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Abstract. This article introduces a straight-line drawing algorithm for
quadrangulations, in the family of the face-counting algorithms. It out-
puts in linear time a drawing on a regular W x H grid such that W+ H =
n—1— A, where n is the number of vertices and A is an explicit com-
binatorial parameter of the quadrangulation.

1 Introduction

A plane graph G (also called planar map) is a graph embedded in the plane,
defined up to continuous deformation. A major issue in graph drawing is to
compute a straight-line drawing of G, i.e., to place vertices of G at points of
a regular W x H grid (W being called the width and H the height of the
grid), so that the drawing obtained by linking adjacent vertices by segments is a
planar drawing of G. An extensive literature is devoted to straight-line drawing
of triangulations, i.e., plane graphs with faces of degree 3, and more generally
of 3-connected plane graphs. Essentially there are two classes of linear time
algorithms: a) purely iterative algorithms based on a specific order of treatment
of vertices, the drawing being globally updated at each step [5,8,10]; b) one-
shot algorithms, where the plane graph is first endowed with a combinatorial
structure (e.g. Schnyder woods for triangulations), which is used to compute
the coordinates of vertices, usually using some face-counting operations [11,2,
6]. The algorithms of the second class have the advantage that the coordinates
of vertices are computed independently, so that they are easier to implement
and to perform on a piece of paper. In addition, the grid size can be expressed
in terms of combinatorial parameters of the graph.

Surprisingly, little attention has been given to straight-line drawing algo-
rithms dealing specifically with quadrangulations, i.e., plane graphs with all
faces of degree 4 (these are also called maximal bipartite plane graphs). The
only reference we found is an article by Biedl and Brandenburg [1], where it is
shown that a quadrangulation () can be triangulated into a triangulation 7" of
the 4-gon with no separating triangle, so that the algorithm of Miura et al. [10]
can be called to embed T (hence, also Q) on a ([n/2] — 1) x [n/2] grid. This
algorithm is linear and has small grid size, but it does not really use a com-
binatorial structure specific to quadrangulations. In contrast, the algorithm we
introduce exploits a quadri-partition of the inner edges of a quadrangulation,
presented in Section 3. This combinatorial structure is also investigated in [7]



using another terminology (with labels) and is closely related to a bicoloration
of the edges of a quadrangulation [4]. We use the quadri-partition to triangulate
partially @ into a plane graph G endowed with a so-called transversal structure,
i.e., a bicoloration and orientation of the inner edges of G with specific local con-
ditions. Transversal structures were originally only defined for triangulations of
a 4-gon [6,9]. The definition is easily extended to partially triangulated quadran-
gulations in Section 2. Then, the transversal structure is used to draw G (hence,
also @) with face-counting operations. To do this, we extend the algorithm of [6],
which draws triangulations of the 4-gon, to partially triangulated quadrangula-
tions. The obtained drawing of @) verifies W + H = n — 1 — A, where n is the
number of vertices and A is an explicit parameter of (), see Theorem 1. Hence,
the semi-perimeter is at most as large as in [1]. In addition, our algorithm has
the advantage of being of the one-shot type.

2 Transversal structures
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Fig. 1. The local conditions C1 and C2 for transversal structures (Fig. (a)), a partially
triangulated quadrangulation G endowed with a transversal structure (Fig. (b)), the
associated red map and blue map (Fig. (c)), and the straight-line drawing of G using
TRANSVERSALDRAW(G) (Fig. (d)).

Let G be a plane graph with quadrangular outer face, the four outer vertices
in cw order being denoted by N, E, S and W (like North, East, South, West).
A transversal structure is an orientation and partition of the inner edges of G
into red and blue edges, satisfying the following conditions (see Figure 1(a)):

C1: (Inner vertices) Each inner vertex of G is incident in cw order to: a non-
empty interval of outgoing red edges, a non-empty interval of outgoing blue
edges, a non-empty interval of ingoing red edges, and a non-empty interval
of ingoing blue edges.

C2: (Border vertices) The inner edges incident to N, E, S, W are ingoing
red, ingoing blue, outgoing red, outgoing blue, respectively.



Transversal structures have been defined in [6, 9] in the case where all inner faces
are triangles. However, as we will see, other plane graphs can be endowed with a
transversal structure. Even if we do not need a precise condition of existence, let
us mention that a necessary condition is that all inner faces have degree 3 or 4.
Such a plane graph is called a partially triangulated quadrangulation. Let G be
a partially triangulated quadrangulation endowed with a tranversal structure.
Then, it is easily shown (adapting the proof of [6, Prop.1]) that the red edges
of G form a bipolar orientation with source S and sink N; and the blue edges
form a bipolar orientation with source W and sink E. (We recall that a bipolar
orientation is an acyclic orientation with a unique vertex having only outgoing
edges, called source, and a unique vertex having only ingoing edges, called sink.)
As developed in [6] for triangulated graphs, this property gives rise to a straight-
line drawing algorithm TRANSVERSALDRAW(G), where the red edges are used
to give abscissas and the blue edges are used to give ordinates. The red map
(blue map) of G is the plane graph G, (Gy,) obtained by deleting all blue edges
(red edges, respectively) of G, see Figure 1(c). Given an inner vertex v of G,
the rightmost ingoing red path of v is the path Pg(v) = (vo = v, v1,...,v, = 5)
from v to S where, for each i € [0..k — 1], (v;,v;41) is the rightmost ingoing red
edge of v;, i.e., the unique ingoing edge of v; whose ccw consecutive edge around
v; is outgoing. The leftmost outgoing red path of v is the path Py(v) = (vg =
v,01,...,0 = N) where, for ¢ € [0.. — 1], (v;,v;41) is the leftmost outgoing red
edge of v;. The separating red path P:(v) of v is the concatenation of Py (v) and
Ps(v). Hence, P,(v) is a path from S to N. We define similarly the separating
blue path Py(v) of v, which goes from W to E.

TRANSVERSALDRAW(G):
1. Take a regular grid of size W x H, where W (H) is the number of inner faces

of the red map G, (of the blue map G}, respectively).

2. Place the outer vertices S, W, N, E at the corners (0,0), (0, H), (W, H) and
(W, 0), respectively.

3. For each inner vertex v of GG, let  be the number of inner faces of G, on
the left of P,(v) and let y be the number of inner faces of Gy, on the right of
Py (v). Place v at the point of coordinates (z,y).

4. Link each pair of adjacent vertices by a segment.

Proposition 1. Given a partially triangulated plane graph G endowed with a
transversal structure, TRANSVERSALDRAW(G) outputs a straight-line drawing
of G in linear time. The semi-perimeter satisfies W + H =n —1— A, where n
is the number of vertices and A is the number of quadrangular faces of G.

Proof. The correctness proof of TRANSVERSALDRAW, given in [6, Theo.3] for
the case of a triangulation of a 4-gon, adapts straightforwardly. The equality
W4+ H =n—1-— A is an easy consequence of Euler’s relation. a

3 Edge partition of a quadrangulation

Let @ be a quadrangulation, the four outer vertices in cw order denoted by
N, E, S, and W. As all faces of () have even degree, the vertices of @) can be



greedily bicolored in black or white so that adjacent vertices have different colors.
The bicoloration is unique up to the choice of the first vertex, hence there is a
unique bicoloration such that N and S are black. Given @) endowed with this
bicoloration, the primal map of @Q is the plane graph M whose vertices are the
black vertices of @, two black vertices being adjacent in M if they are incident to
the same face of (). Hence, there is an edge of M for each face of Q). Conversely,
@ is called the angular map of M because each edge of () is associated with an
angle of M. Observe also that each black vertex of ) corresponds to a vertex of
M and each white vertex of ) corresponds to a face of M, see Figure 2(b). As we
consider quadrangulations with no double edge, it is well known that the primal
map is 2-connected, i.e., the deletion of one vertex does not disconnect M. As
detailed in [4], for any edge (s,¢) of M, there exists a bipolar orientation of M
with source s and sink ¢, and there is a simple sweeping algorithm to compute
such a bipolar orientation in linear time [3].

Fig. 2. A quadrangulation @ (Fig. (a)), endowed with an angular partition of the
inner edges (Fig. (b)), the associated uncomplete transversal structure (Fig. (c)), and
the straight-line drawing of @ (Fig. (d)).

Given a bipolar orientation X of M with source S and sink N, an angle
(e,€’) of two edges of M around a black vertex v —with ¢’ following e in cw
order around v— is called an angle of type N, S, W, E if (e,e’) are (ingoing,
ingoing), (outgoing, outgoing), (ingoing, outgoing), (outgoing, ingoing), respec-
tively. Accordingly, the inner edges of @) are partitioned into N-edges, S-edges,
W-edges and F-edges, depending on the type of their associated angle. This
partition is called the angular partition of @ associated with X, see Figure 2(b).
An important property of a plane bipolar orientation is that the edges incident
to an inner vertex are partitioned into a non-empty interval of ingoing edges
and a non-empty interval of outgoing edges; and, dually, each face f of M has
two particular vertices Sy and Ny such that the contour of f consists of two
non-empty oriented paths both going from Sy to Ny, called left lateral path and
right lateral path of f, respectively. Hence, each inner black vertex v of @ is in-
cident to one W-edge ey and one E-edge eg, which are separated by a possibly
empty interval of N-edges in the cw sector between ep and ey and a possibly
empty interval of S-edges in the cw sector between ey and eg. Dually, each



white vertex of ), corresponding to a face f of M, is incident to one N-edge en
(connected to Ny) and one S-edge eg (connected to Sy), which are separated by
a possibly empty interval of W-edges in the cw sector between en and eg and a
possibly empty interval of E-edges in the cw sector between eg and ey . Observe
also that all inner edges of @ incident to N, E, S, and W are N-edges, F-edges,
S-edges, and W-edges respectively, see Figure 2(b).

4 The algorithm

Let Q be a quadrangulation endowed with an angular partition of the inner edges,
associated with a bipolar orientation X of the primal map M. The uncomplete
transversal structure is the orientation and bicoloration of the inner edges of
() where the N-edges and S-edges are colored red, the W-edges and FE-edges
are colored blue, the S-edges and F-edges are oriented from their black to their
white vertex, and the N-edges and W-edges are oriented from their white to
their black vertex. Clearly, the conditions of a transversal structure are satisfied,
except that some of the four intervals of edges around an inner vertex may be
empty. Precisely, if a black vertex v of M has ¢ > 1 ingoing edges and j7 > 1
outgoing edges, then v is incident in cw order to an outgoing blue edge (the
E-edge eg), an interval of (i — 1) ingoing red edges, an ingoing blue edge (the
W-edge ew ), and an interval of (j — 1) outgoing red edges. Dually, if a face of
M has a left lateral path of length 7 > 1 and a right lateral path of length j > 1,
then the associated white vertex of () is incident in cw order to an outgoing red
edge (the N-edge ey), an interval of (j — 1) outgoing blue edges, an ingoing red
edge (the S-edge eg), and an interval of (i — 1) ingoing blue edges.

We now describe an algorithm PARTTRIANG(Q), which adds colored oriented
edges to () so as to obtain a partially triangulated plane graph G endowed with
a transversal structure. An edge of M is said to be undeletable if it is the unique
outgoing edge of its origin or the unique ingoing edge of its extremity (or both).
An edge of M different from the edge (S, N) is said to be transitive if it connects
the two poles Ny and Sy of a face of M. Notice that an edge of M can not be
undeletable and transitive. The plane graph G = PARTTRIANG((Q) is obtained
by adding to @ the undeletable edges of M, colored red and oriented as in X;
and by adding the edges dual to the transitive edges, colored blue and oriented
from left to right, i.e., for each face of ) associated with a transitive edge e
of M, a blue edge is added connecting the two white vertices of the face and
oriented from the left of e to the right of e. It is easily checked that the edge
bicoloration and orientation of GG is a transversal structure, see the transition
between Figure 2(b)—(c) and Figure 1(b).

Theorem 1. Let QQ be a quadrangulation endowed with an angular partition of
its inner edges. The algorithm that computes G=PARTTRIANG(Q), then calls
TRANSVERSALDRAW(G), and finally deletes the edges added from Q to G, is a
straight-line drawing algorithm for quadrangulations with linear time complexity.
All horizontal and vertical lines of the grid are occupied by at least one vertex.



The semi-perimeter W + H of the grid satisfies
W+H=n—-1-A,

where n is the number of vertices and A is the number of alternating faces of
Q, i.e., faces whose contour consists of two red edges and two blue edges that
alternate. Alternating faces are strictly convex in the drawing.

Proof. The result follows from Proposition 1 and from the fact that the faces of
@ that are not split into two triangles are the alternating faces. These faces are
strictly convex because of the property (stated in [6] and also holding here) that
red edges of TRANSVERSALDRAW(G) are geometrically directed from bottom
to top and weakly directed from left to right, while blue edges are geometrically
directed from left to right and weakly directed from top to bottom. Finally, it
is easily proved —adapting [6, Prop.12]— that a vertical (horizontal) line not
occupied by any vertex corresponds to an edge e = (v,v’) of the red map (blue
map, respectively) which is neither the rightmost ingoing edge of v nor the
leftmost outgoing edge of v. Clearly, such edges do not exist in @ and do not
appear during the partial triangulation of Q. a
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