ON SYMMETRIES IN PHYLOGENETIC TREES

ERIC FUSY*

ABSTRACT. Billey et al. [arXiv:1507.04976] have recently discovered a sur-
prisingly simple formula for the number an (o) of leaf-labelled rooted non-
embedded binary trees (also known as phylogenetic trees) with n > 1 leaves,
fixed (for the relabelling action) by a given permutation o € &,. Denoting by
A F n the integer partition giving the sizes of the cycles of o in non-increasing
order, they show by a guessing/checking approach that if A is a binary partition
(it is known that an (o) = 0 otherwise), then

£(N)
an(o) = [T@MN+-+ Xn) — 1),
i=2
and they derive from it a formula and random generation procedure for tan-
glegrams (and more generally for tangled chains). Our main result is a com-
binatorial proof of the formula for a, (o), which yields a simplification of the
random sampler for tangled chains.

1. INTRODUCTION

For A a finite set of cardinality n > 1, we denote by B[A] the set of rooted binary
trees that are non-embedded (i.e., the order of the two children of each node does
not matter) and have n leaves with distinct labels from A. Such trees are known
as phylogenetic trees, where typically A is the set of represented species. Note that
such a tree has n — 1 nodes and 2n — 1 edges (we take here the convention of having
an additional root-edge above the root-node, connected to a ‘fake-vertex’ that does
not count as a node, see Figure 1).

FIGURE 1. (a) A phylogenetic tree v with label-set [1..6]. (b) The
tree v/ = o -7, with o = (1,4, 3)(5)(2,6). Since v/ # v, v is not
fixed by o (on the other hand ~ is fixed by (2, 3)(1,4,6,5)).

The group G(A) of permutations of A acts on B[A]: for v € B[A] and o €
S(A), o -~ is obtained from ~ after replacing the label i of every leaf by o(i), see
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Figure 1(b). We denote by B,[A] the set of trees fixed by the action of o, i.e.,
Bs[A] := {7y € B[4] such that o - v = v}. We also define &,[A] (resp. £[A]) as the
set of pairs (v,e) where v € B,[A] (resp. v € B[A]) and e is an edge of v (among
the 2n — 1 edges). Define the cycle-type of o as the integer partition A - n giving
the sizes of the cycles of o (in non-increasing order). For A - n an integer partition,
the cardinality of B,[A] is the same for all permutations o with cycle-type A, and
this common cardinality is denoted by 7). It is known (e.g. using cycle index
sums [1, 3]) that ry = 0 unless A is a binary partition (i.e., an integer partition
whose parts are powers of 2). Billey et al. [2] have recently found the following
remarkable formula, valid for any binary partition A:

)
(1) ra =[N+ 4+ X)) = 1),

=2

They prove the formula by a guessing/checking approach. Our main result here
is a combinatorial proof of (1), which yields a simplification (see Section 3) of the
random sampler for tanglegrams (and more generally tangled chains) given in [2].

Theorem 1. For A a finite set and o a permutation on A whose cycle-type is a
binary partition:

e If o has one cycle, then |B,[A]| = 1.

e If o has more than one cycle, let ¢ be a largest cycle of o; denote by A’
the set A without the elements of ¢, and denote by o' the permutation o
restricted to A’. Then we have the combinatorial isomorphism

2) B,[A] ~ £, [A)).

As we will see, the isomorphism (2) can be seen as an adaptation of Rémy’s
method [7] to the setting of (non-embedded rooted) binary trees fixed by a given
permutation. Note that Theorem 1 implies that the coefficients r) satisfy ry = 1 if
A is a binary partition with one part and ry = (2|]A\A1| — 1) - ry\», if X is a binary
partition with more than one part, from which we recover (1).

2. PROOF OF THEOREM 1

2.1. Case where the permutation o has one cycle. The fact that |B,[A]| =1
if ¢ has one cycle of size 2F (for some k > 0) is well known from the structure of
automorphisms in trees [6], for the sake of completeness we give a short justification.
Since the case k = 0 is trivial we can assume that k& > 1. Let c¢q,co be the two
cycles of 0% (each of size 2¥71), with the convention that ¢; contains the minimal
element of A; denote by A;, Ay the induced bi-partition of A, and by o1 = ¢; (resp.
09 = ¢3) the permutation o2 restricted to A; (resp. As). For v € B,[A] let y1, 72
be the two subtrees at the root-node of v, such that the minimal element of A is in
v1. Then clearly v1 € B,,[A1] and v2 € B,,[As], and conversely for v; € B,, [A1]
and vo € B,,[As] the tree v with (v1,72) as subtrees at the root-node is in B,[A4].
Hence

(3) BU[A] = Btﬁ [Al] X Baz [A2]a

which implies |B,[A]| = 1 by induction on k (note that, also by induction on k, the
underlying unlabelled tree is the complete binary tree of height k).
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FIGURE 2. (a) Rémy’s leaf-removal operation. (b) The two cases
for removing a 2-cycle of leaves (depending whether the two leaves
have the same parent or not). The vertices depicted gray are al-
lowed to be the fake vertex above the root-node.

2.2. Case where the permutation ¢ has more than one cycle. Let £ > 0 be
the integer such that the largest cycle of o has size 2¥. A first useful remark is that
o induces a permutation of the edges (resp. of the nodes) of -, and each o-cycle of
edges (resp. of nodes) has size 2¢ for some i € [0..k]. We present the proof of (2)
progressively, treating first the case k = 0, then k£ = 1, then general k.

Case k = 0. This case corresponds to o being the identity, so that B,[A] ~ B[A4],
hence we just have to justify that B[A] ~ E[A\{i}] for each fixed i € A. This is easy
to see using Rémy’s argument [7] !, used here in the non-embedded leaf-labelled
context: every vy € B[A] is uniquely obtained from some (v',e) € E[A\{i}] upon
inserting a new pending edge from the middle of e to a new leaf that is given label
i, see Figure 2(a).

Case k = 1. Let ¢ = (a1, az2) be the selected cycle of o, with a; < as. Two cases
can arise (in each case we obtain from v a pair (v, e) with 7/ € B, [4'] and e an
edge of v'):

e if a; and ag have the same parent v, we obtain a reduced tree 7' € B,/[A4']
by erasing the 3 edges incident to v (and the endpoints of these edges, which
are a1, az, v and the parent of v), and we mark the edge e of v whose middle
was the parent of v, see the first case of Figure 2(b)

e if a; and a9 have distinct parents, we can apply the operation of Figure 2(a)
to each of a; and ag, which yields a reduced tree 7' € B,/[A’]. We then
mark the edge e of v/ whose middle was the parent of a;, see the second
case of Figure 2(b).

Conversely, starting from (7',e) € £[A’], the o'-cycle of edges that contains e
has either size 1 or 2:

e if it has size 1 (i.e., e is fixed by ¢’), we insert a pending edge from the
middle of e and leading to “cherry” with labels (a1, ag),

o if it has size 2, let ¢/ = o’(e); then we attach at the middle of e (resp. €’)
a new pending edge leading to a new leaf of label a; (resp. as).

The general case k > 0. Recall that the marked cycle of ¢ is denoted by ¢. A
node or leaf of the tree is generically called a vertezr of the tree. We define a c-vertex
as a vertex v of  such that:

LA similar argument in the context of triangulations of a polygon dates back to Rodrigues [8].
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FIGURE 3. (a) a tree in By[A], for A = [1.14] and ¢ =
(3,8)(1,5,13,12)(2,7,10,4,14,11,6,9). (b) The corresponding
(when selecting the cycle ¢ of size 8 in o) pair (v/,e) € E[4'],
where A" = A\cand ¢’ = (3, 8)(1, 5,13, 12) (restriction of o to A’).

e if v is a leaf then v € ¢,
e if v is a node then all leaves that are descendant of v are in c.

A c-vertex is called mazimal if it is not the descendant of any other c-vertex; define
a c-tree as a subtree formed by a maximal c-vertex v and its hanging subtree (if
v is a leaf then the corresponding c-tree is reduced to v). Note that the maximal
c-vertices are permuted by o. Moreover since the leaves of ¢ are permuted cyclically,
the maximal c-vertices actually have to form a o-cycle of vertices, of size 2¢ for some
i < k; and in each c-tree, 02" permutes the 25~ leaves of the c-tree cyclically. Let
£ be the leaf of minimal label in ¢, and let w be the maximal c-vertex such that
the c-tree at w contains ¢. We obtain a reduced tree v/ € B,/[A’] by erasing all
c-trees and erasing the parent-edges and parent-vertices of all maximal c-vertices;
and then we mark the edge e of v/ whose middle was the parent of w, see Figure 3.

Conversely, starting from (v/,e) € E,/[A’], let i € [0..k] be such that the o’-cycle
of edges that contains e has cardinality 2¢; write this cycle as eg, ..., e _1, with
ep = e. Starting from the element of ¢ of minimal label, let (sg,...,S2i_1) be the
2' (successive) first elements of ¢. And for € [0..2" — 1] let ¢, be the cycle of o'
that contains s,, and let A, be the set of elements in ¢, (note that Ag,..., Ayi_;
each have size 2"~% and partition the set of elements in ¢). Let T, be the unique
(by Section 2.1) tree in B[A,] fixed by the cyclic permutation ¢.. We obtain a tree
v € B,|A] as follows: for each r € [0..2° — 1] we create a new edge that connects
the middle of e, to a new copy of T;.

To conclude we have described a mapping from B, [A] to £,/[A’] and a mapping
from &,/[A'] to B,[A] that are readily seen to be inverse of each other, therefore

B, [A] ~ &, [A].

3. APPLICATION TO THE RANDOM GENERATION OF TANGLED CHAINS

For n > 1, denote by n the set {1,...,n}. A tanglegram of size n is an orbit of
B[n] x B[n] under the relabelling action of &,, (see Figure 4 for an example). More
generally, for k > 1, a tangled chain of length k and size n is an orbit of B[n]* under
the relabelling action of &, see [5, 2, 3]. Let T be the set of tangled chains of
length k and size n, and let t%k) be the cardinality of 7;L(k). Then it follows from
Burnside’s lemma (see [2] for a proof using double cosets and [3] for a proof using
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FIGURE 4. (a) A pair of (rooted non-embedded leaf-labelled) bi-
nary trees. (b) the corresponding (unlabelled) tanglegram.

the formalism of species) that

1 ryF
(4) == > BolmlF =37 =

3
! z
ceS, AbFn A

where z), = 1™mq!---r™rm,! if X\ has mq parts of size 1,...,m, parts of size r
(recall that n!/zy is the number of permutations with cycle-type A). At the level
of combinatorial classes, Burnside’s lemma gives

Sp x TR ~ Z B,[n]*,

ceS,
and thus the following procedure is a uniform random sampler for T, (see [2] for
details):
(1) Choose a random binary partition A - n under the distribution
/2

P(A) = 5

where S, =Y\, /2 (= t%k)).

(2) Let o be a permutation with cycle-type A. For each r € [1..k] draw (inde-
pendently) a tree T, € B,[n] uniformly at random.

(3) Return the tangled chain corresponding to (77, ..., k).

A recursive procedure (using (1)) is given in [2] to sample uniformly at random from
B,[n]. From Theorem 1 we obtain a simpler random sampler for B,[n]. We order
the cycles of o as c1,. .., cqn) such that the cycle-sizes are in non-decreasing order.
Then, with A; the set of labels in ¢, we start from the unique tree (by Section 2.1)
in B, [A1] (where ¢ is to be seen as a cyclic permutation on A;). Then, for i from
2 to £(\) we mark an edge chosen uniformly at random from the already obtained
tree, and then we insert the leaves that have labels in ¢; using the isomorphism (2).

The complexity of the sampler for B,[n] is clearly linear in n and needs no
precomputation of coefficients. However step (1) of the random generator requires
a table of p(n) coefficients, where p(n) is the number of binary partitions of n,
which is slightly superpolynomial [4], p(n) = n®Uog(n) Tt is however possible to
do step (1) in polynomial time. For this, we consider, for ¢ > 0 and n,j > 1 the
coefficient SS’] ) defined as the sum of ryF /zx over all binary partitions of n where
the largest part is 2 and has multiplicity j; note that S&) = 0 unless j - 2/ < n,
we denote by E, the set of such pairs (z,7). Since ry = 1 and zy = (JA| = 1)!'if A

has one part, we have the initial condition S\ = 1/(n—1)! for j =1 and 2! = n.
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In addition, using the fact that ry = (2|]A\A1| — 1) - rx\, if A has at least 2 parts,
and the formula for z), we easily obtain the recurrence:

2n —21) — 1)k ‘
Cln=2) = )" =) g, (i,j) € E, with 2 < n,

ST(LZJ) — 21] o

valid for j = 1 upon defining by convention 57(11',0) as the sum of Sﬁbi,’j )
(¢',4") € E, such that ¢’ < i.

Thus in step (1), instead of directly drawing A under P()), we may first choose
the pair (i,7) such that the largest part of A is 2* and has multiplicity j, that
is, we draw (i,j) € E, under distribution P(i,5) = S\ /S,. Then we continue
recursively at size n’ = n — 2%j, but conditioned on the largest part to be smaller
than 2¢ (that is, for the second step and similarly for later steps, we draw the
pair (¢,7') in E, N {i’ < i} under distribution S,(f, ! )/57(11,’0)). Note that |E,| =
2 i<logy(n) n/2!] = ©(n). Since we need all coefficients SS9 for m < n and

over all pairs

(i,7) € Epm, we have to store ©(n?) coefficients. In addition it is easy to see (looking

at the first expression in (4)) that each coefficient S5 is a rational number of the
form a/m! with a an integer having O(mlog(m)) bits. Hence the overall storage
bit-complexity is O(n3log(n)). About time complexity, starting at size n we first
choose the pair (i, ) (with 2¢ the largest part and j its multiplicity), which takes
O(|E,|) = O(n) comparisons, and then we continue recursively at size n —j-2°. At
each step the choice of a pair (i,7) takes time O(m) with m < n the current size,
and the number of steps is the number of distinct part-sizes in the finally output
binary partition A - n. Since the number of distinct part-sizes in a binary partition
of n is O(log(n)), we conclude that the time complexity (in terms of the number of
real-arithmetic comparisons) to draw A is O(nlog(n)).

Acknowledgements. 1 thank Igor Pak for interesting discussions.
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