
THE NUMBER OF INTERVALS IN THE m-TAMARI LATTICESMIREILLE BOUSQUET-MÉLOU, ÉRIC FUSY, AND LOUIS-FRANÇOIS PRÉVILLE-RATELLEAbstra
t. An m-ballot path of size n is a path on the square grid 
onsisting of north andeast steps, starting at (0, 0), ending at (mn, n), and never going below the line {x = my}.The set of these paths 
an be equipped with a latti
e stru
ture, 
alled the m-Tamari latti
eand denoted by T
(m)

n , whi
h generalizes the usual Tamari latti
e Tn obtained when m = 1.We prove that the number of intervals in this latti
e is
m + 1

n(mn + 1)

“(m + 1)2n + m

n − 1

”

.This formula was re
ently 
onje
tured by Bergeron in 
onne
tion with the study of 
oinvariantspa
es. The 
ase m = 1 was proved a few years ago by Chapoton. Our proof is based on are
ursive des
ription of intervals, whi
h translates into a fun
tional equation satis�ed by theasso
iated generating fun
tion. The solution of this equation is an algebrai
 series, obtainedby a guess-and-
he
k approa
h. Finding a bije
tive proof remains an open problem.1. Introdu
tionA ballot path of size n is a path on the square latti
e, 
onsisting of north and east steps,starting at (0, 0), ending at (n, n), and never going below the diagonal {x = y}. There are threestandard ways, often named after Stanley, Kreweras and Tamari, to endow the set of ballotpaths of size n with a latti
e stru
ture (see [14, 17, 19℄, and [4℄ or [18℄ for a survey). We fo
ushere on the Tamari latti
e Tn, whi
h, as detailed in the following proposition, is 
onvenientlydes
ribed by the asso
iated 
overing relation. See Figure 1 for an illustration.
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overing relation in the Tamari latti
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2 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEProposition 1. [4, Prop. 2.1℄ Let P and Q be two ballot paths of size n. Then Q 
overs P inthe Tamari latti
e Tn if and only if there exists in P an east step a, followed by a north step b,su
h that Q is obtained from P by swapping a and S, where S is the shortest fa
tor of P thatbegins with b and is a (translated) ballot path.Alternatively, the Tamari latti
e Tn is often des
ribed in terms of rooted binary trees. The
overing relation amounts to a re-organization of three subtrees, often 
alled rotation (Figure 1).The equivalen
e between the two des
riptions is obtained by reading the tree in postorder, anden
oding ea
h leaf (resp. inner node) by a north (resp. east) step (apart from the �rst leaf,whi
h is not en
oded). We refer to [4, Se
. 2℄ for details. The Hasse diagram of the latti
e Tn isthe 1-skeleton of the asso
iahedron, or Stashe� polytope [10℄.A few years ago, Chapoton [11℄ proved that the number of intervals in Tn (i.e., pairs P, Q ∈ Tnsu
h that P ≤ Q) is
2

n(n + 1)

(

4n + 1

n − 1

)

.He observed that this number is known to 
ount 3-
onne
ted planar triangulations on n +
3 verti
es [27℄. Motivated by this result, Bernardi and Boni
hon found a beautiful bije
tionbetween Tamari intervals and triangulations [4℄. This bije
tion is in fa
t a restri
tion of amore general bije
tion between intervals in the Stanley latti
e and S
hnyder woods. A furtherrestri
tion leads to the enumeration of intervals of the Kreweras latti
e.

≺ab b

a

S S

Figure 2. The relation ≺ between m-ballot paths (m = 2).In this paper, we study a generalization of the Tamari latti
es to m-ballot paths due toBergeron, and 
ount the intervals of these latti
es. Again, a remarkably simple formula holds(see (1)). As we explain below, this formula was �rst 
onje
tured by F. Bergeron, in 
onne
tionwith the study of 
oinvariant spa
es.An m-ballot path of size n is a path on the square grid 
onsisting of north and east steps,starting at (0, 0), ending at (mn, n), and never going below the line {x = my}. It is a 
lassi
alexer
i
e to show that there are 1
mn+1

(

(m+1)n
n

) su
h paths [13℄. Consider the following relation
≺ on m-ballot paths, illustrated in Figure 2.De�nition 2. Let P and Q be two m-ballot paths of size n. Then P ≺ Q if there exists in Pan east step a, followed by a north step b, su
h that Q is obtained from P by swapping a and S,where S is the shortest fa
tor of P that begins with b and is a (translated) m-ballot path.As we shall see, the transitive 
losure of ≺ de�nes a latti
e on m-ballot paths of size n. We
all it the m-Tamari latti
e of size n, and denote it by T

(m)
n . Of 
ourse, T (1)

n 
oin
ides with
Tn. See Figure 3 for examples. The main result of this paper is a 
losed form expression for thenumber f

(m)
n of intervals in T

(m)
n :
f (m)

n =
m + 1

n(mn + 1)

(

(m + 1)2n + m

n − 1

)

. (1)The �rst step of our proof establishes that T (m)
n is in fa
t isomorphi
 to a sublatti
e (and morepre
isely, an upper ideal) of Tmn. We then pro
eed with a re
ursive des
ription of the intervals
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Figure 3. The m-Tamari latti
e T
(m)

n for m = 1 and n = 4 (left) and for
m = 2 and n = 3 (right). The three walks surrounded by a line in T

(1)
4 form alatti
e that is isomorphi
 to T

(2)
2 . This will be generalized in Se
tion 2.



4 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEof T (m)
n , whi
h translates into a fun
tional equation for the asso
iated generating fun
tion (Se
-tion 2, Proposition 8). This generating fun
tion keeps tra
k of the size of the paths, but alsoof a 
atalyti
 parameter1 that is needed to write the equation. This parameter is the number of
onta
ts of the lower path with the line {x = my}. A general theorem asserts that the solutionof the equation is algebrai
 [6℄, and gives a systemati
 pro
edure to solve it for small values of

m. However, for a generi
 value of m, we have to resort to a guess-and-
he
k approa
h to solvethe equation (Se
tion 3, Theorem 10). We enri
h our enumeration by taking into a

ount theinitial rise of the upper path, that is, the length of its initial run of north steps. We obtain anunexpe
ted symmetry result: the joint distribution of the number of 
onta
ts of the lower path(minus one) and the initial rise of the upper path is symmetri
. Se
tion 4 presents 
ommentsand questions.To 
on
lude this introdu
tion, we des
ribe the algebrai
 problem that led Bergeron to 
on-je
ture (1).Let X = (xi,j)1≤i≤ℓ

1≤j≤n

be a matrix of variables, for some positive integers ℓ, n ≥ 1. We 
all ea
hline of X a set of variables. Let Sn be the symmetri
 group on n elements. This group a
ts as arepresentation on the polynomials of C[X ] by permuting the 
olumns of X . That is, if σ ∈ Snand f(X) ∈ C[X ], then
σ(f(X)) = f(σ(X)) = f((xi,σ(j))1≤i≤ℓ

1≤j≤n

).We 
onsider the ideal I of C[X ] generated by Sn-invariant polynomials having no 
onstantterm. The quotient ring C[X ]/I is (multi-)graded be
ause I is (multi-)homogeneous, and is arepresentation of Sn be
ause I is invariant under the a
tion of Sn. We fo
us on the dimensionof this quotient ring, and to the dimension of the sign subrepresentation. We denote by W ε thesign subrepresentation of a representation W .Let us begin with the 
lassi
al 
ase of a single set of variables. When X = [x1, . . . , xn], we
onsider the 
oinvariant spa
e Rn, de�ned by
Rn = C[X ]

/

〈{

n
∑

i=1

xr
i

∣

∣r ≥ 1
}〉

,where 〈S〉 denotes the ideal generated by the set S. It is known [1℄ that Rn is isomorphi
 tothe regular representation of Sn. In parti
ular, dim(Rn) = n! and dim(Rε
n) = 1. There existexpli
it bases of Rn indexed by permutations.Let us now move to two sets of variables. In the early nineties, Garsia and Haiman introdu
edan analogue of Rn for X =

[

x1 . . . xn

y1 . . . yn

], and 
alled it the diagonal 
oinvariant spa
e [16℄:
DR2,n = C[X ]

/

〈{

n
∑

i=1

xr
i y

t
i

∣

∣r + t ≥ 1
}〉

.About ten years later, using advan
ed algebrai
 geometry [15℄, Haiman settled several 
onje
turesof [16℄ 
on
erning this spa
e, proving in parti
ular that
dim(DR2,n) = (n + 1)n−1 and dim(DR ε

2,n) =
1

n + 1

(

2n

n

)

. (2)He also studied an extension of DR2,n involving an integer parameterm and the idealA generatedby alternants [16℄:
A =

〈{

f(x)
∣

∣σ(f(X)) = (−1)inv(σ)f(X), ∀σ ∈ Sn

}〉

.1This terminology is due to Zeilberger [29℄.



THE NUMBER OF INTERVALS IN THE m-TAMARI LATTICES 5The m-extension of DR2,n is de�ned as
DRm

2,n = Am−1
/

〈{

n
∑

i=1

xr
i y

t
i

∣

∣r + t ≥ 1
}〉

Am−1,where the 
ase m = 1 (with A0 = C[X ]) 
orresponds to DR2,n. Haiman [15℄ generalized (2) byproving
dim(DRm

2,n) = (mn + 1)n−1 and dim(DRm ε
2,n ) =

1

mn + 1

(

(m + 1)n

n

)

.Both dimensions have simple 
ombinatorial interpretations: we re
ognize in the latter the numberof m-ballot paths of size n, and the former is the number of m-parking fun
tions of size n (thesefun
tions 
an be des
ribed as m-ballot paths of size n in whi
h the north steps are labelled from
1 to n in su
h a way the labels in
rease along ea
h run of north steps; see e.g. [28℄). However, itis still an open problem to �nd bases of DRm

2,n or DRm ε
2,n indexed by these simple 
ombinatorialobje
ts.For ℓ ≥ 3, the spa
es DRℓ,n and their generalization DRm

ℓ,n 
an be de�ned similarly. Haimanexplored the dimension of DRℓ,n and DR ε
ℓ,n. For ℓ = 3, he observed in [16℄ that, for small valuesof n,

dim(DR3,n) = 2n(n + 1)n−2 and dim(DR ε
3,n) =

2

n(n + 1)

(

4n + 1

n − 1

)

.Following dis
ussions with Haiman, Bergeron 
ame up with 
onje
tures that dire
tly imply thefollowing generalization (sin
e DR1
3,n 
oin
ides with DR3,n):

dim(DRm
3,n) = (m + 1)n(mn + 1)n−2 and dim(DRm ε

3,n ) =
m + 1

n(mn + 1)

(

(m + 1)2n + m

n − 1

)

.Both 
onje
tures are still wide open.A mu
h simpler problem 
onsists in asking whether these dimensions again have a simple 
om-binatorial interpretation. Bergeron, starting from the sequen
e 2
n(n+1)

(

4n+1
n−1

), found in Sloane'sEn
y
lopedia that this number 
ounts, among others, 
ertain ballot related obje
ts, namelyintervals in the Tamari latti
e [11℄. From this observation, he was led to introdu
e the m-Tamari latti
e T
(m)

n , and 
onje
tured that m+1
n(mn+1)

(

(m+1)2n+m
n−1

) is the number of intervals inthis latti
e. This is the 
onje
ture we prove in this paper. Another of his 
onje
tures is that
(m + 1)n(mn + 1)n−2 is the number of Tamari intervals where the larger path is �de
orated� byan m-parking fun
tion [3℄. This is proved in [5℄.2. A fun
tional equation for the generating fun
tion of intervalsThe aim of this se
tion is to des
ribe a re
ursive de
omposition of m-Tamari intervals, andto translate it into a fun
tional equation satis�ed by the asso
iated generating fun
tion (Propo-sition 8). There are two main tools:

• we prove that T (m)
n 
an be seen as an upper ideal of the usual Tamari latti
e Tmn,

• we give a simple 
riterion to de
ide when two paths of the Tamari latti
e are 
omparable.2.1. An alternative des
ription of the m-Tamari latti
esOur �rst transformation is totally harmless: we apply a 45 degree rotation to 1-ballot pathsto transform them into Dy
k paths. A Dy
k path of size n 
onsists of steps (1, 1) (up steps) andsteps (1,−1) (down steps), starts at (0, 0), ends at (0, 2n) and never goes below the x-axis.We now introdu
e some terminology, and use it to rephrase the des
ription of the (usual)Tamari latti
e Tn. Given a Dy
k path P , and an up step u of P , the shortest portion of P thatstarts with u and forms a (translated) Dy
k path is 
alled the ex
ursion of u in P . We say that
u and the �nal step of its ex
ursion mat
h ea
h other. Finally, we say that u has rank i if it isthe ith up step of P .



6 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEGiven two Dy
k paths P and Q of size n, Q 
overs P in the Tamari latti
e Tn if and only ifthere exists in P a down step d, followed by an up step u, su
h that Q is obtained from P byswapping d and S, where S is the ex
ursion of u in P . This des
ription implies the followingproperty [4, Cor. 2.2℄.Property 3. If P ≤ Q in Tn then P is below Q. That is, for i ∈ [0..2n], the ordinate of thevertex of P lying at abs
issa i is at most the ordinate of the vertex of Q lying at abs
issa i.Consider now an m-ballot path of size n, and repla
e ea
h north step by a sequen
e of mnorth steps. This gives a 1-ballot path of size mn, and thus, after a rotation, a Dy
k path. Inthis path, for ea
h i ∈ [0..n− 1], the up steps of ranks mi + 1, . . . , m(i + 1) are 
onse
utive. We
all the Dy
k paths satisfying this property m-Dy
k paths. Clearly, m-Dy
k paths of size mnare in one-to-one 
orresponden
e with m-ballot paths of size n. Consider now the relation ≺ ofDe�nition 2: on
e reformulated in terms of Dy
k paths, it be
omes a 
overing relation in the(usual) Tamari latti
e (Figure 4). Conversely, it is easy to 
he
k that, if P is an m-Dy
k pathand Q 
overs P in the usual Tamari latti
e, then Q is also an m-Dy
k path, and the m-ballotpaths 
orresponding to P and Q are related by ≺. We have thus proved the following result.
≺S

SFigure 4. The relation ≺ of Figure 2 reformulated in terms of m-Dy
k paths(m = 2).Proposition 4. The transitive 
losure of the relation ≺ de�ned in De�nition 2 is a latti
e on
m-ballot paths of size n. This latti
e is isomorphi
 to the sublatti
e of the Tamari latti
e Tmn
onsisting of the elements that are larger than or equal to the Dy
k path umdm . . . umdm. Therelation ≺ is the 
overing relation of this latti
e.Notation. From now on, we only 
onsider Dy
k paths. We denote by T the set of Dy
k paths,and by Tn the Tamari latti
e of Dy
k paths of length n. By T (m) we mean the set of m-Dy
kpaths, and by T

(m)
n the Tamari latti
e of m-Dy
k paths of size mn. This latti
e is a sublatti
eof Tmn. Note that T (1) = T and T

(1)
n = Tn.2.2. Distan
e fun
tionsLet P be a Dy
k path of size n. For an up step u of P , we denote by ℓP (u) the size of theex
ursion of u in P . The fun
tion DP : [1..n] → [1..n] de�ned by DP (i) = ℓ(ui), where ui isthe ith up step of P , is 
alled the distan
e fun
tion of P . It will sometimes be 
onvenient to see

DP as a ve
tor (ℓ(u1), . . . , ℓ(un)) with n 
omponents. In parti
ular, we will 
ompare distan
efun
tions 
omponent-wise. The main result of this subse
tion is a des
ription of the Tamariorder in terms of distan
e fun
tions. This simple 
hara
terization seems to be new.Proposition 5. Let P and Q be two paths in the Tamari latti
e Tn. Then P ≤ Q if and onlyif DP ≤ DQ.In order to prove this, we �rst des
ribe the relation between the distan
e fun
tions of twopaths related by a 
overing relation.Lemma 6. Let P be a Dy
k path, and d a down step of P followed by an up step u. Let S bethe ex
ursion of u in P , and let Q be the path obtained from P by swapping d and S. Let u′be the up step mat
hed with d in P , and i0 the rank of u′ in P . Then DQ(i) = DP (i) for ea
h
i 6= i0 and DQ(i0) = DP (i0) + ℓP (u).
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u
′

u u
′ u

≺

S
S

P Q
2ℓP (u

′) 2ℓP (u) 2ℓQ(u
′)

dFigure 5. How the distan
e fun
tion 
hanges in a 
overing relation.This lemma is easily proved using Figure 5. It already implies that DP ≤ DQ if P ≤ Q. Thenext lemma establishes the reverse impli
ation, thus 
on
luding the proof of Proposition 5.Lemma 7. Let P and Q be two Dy
k paths of size n su
h that DP ≤ DQ. Then P ≤ Q in theTamari latti
e Tn.Proof. Let us �rst prove, by indu
tion on the size, that P is below Q (in the sense of Property 3).This is 
learly true if n = 0, so we assume n > 0.Let u be the �rst up step (in P and Q). Note that ℓP (u) = DP (1) ≤ DQ(1) = ℓQ(u). Let P ′(resp. Q′) be the path obtained from P (resp. Q) by 
ontra
ting u and the down step mat
hedwith u. Observe that DP ′ is obtained by deleting the �rst 
omponent of DP , and similarly for
DQ′ and DQ. Consequently DP ′ ≤ DQ′ , and hen
e by the indu
tion hypothesis, P ′ is below
Q′. Let us 
onsider momentarily Dy
k paths as fun
tions, and write P (i) = j if the vertex of
P lying at abs
issa i has ordinate j. Note that P (i) = P ′(i − 1) + 1 for 1 ≤ i < 2ℓP (u), and
P (i) = P ′(i − 2) for 2ℓP (u) ≤ i ≤ 2n. Similarly Q(i) = Q′(i − 1) + 1 for 1 ≤ i < 2ℓQ(u), and
Q(i) = Q′(i− 2) for 2ℓQ(u) ≤ i ≤ 2n. Sin
e ℓP (u) ≤ ℓQ(u) and P ′(i) ≤ Q′(i) for 0 ≤ i ≤ 2n− 2,one easily 
he
ks that P (i) ≤ Q(i) for 0 ≤ i ≤ 2n, so that P is below Q.In order to prove that P ≤ Q, we pro
eed by indu
tion on ||DP −DQ||, where ||(x1, . . . , xn)|| =
|x1| + · · · + |xn|. If DP = DQ then P = Q, be
ause P is below Q and Q is below P . So let usassume that DP 6= DQ. Let i be minimal su
h that DP (i) < DQ(i). We 
laim that P and Q
oin
ide at least until their up step of rank i. Indeed, sin
e P lies below Q, the paths P and Q
oin
ide up to some abs
issa, and then we �nd a down step δ in P but an up step in Q. Let
j be the rank of the up step that mat
hes δ in P . This up step belongs also to Q, and, sin
e
δ 6∈ Q, we have DP (j) < DQ(j). Hen
e j ≥ i by minimality of i, and P and Q 
oin
ide at leastuntil their up step of rank i, whi
h we denote by u. Let d be the down step mat
hed with u in
P (Figure 6). Sin
e DP (i) < DQ(i), the step d is not a step of Q. The step of Q lo
ated at thesame abs
issa as d ends stri
tly higher than d, and in parti
ular, at a positive ordinate. Hen
e
d is not the �nal step of P . Let s be the step following d in P .

u d
su′

P
Q Figure 6. Why s 
annot be des
ending.Let us prove ad absurdum that s is an up step. Assume s is down. Then s is mat
hed in Pwith an up step u′ of rank j < i (Figure 6). Hen
e u′ belongs to Q and has rank j in Q. Sin
e

s 
annot belong to Q, this implies that DP (j) < DQ(j), whi
h 
ontradi
ts the minimality of i.



8 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEHen
e s is an up step of P (Figure 7). Let S be the ex
ursion of s in P . Sin
e ℓQ(u) > ℓP (u)and sin
e Q is above P , we have ℓQ(u) ≥ ℓP (u) + ℓP (s), i.e., DQ(i) ≥ DP (i) + ℓP (s). Let P ′ bethe path obtained from P by swapping s and S. Then P ′ 
overs P in the Tamari latti
e. ByLemma 6, DP = DP ′ ex
ept at index i (the rank of u), where DP ′(i) = DP (i) + ℓP (s). Sin
e
DP (i) + ℓP (s) ≤ DQ(i), we have DP ′ ≤ DQ. But ||DP ′ − DQ|| = ||DP − DQ|| − ℓP (s) and bythe indu
tion hypothesis, P ′ ≤ Q in the Tamari latti
e. Hen
e P < P ′ ≤ Q, and the lemma isproved.

u d s

2ℓP (u) 2ℓP (s)

2ℓQ(u)

Q
P Figure 7. General form of P and Q.2.3. Re
ursive de
omposition of intervals and fun
tional equationA 
onta
t of a Dy
k path P is a vertex of P lying on the x-axis. It is initial if it is (0, 0). A
onta
t of a Tamari interval [P, Q] is a 
onta
t of the lower path P . The re
ursive de
ompositionof intervals that we use makes the number of 
onta
ts 
ru
ial, and we say that this parameter is
atalyti
. We also 
onsider another, non-
atalyti
 parameter, whi
h we �nd to be equidistributedwith non-initial 
onta
ts (even more, the joint distribution of these two parameters is symmetri
).Given an m-Dy
k path Q, the length of the initial run of up steps is of the form mk; the integer

k is 
alled the initial rise of Q. The initial rise of an interval [P, Q] is the initial rise of the upperpath Q. The aim of this subse
tion is to establish the following fun
tional equation.Proposition 8. For m ≥ 1, let F (x) ≡ F (m)(t; x) be the generating fun
tion of m-Tamariintervals, where t 
ounts the size (divided by m) and x the number of 
onta
ts. Then
F (x) = x + xt (F (x) · ∆)

(m)
(F (x)),where ∆ is the following divided di�eren
e operator

∆S(x) =
S(x) − S(1)

x − 1
,and the power m means that the operator G(x) 7→ F (x) · ∆G(x) is applied m times to F (x).More generally, if F (x, y) ≡ F (m)(t; x, y) keeps tra
k in addition of the initial rise (via thevariable y), we have the following fun
tional equation:

F (x, y) = x + xyt (F (x, 1) · ∆)(m) (F (x, y)). (3)Examples1. When m = 1, the above equation reads
F (x, y) = x + xytF (x, 1) · ∆(F (x, y))

= x + xytF (x, 1)
F (x, y) − F (1, y)

x − 1
.When y = 1, we obtain, in the terminology of [6℄, a quadrati
 equation with one 
atalyti
variable:

F (x) = x + xtF (x)
F (x) − F (1)

x − 1
.
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F (x, y) = x + xyt F (x, 1) · ∆(F (x, 1) · ∆(F (x, y)))

= x + xyt F (x, 1) · ∆

(

F (x, 1)
F (x, y) − F (1, y)

x − 1

)

= x +
xyt

x − 1
F (x, 1)

(

F (x, 1)
F (x, y) − F (1, y)

x − 1
− F (1, 1)F ′(1, y)

)

,where the derivative is taken with respe
t to the variable x. When y = 1, we obtain a 
ubi
equation with one 
atalyti
 variable:
F (x) = x +

xt

x − 1
F (x)

(

F (x)
F (x) − F (1)

x − 1
− F (1)F ′(1)

)

.The solution of (3) will be the topi
 of the next se
tion. For the moment we fo
us on the proofof this equation.We say that a vertex q lies to the right of a vertex p if the abs
issa of q is greater thanor equal to the abs
issa of p. A k-pointed Dy
k path is a tuple (P ; p1, . . . , pk) where P is aDy
k path and p1, . . . , pk are 
onta
ts of P su
h that pi+1 lies to the right of pi, for 1 ≤ i < k(note that some pi's may 
oin
ide). Given an m-Dy
k path P of positive size, let u1, . . . , umbe the initial (
onse
utive) up steps of P , and let d1, . . . , dm be the down steps mat
hed with
u1, . . . , um, respe
tively. The m-redu
tion of P is the m-pointed Dy
k path (P ′; p1, . . . , pm)where P ′ is obtained from P by 
ontra
ting all the steps u1, . . . , um, d1, . . . , dm, and p1, . . . , pmare the verti
es of P ′ resulting from the 
ontra
tion of d1, . . . , dm. It is easy to 
he
k that theyare indeed 
onta
ts of P ′ (Figure 8).

⇒

P
P ′

DP = (10,7, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1) DP ′ = (2, 1, 4, 1, 2, 1, 2, 1, 2, 1)

x1=6 x2=8Figure 8. The m-redu
tion of an m-Dy
k path (m = 2).The map P 7→ (P ′; p1, . . . , pm) is 
learly invertible, hen
e m-Dy
k paths of size mn are inbije
tion with m-pointed m-Dy
k paths of size m(n−1). Note that the non-initial 
onta
ts of P
orrespond to the 
onta
ts of P ′ that lie to the right of pm. Note also that the distan
e fun
tion
DP ′ (seen as a ve
tor with m(n−1) 
omponents) is obtained by deleting the �rst m 
omponentsof DP . Conversely, denoting by 2xi the abs
issa of pi, DP is obtained by prepending to DP ′ thesequen
e (xm + m, xm−1 + m − 1, . . . , x1 + 1). In view of Proposition 5, this gives the followingre
ursive 
hara
terization of intervals.Lemma 9. Let P and Q be two m-Dy
k paths of size mn > 0. Let (P ′; p1, . . . , pm) and
(Q′; q1, . . . , qm) be the m-redu
tions of P and Q respe
tively. Then P ≤ Q in T

(m)
n if andonly if P ′ ≤ Q′ in T

(m)
n−1 and for i ∈ [1..m], the point qi lies to the right of pi.The non-initial 
onta
ts of P 
orrespond to the 
onta
ts of P ′ lo
ated to the right of pm.Let us 
all k-pointed interval in T (m) a pair 
onsisting of two k-pointed m-Dy
k paths

(P ; p1, . . . , pk) and (Q; q1, . . . , qk) su
h that P ≤ Q and for i ∈ [1..k], the point qi lies to theright of pi. An a
tive 
onta
t of su
h a pair is a 
onta
t of P lying to the right of pk (if k = 0,all 
onta
ts are de
lared a
tive). For 0 ≤ k ≤ m, let us denote by G(m,k)(t; x, y) ≡ G(k)(x, y) thegenerating fun
tion of k-pointed m-Tamari intervals, where t 
ounts the size (divided by m), x



10 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEthe number of a
tive 
onta
ts, and y the initial rise (we drop the supers
ript m sin
e it will notvary). In parti
ular, the series we are interested in is
F (x, y) = G(0)(x, y). (4)Moreover, Lemma 9 implies

F (x, y) = x + xyt G(m)(x, y). (5)We will prove that, for k ≥ 0,
G(k+1)(x, y) = F (x, 1) · ∆G(k)(x, y). (6)The fun
tional equation (3) then follows using (4) and (5).For k ≥ 0, let I = [P •, Q•] be a (k + 1)-pointed interval in T (m), with P • = (P ; p1, . . . , pk+1)and Q• = (Q; q1, . . . , qk+1). Sin
e P is below Q, the 
onta
t qk+1 of Q is also a 
onta
t of P . Byde�nition of pointed intervals, qk+1 is to the right of p1, . . . , pk+1. De
ompose P as PℓPr where

Pℓ is the part of P to the left of qk+1 and Pr is the part of P to the right of qk+1. De
omposesimilarly Q as QℓQr, where the two fa
tors meet at qk+1. The distan
e fun
tion DP (seenas a ve
tor) is DPℓ

on
atenated with DPr

, and similarly for DQ. In parti
ular, DPℓ
≤ DQℓand DPr

≤ DQr
. By Proposition 5, Ir := [Pr, Qr] is an interval, while Iℓ := [P ◦, Q◦], with

P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk), is a k-pointed interval. Its initial rise equals theinitial rise of I. We denote by Φ the map that sends I to the pair of intervals (Ir , Iℓ).Conversely, take an interval Ir = [Pr, Qr] and a k-pointed interval Iℓ = [P ◦, Q◦], where
P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk). Let P = PℓPr, Q = QℓQr, and denote by qk+1the point where Qℓ and Qr (and Pr and Pℓ) meet. This is a 
onta
t of P and Q. Then thepreimages of (Ir , Iℓ) by Φ are all the intervals I = [P •, Q•] su
h that P • = (P ; p1, . . . , pk+1) and
Q• = (Q; q1, . . . , qk+1), where pk+1 is any a
tive 
onta
t of Pℓ. If Pℓ has i a
tive 
onta
ts and
Pr has j 
onta
ts, then (Ir , Iℓ) has i preimages, having respe
tively j, 1 + j, . . . , i + j − 1 a
tive
onta
ts (j a
tive 
onta
ts when pk+1 = qk+1, and i + j − 1 a
tive 
onta
ts when pk+1 = pk).Let us write G(k)(x, y) =

∑

i≥0 G
(k)
i (y)xi, so that G

(k)
i (y) 
ounts (by the size and the initial rise)

k-pointed intervals with i a
tive 
onta
ts. The above dis
ussion gives
G(k+1)(x, y) = F (x, 1)

∑

i≥1

G
(k)
i (y)(1 + x + · · · + xi−1)

= F (x, 1)
∑

i≥1

G
(k)
i (y)

xi − 1

x − 1

= F (x, 1) · ∆G(k)(x, y),as 
laimed in (6). The fa
tor F (x, 1) a

ounts for the 
hoi
e of Ir, and the term ∆G(k)(x, y) forthe 
hoi
e of Iℓ and pk+1. This 
ompletes the proof of Proposition 8.3. Solution of the fun
tional equationIn this se
tion, we solve the fun
tional equation of Proposition 8, and thus establish the mainresult of this paper. We obtain in parti
ular an unexpe
ted symmetry property: the series
yF (m)(t; x, y) is symmetri
 in x and y. In other words, the joint distribution of the number ofnon-initial 
onta
ts (of the lower path) and the initial rise (of the upper path) is symmetri
.For any ring A, we denote by A[x] the ring of polynomials in x with 
oe�
ients in A, and by
A[[x]] the ring of formal power series in x with 
oe�
ients in A. This notation is extended tothe 
ase of polynomials and series in several indeterminates x1, x2, . . .Theorem 10. For m ≥ 1, let F (m)(t; x, y) be the generating fun
tion of m-Tamari intervals,where t 
ounts the size (divided by m), x the number of 
onta
ts of the bottom path, and y theinitial rise of the upper path. Let z, u and v be three indeterminates, and set

t = z(1 − z)m2+2m, x =
1 + u

(1 + zu)m+1
, and y =

1 + v

(1 + zv)m+1
. (7)
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omes a formal power series in z with 
oe�
ients in Q[u, v], and this seriesis rational. More pre
isely,
yF (m)(t; x, y) =

(1 + u)(1 + zu)(1 + v)(1 + zv)

(u − v)(1 − zuv)(1 − z)m+2

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (8)In parti
ular, yF (m)(t; x, y) is a symmetri
 series in x and y.Remark. This result was �rst guessed for small values of m. More pre
isely, we �rst guessedthe values of ∂iF
∂x

(1, 1) for 0 ≤ i ≤ m − 1, and then 
ombined these 
onje
tured values with thefun
tional equation to obtain 
onje
tures for F (x, 1) and F (x, y). Let us illustrate our guessingpro
edure on the 
ase m = 1. We �rst 
onsider the 
ase y = 1, where the equation reads
F (x, 1) = x + xtF (x, 1)

F (x, 1) − F (1, 1)

x − 1
. (9)Our �rst obje
tive is to guess the value of F (1, 1). Using the above equation, we easily 
ompute,say, the 20 �rst 
oe�
ients of F (1, 1). Using the Maple pa
kage gfun [24℄, we 
onje
ture fromthis list of 
oe�
ients that f ≡ F (1, 1) satis�es

1 − 16 t− (1 − 20 t) f −
(

3 t + 8 t2
)

f2 − 3 t2f3 − t3f4 = 0.Using the pa
kage alg
urves, we �nd that the above equation admits a rational parametrization,for instan
e
t = z(1 − z)3, f = F (1, 1) =

1 − 2z

(1 − z)3
.This is the end of the �guessing� part2. Assume the above identity holds, and repla
e t and

F (1, 1) in (9) by their expressions in terms of z. This gives an algebrai
 equation in F (x, 1), xand z. Again, the pa
kage alg
urves reveals that this equation, seen as an equation in F (x, 1)and x, has a rational parametrization, for instan
e
x =

1 + u

(1 + zu)2
, F (x, 1) =

(1 + u)
(

1 − 2 z − z2u
)

(1 + zu) (1 − z)
3 .Let us �nally return to the fun
tional equation de�ning F (x, y):

F (x, y) = x + xytF (x, 1)
F (x, y) − F (1, y)

x − 1
.In this equation, repla
e t, x and F (x, 1) by their 
onje
tured expressions in terms of z and u.This gives

(

1 + zu − zy
(1 + u)2

u

)

F (x, y) =
1 + u

1 + zu
− zy

(1 + u)2

u
F (1, y). (10)We 
on
lude by applying to this equation the kernel method (see, e.g. [2, 7, 23℄): let U ≡ U(z; y)be the unique formal power series in z (with 
oe�
ients in Q[y]) satisfying

U = zy(1 + U)2 − zU2.Equivalently,
U = z

1 + v

1 − 2z − z2v
, with y =

1 + v

(1 + zv)2
.Setting u = U in (10) 
an
els the left-hand side, and thus the right-hand side, giving

yF (1, y) =
(1 + v)

(

1 − 2 z − z2v
)

(1 + zv) (1 − z)
3 .A 
onje
ture for the trivariate series F (t; x, y) follows, using (10). This 
onje
ture 
oin
ideswith (8). 22For a general value of m, one has to guess the series ∂

i
F

∂x
(1, 1) for 0 ≤ i ≤ m − 1. All of them are found tobe rational fun
tions of z, when t = z(1 − z)m

2+2m.



12 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEBefore we prove Theorem 10, let us give a 
losed form expression for the number of intervalsin T
(m)

n .Corollary 11. Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamari latti
e T
(m)

n is
f (m)

n =
m̄

n(mn + 1)

(

nm̄2 + m

n − 1

)

,where we denote m̄ = m + 1. For 2 ≤ i ≤ n + 1, the number of intervals in whi
h the bottompath has i 
onta
ts with the x-axis is
f

(m)
n,i =

(nm̄2 − im̄ + m)!(im̄ − m)!

(nm̄2 − n − im + 2m)!(n − i + 1)!(mi)!(i − 2)!
Pm(n, i), (11)where Pm(n, i) is a polynomial in n and i. In parti
ular,

P1(n, i) = 2, P2(n, i) = 6(33 in− 9 i2 + 15 i − 2 n − 2).More generally,
i(i − 1)Pm(n, i) = −m̄!(m − 1)!(n − i + 1)

(

im̄

m

)(

nm(m + 2) − im + 2m

m − 1

)

+

m−2
∑

k=1

kk!2(m − k − 2)!(m − k − 1)!((i + 1)mm̄ + 2m̄ + k)(n − i)(n − i + 1)×

(

im̄− k − 1

m − k − 1

)(

im

k

)(

nm̄2 − im̄ + m + k

k

)(

nm(m + 2) − im + 2m

m − k − 2

)

+m!2
(

im

m − 1

)(

i

(

nm̄2 − im̄ + 2m

m

)

−
(m − 1)(im̄ + 2)(n − i + 1)

m

(

nm̄2 − im̄ + 2m− 1

m − 1

))

.(12)Remarks1. The 
ase m = 1 of (11) reads
f

(1)
n,i =

(i − 1)(4n − 2i + 1)!

(3n − i + 2)!(n − i + 1)!

(

2i

i

)

.This result 
an also obtained using Bernardi and Boni
hon's bije
tion between intervals of size
n in the (usual) Tamari latti
e and planar 3-
onne
ted triangulations having n + 3 verti
es [4℄.Indeed, through this bije
tion, the number of 
onta
ts in the lower path of the interval be
omesthe degree of the root-vertex of the triangulation, minus one [4, Def. 3.2℄. The above result isthus equivalent to an old result of Brown 
ounting triangulations by the number of verti
es andthe degree of the root-vertex [9, Eq. (4.7)℄.2. Our expression of Pm is not illuminating, but we have given it to prove that Pm is indeed apolynomial. If we �x i rather than m, then Pm(n, i) seems to be a sum of two hypergeometri
terms in m and n. More pre
isely, it appears that

Pm(n, i) =
mm̄!(im)!

(im̄ − m)!
(

n
i−1

)×

(

m̄Ri(m, n)

(

nm̄2 − (i − 2)m̄ − 1

m̄

)

+ Qi(m, n)

(

nm(m + 2) − (i − 2)m

m

))

,where Ri and Qi are two polynomials in m and n.3. The 
oe�
ients of the trivariate series F (t; x, y) do not seem to have small prime fa
tors,even when m = 1.Proof of Theorem 10. The fun
tional equation of Proposition 8 de�nes a unique formal powerseries in t (think of extra
ting indu
tively the 
oe�
ient of tn in F (t; x, y)). The 
oe�
ients



THE NUMBER OF INTERVALS IN THE m-TAMARI LATTICES 13of this series are polynomials in x and y. The parametrized expression of F (t; x, y) given inTheorem 10 also de�nes F (t; x, y) uniquely as a power series in t, be
ause (7) de�nes z, u and vuniquely as formal power series in t (with 
oe�
ients in Q, Q[x] and Q[y] respe
tively). Thus itsu�
es to prove that the series F (t; x, y) of Theorem 10 satis�es the equation of Proposition 8.LetG(t; x, y) ≡ G(x, y) ∈ Q[x, y][[t]], and perform the 
hange of variables (7). Then G(t; x, y) =
H(z; u, v), where

H(z; u, v) ≡ H(u, v) = G

(

z(1 − z)m2+2m;
1 + u

(1 + zu)m+1
,

1 + v

(1 + zv)m+1

)

.Moreover, if F (x, y) is given by (8), then
F (x, 1) =

(1 + u)(1 + zu)

u(1 − z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

,and
F (x, 1)∆G(x, y) =

(1 + u)(1 + zu)

(1 − z)m+2

H(u, v) − H(0, v)

u
.Let us de�ne an operator Λ as follows: for any series H(z; u, v) ∈ Q[u, v][[z]],

ΛH(z; u, v) := (1 + u)(1 + zu)
H(z; u, v)− H(z; 0, v)

u
. (13)Then the series F (t; x, y) of Theorem 10 satis�es the equation of Proposition 8 if and only if theseries H(u, v) obtained by performing the 
hange of variables (7) in y(1− z)m+2F (x, y), that is,

H(u, v) =
(1 + u)(1 + zu)(1 + v)(1 + zv)

(u − v)(1 − zuv)

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (14)satis�es
zΛ(m)H(u, v) =

(1 + zu)m+1(1 + zv)m+1

(1 + u)(1 + v)
H(u, v) − (1 − z)m+2. (15)Hen
e we simply have to prove an identity on rational fun
tions. Observe that both H(u, v) andthe 
onje
tured expression of Λ(m)H(u, v) are symmetri
 in u and v. More generally, 
omputing(with the help of Maple) the rational fun
tions Λ(k)H(u, v) for a few values of m and k suggeststhat these fra
tions are always symmetri
 in u and v. This observation raises the followingquestion: Given a symmetri
 fun
tion H(u, v), when is ΛH(u, v) also symmetri
? This leads tothe following lemma, whi
h will redu
e the proof of (15) to the 
ase v = 0.Lemma 12. Let H(z; u, v) ≡ H(u, v) be a series of Q[u, v][[z]], symmetri
 in u and v. Let Λ bethe operator de�ned by (13), and denote H1(u, v) := ΛH(u, v). Then H1(u, v) is symmetri
 in

u and v if and only if H satis�es
H(u, v) =

u(1 + v)(1 + zv)H(u, 0)− v(1 + u)(1 + zu)H(v, 0)

(u − v)(1 − zuv)
. (16)If this holds, then H1(u, v) also satis�es (16) (with H repla
ed by H1). By indu
tion, the sameholds for Hk(u, v) := Λ(k)H(u, v).The proof is a straightforward 
al
ulation.Note that a series H satisfying (16) is 
hara
terized by the value of H(u, 0). The series H(u, v)given by (14) satis�es (16), with

H(u, 0) =
(1 + u)(1 + zu)

u

(

1 + u

(1 + zu)m+1
− 1

)

= Λ

(

1 + u

(1 + zu)m+1

)

.Moreover, one easily 
he
ks that the right-hand side of (15) also satis�es (16), as expe
ted fromLemma 12. Thus it su�
es to prove the 
ase v = 0 of (15), namely
zΛ(m+1)

(

1 + u

(1 + zu)m+1

)

=
(1 + u)(1 + zu)

u

(

1 −
(1 + zu)m+1

1 + u

)

− (1 − z)m+2. (17)This will be a simple 
onsequen
e of the following lemma.



14 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLELemma 13. Let Λ be the operator de�ned by (13). For m ≥ 1,
Λ(m)

(

1

(1 + zu)m

)

= (1 − z)m − (1 + zu)m.Proof. We will a
tually prove a more general identity. Let 1 ≤ k ≤ m, and denote w = 1 + zu.Then
Λ(k)

(

1

(1 + zu)m

)

=
(1 − z)k

wm−k
−

m−1
∑

i=k

k
∑

j=1

(−1)k+jzk−j+1

wm−i−1

(

k

j − 1

)(

i − j + 1

k − j

)

+

k−1
∑

i=1

i
∑

j=1

(−1)j−1zjwk−i

(

i − 1

j − 1

)(

m − k + j − 1

j

)

− wk. (18)The 
ase k = m is the identity of Lemma 13. In order to prove (18), we need an expression of
Λ(wp), for all p ∈ Z. Using the de�nition (13) of Λ, one obtains, for p ≥ 1,































Λ

(

1

wp

)

=
1 − z

wp−1
− z

p−2
∑

a=0

1

wa
− w,

Λ(1) = 0,

Λ (wp) = (z − 1)w + z

p
∑

a=2

wa + wp+1.

(19)We now prove (18), by indu
tion on k ≥ 1. For k = 1, (18) 
oin
ides with the expression of
Λ(1/wp) given above (with p repla
ed by m). Now let 1 ≤ k < m. Apply Λ to (18), use (19)to express the terms Λ(wp) that appear, and then 
he
k that the 
oe�
ient of wazb is what itis expe
ted to be, for all values of a and b. The details are a bit tedious, but elementary. Oneneeds to apply a few times the following identity:

r2
∑

r=r1

(

r − a

b

)

=
(r2 + 1 − a − b)

b + 1

(

r2 + 1 − a

b

)

−
(r1 − a − b)

b + 1

(

r1 − a

b

)

.We give in the appendix a 
onstru
tive proof of Lemma 13, whi
h does not require to guessthe more general identity (18). It is also possible to derive (18) 
ombinatorially from (19) usingone-dimensional latti
e paths (in this setting, (19) des
ribes what steps are allowed if one startsat position p, for any p ∈ Z).Let us now return to the proof of (17). We write
z

1 + u

(1 + uz)m+1
=

1

(1 + uz)m
+

z − 1

(1 + uz)m+1
.Thus

zΛ(m+1)

(

1 + u

(1 + uz)m+1

)

= Λ

(

Λ(m)

(

1

(1 + uz)m

))

+ (z − 1)Λ(m+1)

(

1

(1 + uz)m+1

)

= Λ ((1 − z)m − (1 + uz)m) + (z − 1)
(

(1 − z)m+1 − (1 + uz)m+1
)by Lemma 13. Eq. (17) follows, and Theorem 10 is proved.Proof of Corollary 11. Let us �rst determine the 
oe�
ients of F (t; 1, 1). By letting u and vtend to 0 in the expression of yF (t; x, y), we obtain

F (t; 1, 1) =
1 − (m + 1)z

(1 − z)m+2
,where t = z(1 − z)m2+2m. The Lagrange inversion formula gives

[tn]F (t; 1, 1) =
1

n
[tn−1]

1 − (m + 1)2t

(1 − t)nm(m+2)+m+3
,
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(m)
n follows after an elementary 
oe�
ient extra
tion.We now wish to express the 
oe�
ient of tnxi in
F (t; x, 1) =

(1 + u)(1 + zu)

u(1 − z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

.We will expand this series, �rst in x, then in t, applying the Lagrange inversion formula �rst to
u, then to z. We �rst expand (1 − z)m+2F (t; x, 1) in partial fra
tions of u:

(1 − z)m+2F (t; x, 1) = −zχm>1 − (1 + zu)−
m−2
∑

k=1

z

(1 + uz)k
+

1 − z2

z(1 + uz)m−1
−

(1 − z)2

z(1 + uz)m
.By the Lagrange inversion formula, applied to u, we have, for i ≥ 1 and p ≥ −m,

[xi](1 + zu)p =
p

i

(

im̄ + p − 1

i − 1

)

zi(1 − z)im+p,with m̄ = m + 1. Hen
e, for i ≥ 1,
i[xi]F (t; x, 1) = −

(

im̄

i − 1

)

zi(1 − z)(i−1)m−1 +

m−2
∑

k=1

k

(

im̄ − k − 1

i − 1

)

zi+1(1 − z)(i−1)m−k−2

− (m − 1)

(

im̄ − m

i − 1

)

zi−1(1 + z)(1 − z)(i−2)m + m

(

(i − 1)m̄

i − 1

)

zi−1(1 − z)(i−2)m.We rewrite the above line as
(

im̄ − m

i − 1

)(

i

im̄ − m
zi−1(1 − z)(i−2)m − (m − 1)zi(1 − z)(i−2)m

)

.Re
all that z = t

(1−z)m2+2m
. Hen
e, for i ≥ 1,

i[xitn]F (t; x, 1) = −

(

im̄

i − 1

)

[tn−i]
1

(1 − z)m̄(im+1)

+

m−2
∑

k=1

k

(

im̄ − k − 1

i − 1

)

[tn−i−1]
1

(1 − z)(i+1)mm̄+2m̄+k

+

(

im̄ − m

i − 1

)(

i

im̄ − m
[tn−i+1]

1

(1 − z)m(im̄−m)
− (m − 1)[tn−i]

1

(1 − z)m(im̄+2)

)

.By the Lagrange inversion formula, applied to z, we have, for p ≥ 1 and n ≥ 1,
[tn]

1

(1 − z)p
=

p

n

(

nm̄2 + p − 1

n − 1

)

.This formula a
tually holds for n = 0 if we write it as
[tn]

1

(1 − z)p
=

p (nm̄2 + p − 1)!

n! (nm̄2 − n + p)!
,and a
tually for n < 0 as well with the 
onvention ( a

n−1

)

= 0 if n < 0. With this 
onvention, wehave, for 1 ≤ i ≤ n + 1,
i[xitn]F (t; x, 1) = −

m̄(im + 1)

n − i

(

im̄

i − 1

)(

nm̄2 − im̄ + m

n − i − 1

)

+

m−2
∑

k=1

k
(i + 1)mm̄ + 2m̄ + k

n − i − 1

(

im̄− k − 1

i − 1

)(

nm̄2 − im̄ + m + k

n − i − 2

)

+ m

(

im̄ − m

i − 1

)(

i

n − i + 1

(

nm̄2 − im̄ + 2m

n − i

)

− (m − 1)
im̄ + 2

n − i

(

nm̄2 − im̄ + 2m − 1

n − i − 1

))

.



16 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEThis gives the expression (11) of f
(m)
n,i , with Pm(n, i) given by (12). Clearly, i(i − 1)Pm(n, i) isa polynomial in n and i, but we still have to prove that it is divisible by i(i − 1).For m ≥ 1 and 1 ≤ k ≤ m − 2, the polynomials (im̄

m

) and (im
k

) are divisible by i. The next-to-last term of (12) 
ontains an expli
it fa
tor i. The last term vanishes if m = 1, and otherwise
ontains a fa
tor ( im
m−1

), whi
h is a multiple of i. Hen
e ea
h term of (12) is divisible by i.Finally, the right-hand side of (12) is easily evaluated to be 0 when i = 1, using the sumfun
tion of Maple. 4. Final 
ommentsBije
tive proofs? Given the simpli
ity of the numbers (1), it is natural to ask about a bije
tiveenumeration of m-Tamari intervals. A related question would be to extend the bije
tion of [4℄(whi
h transforms 1-Tamari intervals into triangulations) into a bije
tion between m-Tamariintervals and 
ertain maps (or related stru
tures, like balan
ed trees or mobiles [25, 8℄). Countingthese stru
tures in a bije
tive way (as is done in [22℄ for triangulations) would then provide abije
tive proof of (1).Symmetry. The fa
t that the joint distribution of the number of non-initial 
onta
ts of thelower path and the initial rise of the upper path is symmetri
 remains a 
ombinatorial mysteryto us, even when m = 1. What is easy to see is that the joint distribution of the number of non-initial 
onta
ts of the lower path and the �nal des
ent of the upper path is symmetri
. Indeed,there exists a simple involution on Dy
k paths that reverses the Tamari order and ex
hangesthese two parameters: If we 
onsider Dy
k paths as postorder en
odings of binary trees, thisinvolution amounts to a simple re�e
tion of trees. Via the bije
tion of [4℄, these two parameters
orrespond to the degrees of two verti
es of the root-fa
e of the triangulation [4, Def. 3.2℄, sothat the symmetry is also 
lear in this setting.A q-analogue of the fun
tional equation. As des
ribed in the introdu
tion, the numbers
f

(m)
n are 
onje
tured to give the dimension of 
ertain polynomial rings DRm ε

3,n . These rings aretri-graded (with respe
t to the sets of variables {xi}, {yi} and {zi}), and it is 
onje
tured [3℄ thatthe dimension of the homogeneous 
omponent in the xi's of degree k is the number of intervals
[P, Q] in T

(m)
n su
h that the longest 
hain from P to Q, in the Tamari order, has length k.One 
an re
y
le the re
ursive des
ription of intervals des
ribed in Se
tion 2.3 to generalize thefun
tional equation of Proposition 8, taking into a

ount (with a new variable q) this distan
e.Eq. (3) remains valid, upon de�ning the operator ∆ by

∆S(x) =
S(qx) − S(1)

qx − 1
.The 
oe�
ient of tn in the series F (t, q; x, y) does not seem to fa
tor, even when x = y = 1. The
oe�
ients of the bivariate series F (t, q; 1, 1) have large prime fa
tors.More on m-Tamari latti
es? We do not know of any simple des
ription of the m-Tamarilatti
e in terms of rotations in m + 1-ary trees (whi
h are equinumerous with m-Dy
k paths). Arotation for ternary trees is de�ned in [20℄, but does not give a latti
e. More generally, it may beworth exploring analogues for the m-Tamari latti
es of the numerous questions that have beenstudied for the usual Tamari latti
e. To mention only one, what is the diameter of the m-Tamarilatti
e, that is, the maximal distan
e between two m-Dy
k paths in the Hasse diagram? When

m = 1, it is known to be 2n−6 for n large enough, but the proof is as 
ompli
ated as the formulais simple [12, 26℄.
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⊳ � ⋄ � ⊲Appendix. A 
onstru
tive approa
h to Lemma 13. In order to prove Lemma 13, we hadto prove the more general identity (18). This identity was �rst guessed by expanding Λ(k)(1/wm)in w and z, for several values of k and m. Fortunately, the 
oe�
ients in this expansion turnedout to be simple produ
ts of binomial 
oe�
ients.



18 M. BOUSQUET-MÉLOU, É. FUSY, AND L.-F. PRÉVILLE-RATELLEWhat if these 
oe�
ients had not been so simple? A 
onstru
tive approa
h goes as follows.Introdu
e the following two formal power series in3 t and s, with 
oe�
ients in Q[w, 1/w, z]:
P (t; s) =

∑

m≥1,k≥0

tksm−1Λ(k)(wm) and N(t; s) =
∑

m≥0,k≥0

tksmΛ(k)

(

1

wm

)

,where we still denote w = 1 + zu. Observe that
P (t; 0) =

∑

k≥0

tkΛ(k)(w).We want to 
ompute the 
oe�
ient of tmsm of N(t; s), sin
e this 
oe�
ient is Λ(m)(1/wm).Eqs. (19) yield fun
tional equations for the series P and N . For P (t; s) �rst,
P (t; s) =

∑

m≥1

sm−1wm + t
∑

m≥1,k≥1

tk−1sm−1Λ(k−1)

(

(z − 1)w + z

m
∑

a=2

wa + wm+1

)

=
w

1 − sw
+

t(z − 1)

1 − s
P (t; 0) +

tz

1 − s
(P (t; s) − P (t; 0)) + t

P (t; s) − P (t; 0)

s
.Equivalently,

(

1 −
tz

1 − s
−

t

s

)

P (t; s) =
w

1 − sw
−

tP (t; 0)

s(1 − s)
. (20)Now for N(t; s), we have

N(t; s) =
∑

m≥0

sm

wm
+ t

∑

m≥1,k≥1

tk−1smΛ(k−1)

(

1 − z

wm−1
− z

m−2
∑

a=0

1

wa
− w

)

=
1

1 − s/w
+ ts(1 − z)N(t; s) −

tzs2

1 − s
N(t; s) −

ts

1 − s
P (t; 0).Equivalently,

(

1 − ts +
tzs

1 − s

)

N(t; s) =
1

1 − s/w
−

ts

1 − s
P (t; 0). (21)Equation (20) 
an be solved using the kernel method (see e.g. [2, 7, 23℄): let S ≡ S(t, z) be theunique formal power series in t, with 
oe�
ients in Q[z], having 
onstant term 0 and satisfying

1 −
tz

1 − S
−

t

S
= 0.That is,

S =
1 + t − tz −

√

1 − 2t(1 + z) + t2(1 − z)2

2
. (22)Then setting s = S 
an
els the left-hand side of (20), giving

P (t; 0) =
wS(1 − S)

t(1 − wS)
.Combined with (21), this yields an expli
it expression of N(t; s):

N(t; s) =
1

1 − ts + tzs
1−s

(

1

1 − s/w
−

wsS(1 − S)

(1 − s)(1 − wS)

)

.We want to extra
t from this series the 
oe�
ient of tmsm, and obtain the simple expression
(1− z)m −wm predi
ted by Lemma 13. Clearly, the �rst part of the above expression of N(t; s)3The variable t that we use here has nothing to do with the variable t that o

urs in the generating fun
tion
F (t; x, y) of intervals.
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ontributes (1 − z)m, as expe
ted. For i ≥ 1, the 
oe�
ient of
wi in the se
ond part of N(t; s) is

Ri := −
sSi(1 − S)

(1 − s)
(

1 − ts + tzs
1−s

) .Re
all that S, given by (22), depends on t and z, but not on s. Sin
e S = t+O(t2), the 
oe�
ientof tmsm in Ri is zero for i > m. When i = m, it is easily seen to be −1, as expe
ted. In orderto prove that the 
oe�
ient of tmsm in Ri is zero when 0 < i < m, we �rst perform a partialfra
tion expansion of Ri in s, using
(1 − s)

(

1 − ts +
tzs

1 − s

)

= (1 − sS)(1 − st/S),where S is de�ned by (22). This gives
Ri = −

Si+1(1 − S)

t − S2

(

1

1 − ts/S
−

1

1 − sS

)

,so that
[sm]Ri = −

Si+1−m(1 − S)

t − S2

(

tm − S2m
)

=

m−1
∑

j=0

tm−1−jS2j+i−m+1(S − 1)and
[smtm]Ri =

m−1
∑

j=0

[tj+1]S2j+i−m+1(S − 1) =

m−i
∑

j=0

[tj+1]S2j+i−m+1(S − 1). (23)The Lagrange inversion gives, for n ≥ 1 and k ∈ Z,
[tn]Sk(S − 1) =



























0 if n < k;
−1 if n = k;
1 − kz if n = k + 1;

1

n

n−k
∑

p=1

zp

(

n

p

)(

n − k − 1

p − 1

)

n − p − kp

n − k − 1
otherwise.Returning to (23), this gives

[smtm]Ri = −(m−i−1)z+

m−i−2
∑

j=0

m−i−j
∑

p=1

zp

j + 1

(

j + 1

p

)(

m − i − j − 1

p − 1

)

j + 1 − p(2j + i − m + 2)

m − i − j − 1
.Proving that this is zero boils down to proving, that, for 1 ≤ p ≤ m − i,

m−i−2
∑

j=0

1

j + 1

(

j + 1

p

)(

m − i − j − 1

p − 1

)

j + 1 − p(2j + i − m + 2)

m − i − j − 1
= (m − i − 1)χp=1.This is easily proved using Zeilberger's algorithm [21, Chap. 6℄.MBM: CNRS, LaBRI, Université Bordeaux 1, 351 
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