samplers as recently developed byh&ucFlajolet, Louchard, and Schaeffer. It combines
the Boltzmann framework, a judicious use of rejection, a membinatorial bijection found by Fusy, Poulalhon and

Schaeffer, as well as a precise analytic description of #reating functions counting planar graphs, which was re-
cently obtained by Giménez and Noy. This gives rise to areextly efficient algorithm for the random generation of

planar graphs. There is a preprocessing step of some fixeltlyaa Then, for each generation, the time complexity
is quadratic for exact-size uniform sampling and lineardpproximate-size sampling. This greatly improves on the
best previously known time complexity for exact-size uniicsampling of planar graphs withvertices, which was

a little overo(n”).
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1 Introduction

A graph is said to be planar if it can be embedded in the plarthaono two edges cross each other.
In this article, we will consider labelled planar graphs,end vertices receive distinct labels. Statistic
properties of planar graphs have been intensively studled,[8]. Very recently, O. Giménez and M.
Noy [8] solvedexactlythe difficult problem of asymptotical enumeration of plag@aphs. They also
provide exact analytic expressions for the asymptotic abdliy distribution of many parameters such as
for example the number of edges and the number of connectadaents. Since many other statistics
on random planar graphs remain analytically and combiieipuntractable, it is an important issue to
find an efficient procedure to generate planar graphs at ranttoaddition, it makes it possible to validate
algorithms and programs on planar graphs, for example pgigresting, embedding algorithms, efficient
procedures for finding geometric cuts, etc...

A first algorithm for the random generation of planar graplaswroposed by Denise, Vasconcellos, and
Welsh [3], where a Markov chain on the ggfof planar graphs with vertices is defined. By symmetry of
the transition matrix of the Markov chain, the probabilitgtdibution converges to the uniform distribution
on Gn. This algorithm is very simple and seems to work well in pi@et However, it onlyconvergeso
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Auxiliary memory  Preprocessing time Time per generation
Markov chains O(logn) 0o(1) unknown {exact sizé
Recursive method O(n°logn) 0 (n’(logn)?(loglogn))  O(n%) {exact sizé
Boltzmann sampler O((logn)¥) O((logn)¥) o(n?) {exact siz¢
o(n) {approx. siz¢

Tab. 1: Comparison between the complexities of the algorithms wdioan generation of planar graphs.

the uniform distribution, so that any execution of the aitjon is bound to provide non-uniform results.
This is aggravated by the fact that the rate of convergenaekaown.

A second approach for uniform random generation@nwas developed by Bodirsky, Gropl and
Kang [1]. It relies on theecursive methodntroduced by Nijenhuis and Wilf [10] and formalized by
Flajolet, Van Cutsem and Zimmermann [5]. The recursive oetis a general framework that can be
implemented for any class of objects admitting a recursieothposition. Thus, producing an object
of the class uniformly at random boils down to producing tflezomposition treeorresponding to its
recursive decomposition. Then, the branching probadslithat produce the decomposition tree with suit-
able probability are computed using tbeefficientscounting the objects involved in the decomposition.
As a consequence, this method entails a preprocessing $tee Warge tables of large coefficients are
calculated using the recursive relations that they satisfy

Bodirsky et al apply the recursive method for planar graphs, which admiel known combinatorial
decomposition according to successive levels of conngctivhe coefficients enumerating planar graphs
do not seem to satisfy nice recursive relations, so thatithe tequirement of the preprocessing step is
large. More precisely, for the random generation of plarrapgs withn vertices (and possibly also a
fixed numbem of edges), the time and memory requirements of the prepsowestep are respectively
0 (n’(logn)?(loglogn)) and O(n°logn). Once the tables are computed, the time requirement of each
generation is0(n3)

In this article, we introduce a new algorithm for the randoameration of planar graphs that combines
the efficiency of Markov chains [3] and the uniformity profyeand precise complexity analysis of the
recursive method [1]. It can be implemented to produce plgnaphs with a fixed size uniformly at
random. Furthermore it has an approximate-size versionavdasmall relative range, say a few percents,
is allowed for the size of the output. For practical purpaggproximate-size random sampling often
suffices. The approximate-size algorithm we propose is g#igient as it has linear time complexity (see
Theorem 1). With this algorithm, we estimate that a carefyblementation should allow the random
generation of planar graphs with several tens of thousahdsrtices, whereas the recursive method of
Bodirskyet alseems to be limited to sizes of about 100.

Our algorithm is based on the principle of Boltzmann sanglewvery powerful framework for random
generation of combinatorial structures recently devetoipe Duchon, Flajolet, Louchard, and Schaeffer
in [4]. The idea of Boltzmann samplers is to relax the comstraf exact size sampling. More precisely,
given a combinatorial class, a Boltzmann sampler draws gatbbf sizen with probability proportional to
x" (or proportional to’é—? for labelled objects), whereis a certairreal parameter that can be appropriately
tuned. As a consequence, the probability distribution re@gp over all objects of the class, but objects
with the same size receive the same probability. In padiguihe probability distribution is uniform
when restricted to a fixed size. Like the recursive method{ZBwann samplers can be found for any
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combinatorial class admitting a recursive decompositibimis time, the branching probabilities used to
produce the decomposition tree of a random object are natdbais thecoefficientgrecursive method)
but on thevaluesat x of the generating functions of the classes involved in treodeosition.

Theorem 1 Let ne N be a target size. There exists exact-sizealgorithm A, producing planar graphs
of size n uniformly at random. Let> 0 be a fixed size-tolerance. There also existsapproximate-
sizealgorithm A ¢ producing random planar graphs with size[im(1 — €),n(1+ €)], and such that the
distribution of planar graphs is uniform on each size kn(1—¢€),n(1+¢)].

Algorithm A, is of quadratic time-complexitythe expected running time of each generation is asymp-
totically bounded by @2, for some constant C. Algorithm,Ais of linear time-complexitythe expected
running time for each generation is asymptotically bounbie - n, where the constant@epends o
as follows: G ~g_.0 $.

In addition, the auxiliary memory and preprocessing timguieed by A and A, are small, being of
order O(logn)X.

Let us also comment on the preprocessing complexity. Théeimgntation ofAn¢ and A, requires
the storage of a fixed number of real constants, which ardapedues of generating functions. Using
adaptative methods discussed in [4], we in fact only neecib!mex;)(logn)k bits of these special values,
wherek is a fixed integer. The generating functions we need to etalai@ those of different families
of planar graphs (connected, 2-connected, 3-connected)enAcrucial result, recently established by
0. Giménez and M. Noy [8], is that there exist exact analgtipressions for these generating functions.
Hence their evaluation can be done efficiently, with a linae complexity in the number of bits we
need to compute.

The complexity model used for the analysis of the algoritsrthat of the number of arithmetic op-
erations over real numbers assumed to be known exactlydfsize truncation of real numbers leads to
algorithms with a probablity of failure (caused by the lac¢lprecision) that can be made arbitrarily close
to 0. No failure will arise with a precision of 20 digits in mtéce. To achieve a complete correctness,
adaptative precision routines can be called in case ofr&ilu

The performances of the two previously existing algoritHordthe random generation of planar graphs
are compared with the performances of our algorithm in Table

2 Overview

The algorithm we propose relies on several ideas. First wenexthe classical construction rules for
Boltzmann samplers, as detailed in [4], and develop the mongplicated case of substitution construc-
tions, see Section 3.2. We exploit in Section 4 the recudamposition of planar graphs according
to successive levels of connectivity (already used in [h]) adapt it to the Boltzmann framework. This
decomposition reduces the realization of a Boltzmann sanfpk planar graphs to the realization of
a Boltzmann sampler for so-called 3-connected planar grépiore precisely for edge-pointed ones).
Contrary to classical recursive decompositions (e.g. itr@es) studied in [4], the transposition of the
decomposition into Boltzmann samplers is not straightéony It is also crucial to introduce new rejection
techniques into the Boltzmann framework.

Then the second step, developed in Section 5, is to realienglete Boltzmann sampler for edge-
pointed 3-connected planar graphs. To do this, we use ageeyt result of bijective combinatorics found
by the author, D. Poulalhon and G. Schaeffer [6]: there sxisturprisingly simple correspondence (not
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Fig. 1: The chain of reductions from planar graphs to binary trees.

detailed in this article) between binary trees and edgetpdi3-connected planar graphs. The realization
of a Boltzmann sampler for binary trees is straightforward & transported by the correspondence of [6],
combined with a careful rejection procedure (see Lemma 8. anama 6), into a Boltzmann sampler for
edge-pointed 3-connected planar graphs. The chain of tiedgsdrom planar graphs to binary trees and
the techniques we will use to perform the reductions arstitated on Figure 1.

However the size distribution of the Boltzmann sampler flanar graphs, obtained from Section 4
and Section 5, is too concentrated on objects of small sipeimprove the size distribution, wgoint
the objects, in a way inspired by [4]. The precise singuaaitalysis of the generating functions of
planar graphs, recently done in [8], indicates to us that aeetio point planar graphs three times to get
a satisfying size distribution. In Section 6 we explain hovtake the pointing operation into account in
the decomposition of planar graphs. We obtain a Boltzmamps [ G***(x) for “triply pointed” planar
graphs. The complexity of this Boltzmann sampler, for a welled value = xp, is analyzed in Section 7.
This yields the complexity results stated in Theorem 1.

3 Boltzmann samplers
3.1 Definition

Boltzmann samplers, introduced and detailed by Ducéioal in [4], are a very general and powerful
framework to perform random generation of objects of a coraturial clas”. Instead of fixing a par-
ticular size for the random generation, objects are drawdeua probability distribution spread over the
whole class. This distribution gives to each object of a cmiatorial classC a weight essentially propor-
tional to the exponential of its size. More preciselyifs an unlabelled class, we consider the generating
functionC(y) := ZyecyMa wherely| stands for the size (e.g. the number of nodes in a treg) lofs well
known that the sum defining(y) converges iy is smaller than the radius of convergemmeeof C(.). If it
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is the casey is saidcoherent Then, the probability distribution assigining to eacheatby of C a weight,

Py(y) =y /C(y)

, is a well defined distribution, called Boltzmann distrilbutof parametey. A Boltzmann samplerC(y)

is simply a procedure that draws each objectofvith probability%, i.e. the objects of” are drawn
under a Boltzmann distribution. The authors of [4] give awbic recursive constructions of Boltzmann
samplers for combinatorial classes that are assembledsieely using basic combinatorial constructions
(union, product,...).

Boltzmann samplers can similarly be assembled in the fraomieof labelled objects (e.g. graphs with

labelled vertices). This time the generating function af tiiassc is defined a<(x) = Yyec % The

“labelled” Boltzmann distribution assigns to each objecta weight

P ( ) x|V
T Mie

Then, a Boltzmann sampler for the labelled classs a procedure that draws objects Gfat random
under their “labelled” Boltzmann distribution. As in thelabelled framework, the authors of [4] develop
automatic rules of assemblage of Boltzmann samplers frait lgambinatorial constructions

In this extended abstract, we detail in Section 3.2 the plaof assemblage of Boltzmann samplers for
the case of a mixed combinatorial class. In a mixed cfassUn mChm, an object has labelled “atoms”
andm unlabelled “atoms”, for example a graph with(labelled) vertices anth (unlabelled) edges. The
associated generating functi@xx, y) is defined a€(x,y) = zn,mcn,mf]—r;ym whereC i is the number of
objects ofC with n labelled andn unlabelled atoms. For a fixed real valug we denote byc(yo) the
radius of convergence of— C(X,Yo). A pair (x,y) is said to becoherentf x € (0,pc(y)), which means
thatzmmcn,m’r‘]—Tym converges and th&(x,y) is well defined. Given a coherent pdk;y), theBoltzmann
distributionis the probability measuryy such that an objegtwith n labelled andn unlabelled atoms
has probability

1 X0
Pxy(Y) = mﬁ)’m

An important property of this measure is that two objectstite same size parameters have the same
probability. ABoltzmann samplefC(x,y) is a program that produces objects@®ft random under the
Boltzmann distributiorPy y. Observe that the development of the Boltzmann framewarkiiged classes
is an extension of the two classical frameworks (i.e. ladzednd unlabelled) studied in [4]. Indeed, the
unlabelled case can be recovered by setting the vanaferking labelled atoms) to 1, and the labelled
case can be recovered by setting the varigiffearking unlabelled atoms) to 1.

3.2 Construction rules

A nice feature of Boltzmann samplers is that they can be pbthstraightforwardly for finite sets, and
that the basic combinatorial constructions (union, prodset) can be transposed into simple rules of
construction for the associated Boltzmann samplers. Herbave to suppose that we know exactly the
values of the generating functions at a given coherent p&e. will also need two basic distributions:
given 0< p < 1, the Bernoulli LawBern(p) is given by the random variabk such thaP(X = 1) = p
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andP(X =0) = 1— p. GivenA > 0, the Poisson LaWwoigA) is given by the random variabk such that
P(X =k) =M.

Starting from combinatorial classesand B for which we have valid Boltzmann samplers, we explain
in Table 2 how to derive a valid Boltzmann sampler for a cl@ssonstructed fron¥d and B using five

fundamental rules (these are the rules we will use in thislajt

Construction GeneratdiC(x, y)
i Axy)
Lnion C=4UB if Bern<c<x,y)> then return TA(X,y)
Clx,y) = A(xy) +B(x.Y) else retum B(x)
endif
C—AxB y— (TA(X,y),'B(x,y)) {independent calls
product o DISTRIBUTERANDOMDISTINCTLABELS(Y)
C(xy) = AX,Y)B(x.Y)
return y
k — Pois/A(x,y))
set C=Se(A) y— (TA(XY),...,TAxY)) {kindependent calls

C(xy) = expA(x.y))

DISTRIBUTERANDOMDISTINCTLABELS(Y)

return y

y—TABXY).Y)

for v € labelledatomgy) do

. W < I'B(x,y) {independent calls
C=AoxB substitutev by yy in y

C(X7 y) = A(B(X7 y)ay) endfor
DISTRIBUTERANDOMDISTINCTLABELS(Y)
return y

Y —TAKXB(x.Y))

for e € unlabelledatomsy) do

. Ye — I'B(x,y) {independent calls
C=AoyB substitutee by ye in y

C(X7 y) = A(X7 B(XJ y)) endfor
DISTRIBUTERANDOMDISTINCTLABELS(Y)
return y

X-substitution

y-substitution

Tab. 2: The transposition into Boltzmann samplers of 5 classidalsraf construction of combinatorial classes.

Proposition 1 For the five construction rules described in Table 2, the pragl C(x,y) is a valid Boltz-
mann sampler for the combinatorial clags

Proof. Let us just detail the case of union. An object@{m has probabilityﬁ ’;—Tym, by definition of

'A(x,y) multiplied by A<§’y), of being drawn by C(x,y). Hence it has probabilit% f]—r;ym of being

C(xy)
drawn. Similarly, an object o3, m has probabilityﬁ ’r(]—r;ym- (1— %) = Wlwf]—r:ym of being drawn.
Hencel C(x,y) is a valid Boltzmann sampler f@'. The proof for the four other cases is similar, still more
intricate (the two substitution constructions, that areing4], are new). O

Example We take the example of the (unlabelled) classf binary trees where the atoms are the inner
nodes. The class has the following decomposition grammar:
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C=(CUd)*{e}x(CUD)

Hence the serie§(y) counting binary trees is given (y) = y(1+C(y))2. ThusC(y) can be easily
evaluated for a fixed real parameyes %1.

Using the construction rules for union and product givenabl€ 2, we obtain the following Boltzmann
sampler for binary trees:

rC(Y) : retum(rleafOrTree(y)a {.}7 rleafOrTree(y)) {independem cal}s

Meaforredy) :  if Bern(Hle)) returng
else retur C(y)

Remark The function DSTRIBUTERANDOMDISTINCTLABELS(Y) throws distinct (uniformly) rand-
omly permuted labels on the labellable atomsyofit is necessary to call this procedure on top of the
combinatorial construction (for examplegturn (FA(x), 'B(x))” for the cartesian product) to ensure that
the atoms of the returned object bear distinct labels. If ares@er a combinatorial class whose construc-
tion involves the 5 rules given in Table 2, the call toSDRIBUTERANDOMDISTINCTLABELS can be
postponed to the end of the algorithm, i.e. we can apply thelliag to the finally output object (this is
also mentioned by Flajolatt al [5, Sec3]). Hence the labels do not really matter and intcecho addi-
tional complexity in the Boltzmann samplers: for a clas&hose combinatorial decomposition involves
these five construction rules, we just have to generate thialfalled)shapeof an objecty produced by
FC(x,y); then we call DSTRIBUTERANDOMDISTINCTLABELS(Y).

Pointing In the following sections, we will make much use of fh@intingoperation: Given a mixed (or
labelled) combinatorial clags = Un mCn.m, the pointed clasg® is defined as the class of objects@ivith

a marked labelled atom. As a consequence, the generatintidomf C° is En,mnq,m’r‘]—Ty’“ = x%—g (X,Y).
For the particular case of a class of planar graphs, we veith abnsider objects with a marked unlabelled
atom, i.e. planar graphs with a pointed edge. This time theesponding generating function is given by
2nm mQ\,m),(]—Tym = yz_(; (X,Y)-

4 Decomposition of planar graphs and Boltzmann samplers

We present here a well known combinatorial decompositioplafar graphs (also used by Bodirsély

al [1]) according to successive levels of connectivity, andadapt it to Boltzmann sampling. We recall
that a graph is said to be 2-connected (resp. 3-connectatl}éfast 2 (resp. 3) of its vertices have to
be removed to disconnect it. The decomposition can be suinedsas follows: a planar graph can be
decomposed into its connected components; and a conndated graph can be seen as a decomposition
tree in which the nodes are occupied by 3-connected plama@hgrwith a marked edge. Using the rules
stated in Table 2, a topdown approach yields a chain of r@sh&t In this section, each reduction of
the chain has a corresponding lemma, from Lemma 1 to Lemma&.c®ncatenation of the reduction-
lemmas finally gives the following Proposition:

Proposition 2 Finding a Boltzmann sampler for labelled planar graphs cerdewn to finding a Boltz-
mann sampler for edge-pointed 3-connected planar graphs.
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4.1 Planar graphs from connected planar graphs

In this section, we consider Boltzmann samplers in one bgiamarking the (labelled) vertices of the
graphs. We recall that the rules of Table 2 are still valid wiettingy = 1. We writeG(x) = Engn)ﬁ—T
andC(x) = XnCn),(TT for the series counting respectively labelled planar gsagihd connected labelled
planar graphs by their number of vertices. A planar graphimadecomposed into the set of its connected
components, which yields the equatiG(x) = exp(C(x)).

Lemma 1 Finding a Boltzmann sampl€iG(x) for planar graphs reduces to finding a Boltzmann sampler
I"C(x) for connected planar graphs.

Proof. We use Rule 3 (set construction) of Table 2: a Poisson law @mpeaterC(x) is used to draw the
numberk of connected components. Then we return a planar graph niddaadependent calls tbC(x).
a

4.2 Connected from 2-connected planar graphs

We describe here a well-known decomposition, detailed jipI®]. It is calledblock-decompositioand
establishes a relation between pointed connected andegloZatonnected planar graphs. Each vertex-
pointed connected planar graph can be uniquely constriigtedmposition in the following way: take a
set of vertex-pointed 2-connected planar graphs and atitech, by merging their marked vertices into a
unique marked vertex. Then for each non marked verteieach 2-connected component, take a vertex-
pointed connected planar graphand merge the marked vertex wfwith v (this operation corresponds
to anx-substitution). This construction implies the relat@h(x) = xexp(B'(C*)) whereC® (x) := xC'(x)

is the series counting vertex-pointed connected planatgra

Lemma 2 Finding a Boltzmann sampléiC(x) for connected planar graphs reduces to finding a Boltz-
mann sampleF C*(x) for vertex-pointed connected planar graphs.

Proof. We use the following algorithm with rejection, where we iy for the number of vertices of a
graphy:
FC(x): y«Trc*(x
1

if Bern(m) returny else reject and restart

The probability for a grapty to be drawn withIC(x) is proportional to|y| X

T (because of C*(x))

multiplied byﬁ (because of rejection). Hence itis proportionaﬁb which ensures thdtC(x) is a valid
Boltzmann sampler for connected planar graphs. O

Lemma 3 Finding a Boltzmann sampldrC®(x) for vertex-pointed connected planar graphs reduces to
finding a Boltzmann samplé&iB® (x) for vertex-pointed 2-connected planar graphs.

Proof. Using construction rules set aresubstitution of Table 2, the block decomposition expldiabove
is directly transposed into the following Boltzmann samite vertex-pointed connected planar graphs:
rc*(x): k« PoigB'(C*(x))
y— (FB*(C*(x)),...,B*(C*(x))) {k independent calls
merge th&k components of at their marked vertices
for each non marked vertexof y replacev by y, < 'C*(x) {independent calls
returny.
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4.3 2-connected from 3-connected planar graphs

A second well-known decomposition due to Trakhtenbrot [114t we callnetwork-decompositigren-
sures that a 2-connected planar graph can be decomposeg-auionected planar components. This
combinatorial decomposition allows us to reduce the déimibf a Boltzmann sampler for 2-connected
planar graphs to the definition of a Boltzmann sampler fooBrected planar graphs. We rely on [12]
for the description of the decomposition.n&tworkis a connected graph with two poles labelled 0 and
o, such that the grapN* obtained by adding an edge between 0 and a 2-connected planar graph. A
series-networlor s-network is a network made of at least 2 networks conneictetiainat their poles. A
parallel networkor p-network is a network made of at least 2 networks conndatedrallel, so that their
respectiveo-poles and 0-poles coincide. A networksuch thatN* is 3-connected is called pseudo-
brick. A polyhedral networlor h-network is a network that can be obtained by substitutingtavark Ne

in each edge of a pseudo-brick (these networks will put the bridge betw2&onnected and 3-connected
planar graphs).

Proposition 3 (TrakhtenbrotNetworks with at least 2 edges are partitioned into s-nekspp-networks
and h-networks.

Now we explain how to obtain a precise recursive decompmosiéind exact equations for the different
families of networks. We writ®(x,y), S(x,y), P(x,y), H(X,y) for the series counting respectively net-
works, s-networks, p-networks,h-networks by their number of non-pole vertices (variaklend their
number of edges (variabyg. Proposition 3 ensures that:

D(xy) =y+Sxy)+P(xy)+H(XxYy) 1)

An s-network can be uniquely decomposed into a saretwork (the head of the chain) followed by a
network (the trail of the chain):

S(x,y) = (y+P(xy) + H(X,y)) XD(X,y) )

A p-network has a uniquemaximalparallel decomposition into a set of parallel componentgivare
not p-networks. Observe that we consider here graphs withoutipieiedges, so that at most one of these
components is an edge. Whether there is one or no such edgaeoent gives:

P(X,y) = yexp.1 (S(X,y) + H(X,y)) +exp., (S(X,y) + H(X,y)) 3)

where exp(z) = Sk %

Finally, the series foh-networks clearly corresponds to swsubstitution. If we writeGs(x,y) for the
series counting 3-connected labelled planar graphs, Heeseries counting pseudo-bricksx%%%Gg(x, y),
and we have:

HxY) = 7 252 (X D(x) @

Lemma 4 Using rejection, a Boltzmann sampleB* (x) for (vertex-) pointed 2-connected planar graphs
can be “efficiently” obtained, in ar0(1) expected number of trials, from a Boltzmann samﬁl%(x, y)
for edge-pointed 2-connected planar graphs.
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Proof. Once again, we use rejection. A Boltzmann sampRf(x) is obtained as follows, where we write
respectivelyi and | for the number of vertices and edges of a grgph
MB*(x): y«— r"B(x 1)

if Bern( ) returny else reject and restart

By construction] B®(x) draws a 2-connected planar graptvith probability proportional toj% (be-
cause oﬂ'%—'j(x, 1)) multiplied by% (because of rejection). Hence it draws a 2-connected plgnagnh

with probability proportional to%, which corresponds to a valid Boltzmann sampler for (vejtprinted
2-connected planar graphs. Let us now comment the word iitit The crucial point is that the graphs
we consider are planar, so that Euler relation applies am:isgiz % Hence the probability of success at
each trial is bounded away from 0 (this was not the case far#msition fromrC*(x) to 'C(x) described
in Lemma 2). O

Lemma 5 Finding a Boltzmann samplé’r%—‘j (x,y) for edge-pointed 2-connected planar graphs reduces
to finding a Boltzmann sampliil"a—ey3 (x,y) for edge-pointed 3-connected planar graphs.

Proof. If we write K(x, y) for the series counting networks where poles are not coedehy an edge, we
have bothX—K(x y) = ay B(x,y) and(1+y)K(x,y) = 14 D(x,y), so that(1+y)% 3 B(x,y) = (11L D(X,Y))-

Hence, finding a Boltzmann sampre% x,y) reduces to finding a Boltzmann sampll'e[D(x y) for net-
works.

Then, the combinatorial decomposition of networks, sunimedrby Equations 1-4, can be directly
transposed into a Boltzmann sampldd(x,y) for networks, using the rules of construction of Table 2.
The only terminal nodes of this decomposition grammar aeestircalled pseudo-bricks. As we have
seen, these objects correspond to edge-pointed 3-codn@atear graphs, which concludes the proof.

5 Boltzmann sampler for 3-connected planar graphs

The preceding section has ensured that the realization @fitarBann sampler for planar graphs comes
down to the realization of a Boltzmann sampler for edge-{@airB-connected planar graphs. This last
task is possible since 3-connected planar graphs are catobially tractable.

A first well known result, due to Whitney, ensures that sucap@is have a unique topological em-
bedding (in general a planar graph can have many embeddirige iplane). More precisely, we define
arooted 3-connected mags an unlabelled 3-connected planar graph embedded in dne,giogether
with the choice of a marked and oriented edge, calleddoe Writing M(x,y) = 3 j Mi jX iyl for the
series counting rooted 3-connected maps by their numbeedices and edges, Whltneys Theorem
yields: M(x,y) = y"G3( X,¥). Hence, rooted 3-connected maps correspond to the urddbsliape of
edge-pointed 3- connected labelled planar graphs. Iniaddéccording to the remark of Section 3.2, it is
sufficient to draw only the unlabelled shape of the objectshat we have the following lemma:

Lemma 6 Finding a Boltzmann samplde’r‘j’GS (x,y) for edge-pointed 3-connected planar graphs reduces

to finding a Boltzmann samplé&M(x,y) for rooted 3-connected maps.

Now we use a combinatorial result (which relies on an expldection) found by the author, D.
Poulalhon and G. Schaeffer [6]. This result establishesrising correspondence between binary trees
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and rooted 3-connected maps. We defirt@alored binary tree as a binary tree (each node has a left
son and a right son that are possibly empty) whose nodes #&eedan black or white so that two
adjacent nodes are always differently colored. These @espartitioned into black-rooted and white-
rooted depending on the color of their root node. Writing , X, ), Te(Xe, %) andT, (Xe, %) for the series
counting respectively bicolored, black-rooted and whdeted binary trees, we have:

T = TLUTL T(Xe,Xo) = Ta(Xe;Xo) + To(Xe, Xo)
{ 7. = {e}x(0UT)? { T X) = X (14To(X, %))
T, = {o}x(0UT)? To(XeXo) = Xo (14 Ta(Xe, X))

Remark The classes of rooted planar maps and bicolored binary tneesnlabelled classes with two
parameters (vertices and edges for maps, black and whitsrfodbinary trees). This case is not treated
in Section 3, but it is clear that a Boltzmann sampler of patanix, y) has to be defined as a program that

draws an object with atoms of the first kind anglatoms of the second kind with probablllg— With

this definition, it is easy to establish that the constructides given in Table 2 for union and product are
valid.

Lemma 7 The decomposition grammar for bicolored binary trees yseldompleteBoltzmann sampler
for bicolored binary trees, where “complete” means that noaiary Boltzmann sampler is needed.

Now we state the combinatorial correspondence with rootedrected maps, detailed in [6]:

Proposition 4 Let 7 be the set of bicolored binary trees with i black nodes and kenipdes. There
is a mapping, called closure-mapping, that establishesjection betweerts x {1,2,3,4,5,6} and

Diizkss X {1...1+k+2}, where D33 is a “small” superset of the sef 3 k.4 Of rooted 3-

connected maps withti 3 vertices and i k+ 4 edges.

Lemma 8 Setting x = x-y and % =y, the correspondence of Proposition 4 transports a Boltama
samplerl' T (., %), as defined in Lemma 7, into a sampler for rooted 3-connectgusrsuch that the
probability of drawing an object o/, ; is proportional to(j — 2)x'y!.

Adding a rejection step with probability of success equaj—%@ on top of this sampler, we obtain a
Boltzmann sampler for rooted 3-connected maps.

This lemma ends our decomposition chain and also ends thesponding chain of lemmas, which
indicate to us how to realize a Boltzmann sampler for plamaplys. However more is needed to achieve
the complexity stated in Theorem 1, as explained in the resttan.

6 Size distribution

In the last section, we have described a procedure for findiBgltzmann sampldrG(x) for labelled
planar graphs. We are interested in the distribution of sfabe planar graphs output IhG(x). Typically,

we need totunethe real parametex in order to ensure that the distribution of the size of theeobj
produced is concentrated around a specific target valtwever, this tuning operation does not always
apply depending on th&ingularity typeof G(x).
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Definition Givena € R\N, a generating functiofr (x) is saida-singular if the following expansion
holds in a Camembert-neighbourhood of its dominant singular (see [4] for technical conditions of

such neighbourhoods),
x\° x\°
F(x) = P(X)+c¢Cq|1—— oll—-—
0,5, P09 (1) o (1)

whereP(x) is a polynomial.
The following lemma, Theorem 6.3 of [4], ensures that thertgroperation mentioned above applies
well for a-singular functions witha < 0.

Lemma 9 [4] Let there be given a Boltzmann samflét(x) for a combinatorial class and assume that
the associated generating functio® is a-singular witha < 0. For each integer n, defingx= pg (1+ %)
and denote by X the size of an object outpuf Byx,).

Then, for each fixed tolerance-ratia> 0, we have

P(Xe[n(1-¢),n(1+e)]) —nw Pe,

where the positive constant g|0, 1] varies in proportion tce: pg ~¢—0 0 - € for some constard.
Moreover, we have

o
P(Zn = n) ~N—oo ﬁ

Now the following lemma indicates how to modify the Boltzmesamplef” G(x) for planar graphs so
that the size distribution of the output gets the behavieguired by Lemma 9.

Lemma 10 Given a combinatorial class whose associated generatingtfon F(x) is a-singular, the
generating function F(x) = XxF'(x) associated to the pointed clas$ B (a — 1)-singular.

The generating function @) counting planar graphs ig—singular, seq8].

As a consequence, the generating functiof®X) is (—%)-singular. Hence, Lemma 9 applies for the
size distribution of the output 61G***(X).

Observe that the pointing operator can be easily injecteédarbasic rules of construction that we use
for the decomposition of planar graphs. For examplg,# AU B thenC® = 4° U B*; if C = 4% Bthen
C*=AA°+xBUAxB* if C=Se(4)thenC® = 4°xSe{(A4). As a consequence, the pointing operator
can be injected in the chain of reductions from planar grapt8sconnected planar graphs. For example,
Lemma 3 becomes:

Lemma 11 Finding Boltzmann sampleisG®**(x), F'G**(x), FG®(x), I G(x) for planar graphs reduces
to finding Boltzmann sampleFsC*®®(x), FC**(x), [C*(x), FC(x) for connected planar graphs.

Proof. Starting fromG(x) = exp(C(x)) (i.e. G = Se{()), we find successivel® (x) = C*(x) exp(C(x)),
G**(x) = C**(x) exp(C(x)) + C*(x)?exp(C(x)), G***(x) = C***(x) exp(C(x)) + C**(X)C*(x) exp(C(X)) +
2C** (x)C* (x) exp(C(x)) + C*(x)3exp(C(x)). The corresponding combinatorial decompositions are then
directly transposed into Boltzmann samplers, using thesraf Table 2. O

In the same way, the pointing operator can be injected ireodcomposition from connected to 2-
connected and into the decomposition from 2-connecteddordected planar graphs. This yields:
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Proposition 5 Finding a Boltzmann sampl€iG***(x) reduces to finding Boltzmann samplér%fy—3 (XY),

Faa—%.(x,y), Faa—(?"(x,y). According to Whitney’s Theorem (see Section 5), this catoes to find-
ing Boltzmann sampleSM(x,y), TM*(x,y), TM**(x,y) for non-pointed, vertex-pointed and vertex-bi-
pointed rooted 3-connected maps.

From Lemma 8, we already have a Boltzmann samipM(x,y), and the following lemma completes
the construction for pointed and bi-pointed objects:

Proposition 6 Using the correspondenc®inary-trees—rooted-3-connected-mapstated in Proposi-
tion 4 and using rejection, Boltzmann samplEM?® (x,y) andl"M*®(x,y) can be “efficiently” obtained, in
an O(1) number of trials, from Boltzmann samplé&r§ (xy,y) andl' T*(xy,y) of bicolored and black-node-
pointed bicolored binary trees. As T and fiave simple complete decomposition grammars, complete
Boltzmann samplers can be directly derived for these twssels.

Hence, Proposition 5 ensures that a Boltzmann sanip&*®(x) for triply pointed planar graphs can
be obtained.

Proof. Let us detail the caseT (xy,y) — 'M*(x,y). As stated in Lemma 8, the correspondehuery
trees—rooted 3-connected mapgselds a sampler for rooted 3-connected maps where eacltokbije i
vertices andj edges has probability proportional t¢p— 2)x'yl. It just remains to pile up on top of this
sampler a rejection step with success-probabﬂi%y. As opposed to Lemma 8, the probability of success

is bounded away from 0 because Euler relation ensuresrﬂaa;b % O

To conclude, we have to point the objects so that the sizeldiion of the outputs of Boltzmann
samplers has rather good concentration properties. Thempdssible to inject the pointing operator into
the decomposition of planar graphs and to obtain a Boltznsample G***(x) for triply vertex-pointed
planar graphs, which have a satisfactory size-distriloutd/e have also seen that the rejection step that
we add on top of our samplers (in particular for rooted 3-@mtad maps in Proposition 6) works better
for pointed objects than for non-pointed objects.

7 Algorithm scheme and Complexity results

The sampler we finally propose in order to produce planarlgdp the “triply pointed” Boltzmann
samplel” G*** (x,) with the valuex, = pg (1 — 5 ) tuned as indicated in Lemma 9. The complete scheme,
from binary trees to triply vertex-pointed planar graplssrecapitulated on Figure 2 and Figure 3. The
following proposition implies directly the time complexistated in Theorem 1.

Proposition 7 Let A, be the expected running timeoG*** (x,) where % = pc (1— 2—1n) Lete >0bea
fixed size-tolerance parameter.

e The quantity\, is linearly bounded/A, = O(n) as n— co.

e The expected running time 61G***(x,) conditioned (by rejection) to output an object of size
¥ =n is quadratic. More precisely, it is asymptoticafy\n, where the constard is introduced
in Lemma 9.

e The expected running time 61G***(x,) conditioned (by rejection) to output an object of size
Z e [n(1—g,n(1+¢)]is linear. More precisely, it is asymptoticallitAn, where the positive con-
stant p is introduced in Lemma 9.
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Procedure 1: bicolored binary trees

T = T,U7T;

T. = {e}x(oUT)’

T, = {o}*x(@UT)’
I'T(xe, o)

Procedure 2: binary trees — 3-connected planar graphs

v —TT(ze,20)

—_——
derivative
w.r.t. e

i« nr_black_nodes( )
j « nr_white_nodes(y

TO
/T.O
T.

o

v TT*(xe, o)
i «— nr_black_nodes(y)
j « nr_white_nodes(7)

T (ze,20)

10UTS

|

1) Preep(7) = 1) Proo ; 1) Prouy(y) = 0432
2) closure(y) / 2) clOS;T‘e(’Y) +]+2 2) clisuprz(ﬁ) R
. BG‘ o0
61/ ayd (37 Y) r oy (z,9)
Procedure 3: 3-connected planar graphs — 2-connected planar graphs
network-decomposition (Eq 1 to 4)
D= D* = D =
 — _—
.. point .. point ..
tnvolves 8(%3 tnvolves 653, 653. involves 653, 653., 653 *
oB® oB*®
OB oB® aB*®

i« nr_vertices(y)
Jj «— nr_edges(y)

Preep() = % l

I'B*(x)

1« nr_vertices(vy)
j — nr_edges(v)

Pkeep('Y) = i l Pkeep('Y) = i l

Fig. 2: The algorithmic scheme producing Boltzmann samplers foor2aected planar graphs from Boltzmann sam-
plers for bicolored binary trees.

1« nr_vertices(vy)
j — nr_edges(v)
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Procedure 4: 2-connected planar graphs — connected planar graphs

block-decomposition

C*(z)=zexp(B'(C*(x))) C**(z)=expr. with:  C***(z)=expr. with:
O/ B/ B// O/ O// B/
’ ’ B/; B/;/ ’
l” l PR ), T ) l FE (0, 184 (o), FB%ee )
o
v —TC*(z)
i« nr_vertices(y)

Preep() = T l

I'C(x)

Procedure 5: connected planar graphs — planar graphs

decomposition in connected components

G=exp(C) G*=C*exp(C) G**=expr. with: G**® =expr. with:

c.c'.C" c,c’,c",c"
) I'C(x),
- uses:TC(z), TC® (x) usei.FC(z), v ;sgi ,TC** ,
luses.l"c(z) l l TC®(x), IC*®(x) FC.S%)((L‘) (z)
e [r6w)] rG* (2) LG ()

Fig. 3: The algorithmic scheme producing a Boltzmann sampler fplytvertex-pointed planar graphs from Boltz-
mann samplers for 2-connected planar graphs.
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Proof. The second and third points are trivial using Lemma 9 anddaheviing easy technical result: if a
rejection algorithnA has expected running tinmteand success-probabilityat each trial, then the expected
running time till success i%. The third point is more difficult. A complete proof requiresdevelop
calculation rules for the expected numbeZ(x) of operations performed during one call to a Boltzmann
samplerTC(x). For a classC assembled recursively using classical combinatorial toasons (like
union, product), simple rules of composition can be devedbior the calculation ofAC(x). For example,

if C= A% B thenA\C(x) = AA(X)+AB(x), if C =4U B thenAC(x) = %/\A(x) + &)g/\B(x). Other
simple rules can be derived for the three other constru¢tetix-substitutiony-substitution) used by our
algorithm. Injecting these rules of calculation into thesessive decomposition grammars used by our
algorithm (see Figure 2 for a summary), we finally obtain th@&P*®(x) is O(n).

Let us now give an intuitive explanation of the linear conxileresult. All operations used in the
algorithm (assemblage of connected components, closappimg ...) have linear cost. Hence the steps
that can make the complexity of the algorithm increase azadjection steps. For example, the transition
from 'C*(x) to F'C(X) requires a rejection step where the accepting—probalir'sli%ywith i the number of
vertices of the object. It seems that rejection arises véignaf the expected number of verticgg of
an output off C*(x,) is of ordern. Fortunately this is not the case because the size distibof the
output ofFC*(x,) is concentrated on objects of small size, so that we Bave O(1). In our algorithm,
there are also rejection steps where the expected size obfkets to reject is large, i®(n). This is for

example the case for the transition frd'r@%"(x, 1) to F'B***(x). However, see the proof of Lemma 4,

the acceptance probability is greater th?,nso that this rejection step does not make the complexity
order increase. To sum up, the rejection steps involvingglabjects are always such that the acceptance
probability is bounded away from 0. O
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