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Abstract17

We investigate polyharmonic functions associated to Brownian motions and random walks in cones.18

These are functions which cancel some power of the usual Laplacian in the continuous setting and of19

the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear20

while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk21

enumeration problems. We provide a method to construct general polyharmonic functions through22

Laplace transforms and generating functions in the continuous and discrete cases, respectively. This23

is done by using a functional equation approach.24
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15:2 Polyharmonic functions in cones

1 Introduction and motivations45

In the continuous setting, polyharmonic functions are functions which cancel some power of46

the usual Laplacian. More precisely, a function v on some domain K of Rd satisfying47

∆pv = 048

for some p ≥ 1, where ∆ is the usual Laplacian in Rd, is said to be polyharmonic of order49

p, or polyharmonic for short. So polyharmonic functions of order 1 are just harmonic50

functions. Obviously, a polyharmonic function vp of order p satisfies ∆vp = vp−1, where51

vp−1 is polyharmonic of order p− 1. For example, polynomials are polyharmonic. Harmonic52

functions have been tremendously investigated and pioneer works on polyharmonic functions53

go back to the work of Almansi [1]. One can consult for instance the monograph [2] for an54

introduction to this topic.55

In particular, Almansi [1] proved that if the domain K is star-like with respect to the56

origin, then every polyharmonic function of order p admits a unique decomposition57

f(x) =
p−1∑
k=0
|x|2khk(x), (1)58

where each hk is harmonic on K and |x| is the Euclidean length of x, hence completely59

characterising continuous polyharmonic functions on such domains.60

In comparison with the continuous case, much less is known in the discrete setting,61

where the Laplacian has to be replaced by a discrete difference operator. Some progress in62

understanding discrete polyharmonic functions has been made in the last two decades. For63

instance, one may cite [12], where the authors investigated polyharmonic functions for the64

Laplacian on trees, and proved a similar result as Almansi’s theorem (1) for homogeneous65

trees. Recent works of Woess and co-authors [18, 21] are generalising this previous work.66

Our original motivation to study discrete polyharmonic functions comes from the following67

framework. Consider a walk in Zd with step set S confined in some cone K ⊂ Zd. Denote68

by q(x, y;n) the number of n-length excursions between x and y staying in the cone K. To69

simplify, we only consider the case where y is the origin, but all considerations below can be70

generalised to y 6= 0. In various cases [15], the asymptotics of q(x, 0;n) as n→∞ is known71

to admit the form72

q(x, 0;n) ∼ v0(x)γnn−α0 , (2)73

where v0(x) > 0 is a function depending only on x, γ ∈ (0, |S|] is the exponential growth,74

and α0 is the critical exponent. It is easy to see that the function v0(x) in (2) defines a75

discrete harmonic function. Indeed, plugging (2) into the obvious recursive relation76

q(x, 0;n+ 1) =
∑
s∈S

q(x+ s, 0;n)1{x+s∈K}, (3)77

dividing by γn+1n−α0 and letting n→∞, we obtain78

v0(x) = 1
γ

∑
s∈S

v0(x+ s)1{x+s∈K}, (4)79

which proves that, with the assumption that v0(x) = 0 for x /∈ K, v0(x) is discrete harmonic80

for the Laplacian operator81

Lf(x) = 1
γ

∑
s∈S

f(x+ s)− f(x), (5)82
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that is, Lv0 = 0. Denisov and Wachtel [15] go further and show that83

the exponential growth γ is minRd+

∑
(s1,...,sd)∈S x

s1
1 · · ·x

sd
d , it does not depend on K;84

the critical exponent α0 equals 1 +
√
λ1 + (d/2− 1)2, where d is the dimension and λ1 is85

the principal Dirichlet eigenvalue on some spherical domain constructed from K.86

As a leading example, consider the simple random walk in the quarter plane, with step87

set {←, ↑,→, ↓}. In this case, the number of excursions q((i, j), 0;n) is 0 if m = n−i−j
2 is not88

a non-negative integer, and otherwise takes the value89

q((i, j), 0;n) = (i+ 1)(j + 1)n!(n+ 2)!
m!(m+ i+ j + 2)!(m+ i+ 1)!(m+ j + 1)! , (6)90

see [9] and our Example 6. The equivalence (2) is then91

q((i, j), 0;n) ∼ 4
π

4n v0(i, j)
n3 , (7)92

where v0(i, j) = (i + 1)(j + 1) is the well-known unique (up to multiplicative constants)93

harmonic function positive within the quarter plane with Dirichlet boundary conditions.94

Other examples of such asymptotics may be found for instance in [4, 10, 14].95

Our aim in this discrete setting is to study more precise estimates than (2), by considering96

complete asymptotic expansions of the following form, as n→∞,97

q(x, 0;n) ∼ γn
∑
p≥0

vp(x)
nαp

. (8)98

From such an asymptotic expansion and using similar ideas as in (3), (4) and (5), it is rather99

easy to prove that the terms vp are polyharmonic functions, in the sense that a power Lkvp100

of the Laplacian operator vanishes. We will provide examples of such asymptotic expansions101

(at least for the first terms) and of the set of exponents {αp}p≥0 appearing in (8).102

On the other hand, the functional equation approach has proved to be fruitful when103

studying random walk problems. The reference book on this topic is the monograph [16]104

by Fayolle, Iasnogorodski and Malyshev. This method has been used in [20] to construct105

harmonic functions, both in the discrete and continuous settings. Basically, the method106

consists of drawing from the harmonicity condition a functional equation satisfied by the107

generating function (in the discrete setting) or by the Laplace transform (in the continuous108

setting) of a harmonic function. Solving some boundary value problem for these quantities109

leads, via Cauchy or Laplace inversion, to the sought harmonic function. We will provide an110

implementation of this method to construct bi-harmonic functions, which can be generalised111

to polyharmonic functions.112

The main features of our results are as follows:113

We shine a light on a new link between discrete polyharmonic functions and complete114

asymptotic expansions in the enumeration of walks.115

Our approach provides tools to study complete asymptotics expansions as in (8), but does116

not allow to prove their existence. On the other hand, the powerful approach of Denisov117

and Wachtel [15] seems restricted to the first term in the asymptotics (2). Indeed, one of118

the main tools in [15] is a coupling result of random walks by Brownian motion, which119

only provides an approximation of polynomial order, see [15, Lem. 17].120

We introduce a new class of functional equations (see (21) and (29)), for which the121

method of Tutte’s invariants introduced in [23, 5, 6] proves to be useful.122

AofA 2020



15:4 Polyharmonic functions in cones

In the unweighted planar case, it has been shown [8] that knowing the rationality of the123

exponent α0 in (8) was sufficient to decide the non-D-finiteness of the series of excursions.124

However, for walks with big steps in dimension two or walk models in dimension three,125

this information is not enough [7]. As a potential application of our results, we might126

use arithmetic information on the other exponents αp to study the algebraic nature, for127

example the transcendance, of the associated combinatorial series.128

This paper is organised as follows. We choose to start with the continuous setting since129

computations are more enlightening and accessible. In Section 2, we prove that polyharmonic130

functions naturally arise when performing an asymptotic expansion of the Dirichlet heat131

kernel in a cone. We next present the functional equation method to construct polyharmonic132

functions. Our main result here is Theorem 4, where a class of solutions for the Laplace133

transform of a bi-harmonic function is provided. It shows that the Laplace transform of a bi-134

harmonic function can be expressed in terms of the Laplace transform of the related harmonic135

function plus some additional terms. This can be thought of as a Laplace transform version136

of Almansi’s theorem (1). In Section 3, we exhibit the same phenomenon in the random walk137

setting. Discrete polyharmonic functions appear when considering the asymptotic expansion138

of coefficients counting walks with fixed endpoints in a domain, and the functional equation139

approach may be used to construct discrete polyharmonic functions.140

These notes are the starting point of a long-term research project on discrete polyharmonic141

functions in cones. Notice that many ideas and techniques are not specific to cones and142

would work for many other domains of restriction K.143

2 Classical polyharmonic functions and heat kernel expansions144

As pointed out in [2, Chap. VI], the connection between the heat kernel and polyharmonic145

functions is very profound. Here, we deepen this connection by proving an exact asymptotic146

expansion for the heat kernel in terms of polyharmonic functions. We then implement the147

functional equation method to construct polyharmonic functions.148

2.1 Exact asymptotic expansion for the Brownian semigroup in a cone149

Let K be some cone in Rd and consider the Brownian motion (Bt)t≥0 killed at the boundary150

of K. Denote by p(x, y; t) its transition density, that is the density probability function of151

the transition probability kernel152

Px(Bt ∈ dy, τ > t),153

where τ is the first exit time of K. Recall the well-known fact that p(x, y; t) corresponds154

to the heat kernel, i.e., the fundamental solution of the heat equation on K with Dirichlet155

boundary condition, see for instance [3]. Here, we prove that the heat kernel admits a156

complete asymptotic expansion in terms of polyharmonic functions for the Laplacian.157

Denote by ∆ the usual Laplacian on Rd. In polar coordinates (r, θ), where r is the radial158

part and θ the angular part, it writes:159

∆ = ∂2

∂r2 + d− 1
r

∂

∂r
+ 1
r2 ∆Sd−1 , (9)160

where ∆Sd−1 denotes the spherical Laplacian. Let respectively mj and λj be the Dirichlet161

(normalised) eigenfunctions and eigenvalues for the spherical Laplacian on the generating set162
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K ∩ Sd−1, that is,163 {
∆Sd−1mj = −λjmj in K ∩ Sd−1,

mj = 0 in ∂(K ∩ Sd−1). (10)164

The eigenvalues satisfy 0 < λ1 < λ2 ≤ λ3 ≤ . . . by [11, Chap. VII]. We introduce, for j ≥ 1,165

βj =
√
λj + (d/2− 1)2 and bj = 1− d/2 +

√
λj + (d/2− 1)2. (11)166

Lemma 1 in [3] gives an explicit expression for the transition density p(x, y; t) of the Brownian167

motion in K. It states that, for x, y ∈ Rd and t ∈ R+,168

p(x, y; t) =
exp

(
−ρ

2+r2

2t

)
t(ρr) d2−1

∞∑
j=1

Iβj

(ρr
t

)
mj(θ)mj(η), (12)169

where in polar coordinates x = (ρ, θ) and y = (r, η). Here, Iβ is the modified Bessel function170

of the first kind of order β, satisfying the differential equation I ′′β (z) + 1
z I
′
β(z) = (1 + β2

z2 )Iβ(z)171

and admitting the series expansion172

Iβ(z) =
∞∑
m=0

1
m!Γ(m+ β + 1)

(z
2

)2m+β
. (13)173

The following easy lemma will allow us to define certain polyharmonic functions.174

I Lemma 1. For any µ ≥ 0 and j ≥ 1, let fµ,j be defined in spherical coordinates by175

fµ,j(r, θ) = rµmj(θ). (14)176

Then fµ,j satisfies177

∆fµ,j = (µ2 + (d− 2)µ− λj)fµ−2,j . (15)178

Proof. The proof is elementary using (9) and (10). J179

I Corollary 2. For any k ∈ N, the function fbj+2k,j defined in (14) is k-polyharmonic.180

Proof. It is obvious that µ = bj satisfies µ2 + (d − 2)µ − λj = 0, see (11), so that fbj ,j is181

harmonic by (15). An induction based on (15) completes the proof. J182

Doing an expansion of the heat kernel (12) as t → ∞ and using series expansions of the183

exponential function and of the Bessel function (13), one immediately obtains:184

I Theorem 3. The Dirichlet heat kernel p(x, y; t) in K admits the following expansion, as185

t→∞, where fbj+2k,j is defined in (14), and bj and βj in (11):186

187

p(x, y; t) ∼188 ∑
j≥1

∑
k,m≥0

k∑
n=0

1
t1+βj+k+2m

(−1)k
(
k
n

)
2kk!m!Γ(m+ βj + 1)fbj+2(m+n),j(ρ, θ)fbj+2(m+k−n),j(r, η).189

190

As such, the above result shows that the transition density of the Brownian motion191

in K admits, as t → ∞, an asymptotic expansion in descending powers of t and in terms192

AofA 2020



15:6 Polyharmonic functions in cones

of polyharmonic functions for the Laplacian (see Corollary 2). Moreover, the set of these193

exponents is (with N = {0, 1, 2, . . .})194

∞⋃
j=1

(βj + 1 + N). (16)195

Note that, depending on the cone, there might be an overlap between the sets βj + 1 + N.196

For instance, in the quadrant in dimension 2, one has βj = 2j and the set in (16) reduces to197

{3, 4, 5, . . .}. On the other hand, in dimension 2 in a cone of opening α such that π/α /∈ Q,198

there is no overlap between the points in (16).199

As a last remark, we note that the same phenomenon appears for the survival probability200

Px(τ > t). Indeed, thanks to its explicit expression given by [3, Thm 1] (in terms of the201

confluent hypergeometric function), one can write down an asymptotic expansion of Px(τ > t)202

in descending powers of t in terms of polyharmonic functions for the Laplacian.203

2.2 The functional equation approach204

We apply here the functional equation approach in order to construct polyharmonic functions205

for the 2-dimensional killed Brownian motion in a convex cone. This approach has been206

previously introduced in [20] to compute harmonic functions, and is an adaptation of the207

functional equation method of the random walk case. Our main result is Theorem 4, which208

gives the general form of the Laplace transform of a bi-harmonic function.209

Consider the Brownian motion B in the quarter plane R2
+ (compared to the last section,210

we use (x, y) for the coordinates of a 2d point) with covariance matrix211

Σ =
(
σ11 σ12
σ12 σ22

)
,212

with σ11, σ22 > 0 and det Σ = σ11σ22 − σ2
12 ≥ 0. Its infinitesimal generator is the operator213

Gf = 1
2

(
σ11

∂2f

∂x2 + 2σ12
∂2f

∂x∂y
+ σ22

∂2f

∂y2

)
.214

Note that through some linear transformation φ (see [20, Eq. (5.1)]), one obtains the Brownian215

motion with identity covariance matrix in the cone φ(R2
+).216

The kernel associated to the Brownian motion is defined as the quantity217

γ(x, y) = 1
2(σ11x

2 + 2σ12xy + σ22y
2),218

for (x, y) ∈ C2. The Laplace transform of a function f , which in the continuous case is the219

analogous quantity of the notion of generating function, is defined as220

L(f)(x, y) =
∫∫

[0,∞)2
f(u, v)e−(xu+yv)dudv,221

for (x, y) ∈ C2 with positive real parts.222

Now, let h be a harmonic function associated with the Brownian motion with covariance223

matrix Σ, that is, h vanishes on the boundary axes of the quadrant and satisfies Gh = 0.224

The functional equation for h takes the following form (see [20, Eq. (A.1)]):225

γ(x, y)L(h)(x, y) = 1
2(σ11L1(h)(y) + σ22L2(h)(x)) + L(Gh)(x, y),226
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where we have denoted227 
L1(h)(y) := L

(
∂h

∂x
(0, ·)

)
(y) =

∫ ∞
0

∂h

∂x
(0, v)e−yvdv,

L2(h)(x) := L

(
∂h

∂y
(·, 0)

)
(x) =

∫ ∞
0

∂h

∂y
(u, 0)e−xudu.

228

Using the harmonicity condition Gh = 0, the functional equation for h rewrites as229

γ(x, y)L(h)(x, y) = 1
2(σ11L1(h)(y) + σ22L2(h)(x)). (17)230

We recall below the key argument of the method of [20] to solve the functional equation (17),231

which leads to harmonic functions for the Brownian motion via Laplace inversion. We will232

subsequently apply a related method to obtain polyharmonic functions.233

Consider the two solutions of γ (x, Y (x)) = 0, which, since γ is a homogeneous polynomial234

of degree two, are explicitly given by Y±(x) = c±x, with235

c± = −σ12 ± i
√

det Σ
σ22

, (18)236

so that c+ = c−. We write c± = ce±iθ, with c =
√

σ11
σ22

and θ such that cos θ = − σ12√
σ11σ22

.237

Denote by GY the domain delimited by the curve Y+([0,∞]) ∪ Y−([0,∞]) = c+[0,∞] ∪238

c−[0,∞] and containing the positive axis [0,∞]. Plugging each of the solutions c±x into the239

functional equation (17), one obtains a boundary value problem for L1(h), which states that:240

1. L1(h) is analytic on GY ,241

2. L1(h) is continuous on GY \ {0},242

3. For all x ∈ (0,∞], L1(h) satisfies the boundary equation L1(h)(c+x) = L1(h)(c−x).243

In order to solve this problem, one introduces the conformal mapping ω from GY onto244

C \R− defined by ω(x) = x−π/θ. One eventually obtains that a class of solutions is obtained245

by letting L1(h) to be of the form246

L1(h)(y) = P

(
1

yπ/θ

)
, (19)247

for any given polynomial P . The same applies to L2(h) (by considering the solutions of248

γ(X(y), y) = 0), and using the functional equation (17) and the fact that (c±)π/θ = −cπ/θ,249

one must have250

L2(h)(y) = −σ11

σ22
P

(
− 1
cπ/θxπ/θ

)
,251

with the same P as in (19). Hence, using again the functional equation (17), we deduce that252

the Laplace transform of h writes253

L(h)(x, y) = 1
2σ11

P
(

1
yπ/θ

)
− P

(
− 1
cπ/θxπ/θ

)
γ(x, y) . (20)254

In particular, taking P to be a polynomial of degree 1, one gets255

L(h)(x, y) =
σ22

µ2
xπ/θ

+ σ11
µ1
yπ/θ

γ(x, y) ,256

AofA 2020



15:8 Polyharmonic functions in cones

where the constants are related by µ2 = µ1(σ22
σ11

)1−π/2θ. Taking the inverse Laplace transform,257

one should recover the unique positive harmonic function (written in polar coordinates (ρ, η))258

h(x, y) = ρ
π
θ sin

(π
θ
η
)
.259

Suppose now that v is bi-harmonic and satisfies Gv = h, where h is harmonic. The260

functional equation for v now reads261

γ(x, y)L(v)(x, y) = 1
2(σ11L1(v)(y) + σ22L2(v)(x)) + L(h)(x, y). (21)262

By considering the roots of the kernel γ and using the same method as above, we obtain263

1
2σ11L1(v)(c+x)− 1

2σ11L1(v)(c−x) = L(h)(x, c−x)− L(h)(x, c+x). (22)264

We now have an a priori non-homogeneous boundary value problem for v, that we can in265

fact transform into an homogeneous one, thanks to the (already known) explicit form of L(h).266

The key remark to this task is that (c+x)π/θ = (c−x)π/θ = −(cx)π/θ. Rewriting (20) as267

L(h)(x, y) = σ11

σ22

P
(

1
yπ/θ

)
− P

(
1

(c±x)π/θ

)
(y − c−x)(y − c+x)268

269

and letting y → c+x and y → c−x, one finds270

L(h)(x, c±x) = ∓σ11

σ22

π

θ

1
(c±x− c∓x)P

′
(

1
(c±x)π/θ

)
1

(c±x)π/θ+1 .271

Eventually, we get272

L(h)(x, c−x)− L(h)(x, c+x)273

= σ11

σ22

π

θ

 1
(c+x− c−x)

P ′
(

1
(c+x)π/θ

)
(c+x)π/θ+1 − 1

(c−x− c+x)

P ′
(

1
(c−x)π/θ

)
(c−x)π/θ+1

274

= σ11

σ22

π

θ

(
c+

c+ − c−
P ′
(

1
(c+x)π/θ

)
1

(c+x)π/θ+2 −
c−

c− − c+
P ′
(

1
(c−x)π/θ

)
1

(c−x)π/θ+2

)
275

= −σ11

σ22

π

θ

c+c−
(c+ − c−)2

(
P ′
(

1
(c+x)π/θ

)
1

(c+x)π/θ+2 − P
′
(

1
(c−x)π/θ

)
1

(c−x)π/θ+2

)
,276

277

where the last equality follows from (c+x)π/θ = (c−x)π/θ. Therefore, the boundary value278

equation (22) is now homogeneous, and of the form279

1
2σ11L1(v)(c+x)− F (c+x) = 1

2σ11L1(v)(c−x)− F (c−x),280

where F is equal on Y+([0,∞]) ∪ Y−([0,∞]) to281

F (y) = −σ11

σ22

π

θ

c+c−
(c+ − c−)2P

′
(

1
yπ/θ

)
1

yπ/θ+2 . (23)282

We note that the simpler case when F (c+x) = F (c−x) occurs exactly when c2
+ = c2

−, i.e., θ283

is 0 or π/2. In this way, we obtain a boundary value problem analogous to the harmonic284

case, which, on the boundary of GY except at 0, leads to285

1
2σ11L1(v)(y)− F (y) = Q

(
1

yπ/θ

)
,286

for any given polynomial Q. The same computation applies to L2(v). As such, using the287

equation (21), the Laplace transform of the bi-harmonic function v admits the following288

form:289
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I Theorem 4. For any polynomials P and Q, the formula290

L(v)(x, y) = 1
γ(x, y)

[
Q

(
1

yπ/θ

)
−Q

(
1

(c+x)π/θ

)
+G(x, y) + L(h)(x, y)

]
291

is the Laplace transform L(v) of a bi-harmonic function v satisfying Gv = h, where h is a292

harmonic function with Dirichlet boundary conditions, where the Laplace transform L(h) of293

h has the form (20) and where294

G(x, y) = F (y)− F (c+x)− L(h)(x, c+x),295

with F defined in Eq. (23).296

The above theorem can be understood as a Laplace transform counterpart of Almansi’s297

theorem [1].298

Recursively, if vn is polyharmonic of order n with Gvn = vn−1, where vn−1 is polyharmonic299

of order n− 1, the above method permits to express the Laplace transform of vn through300

the one of vn−1, allowing to construct polyharmonic functions via Laplace inversion.301

Further computations for the Brownian motion with identity covariance matrix are302

proposed in Appendix A.303

3 Discrete polyharmonic functions304

Similarly to the continuous setting, we first investigate the appearance of polyharmonic305

functions in the asymptotic expansions of the counting coefficients of lattice paths with306

prescribed endpoints, starting from an exact expression for these coefficients (such exact307

expressions may typically be obtained from reflection principles). We then implement the308

functional equation approach to construct polyharmonic functions.309

Our framework is thus the following. We consider random walks in the quarter plane Z2
+310

with the following assumptions:311

1. The walk is homogeneous with transition probabilities {pi,j}−1≤i,j≤1 to the eight nearest312

neighbours and p0,0 = 0 (so we are only considering walks with small steps),313

2. In the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1, p0,1, there are no three consecutive314

zeros (to avoid degenerate cases),315

3. The drifts
∑
i,j ipi,j and

∑
i,j jpi,j are zero.316

The Markov operator P of the walk is defined on discrete functions by317

Pf(x, y) =
∑

−1≤i,j≤1
pi,jf(x+ i, y + j),318

and the Laplacian operator is L = P − I. A function f is said to be harmonic if Lf = 0 and319

polyharmonic of order p if Lpf = 0.320

3.1 Examples of asymptotic expansion in walk enumeration problems321

We start by recalling a few exact expressions for the number of quarter plane walks of length322

n with prescribed endpoints.323

I Example 5 (The diagonal walk). The step set is {↗,↖,↘,↙}, with uniform transition324

probabilities 1
4 . It is well known (see for instance [9]) that325

q((i, j), (0, 0);n) = (i+ 1)(j + 1)
n+i+2

2
n+j+2

2

(
n
n+i

2

)(
n
n+j

2

)
, (24)326
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with i and j having the same parity as n. Starting from (24), one can prove that327

q((i, j), (0, 0);n) ∼ 8
π

4n
∑
p≥0

vp(i, j)
n3+p , (25)328

where the first few terms in the above asymptotic expansion are given by329 {
v0(i, j) = (i+ 1)(j + 1),
v1(i, j) = − 1

2 (i+ 1)(j + 1)(i2 + j2 + 2i+ 2j + 9).330

The first term v0 is the well-known unique (up to multiplicative constants) positive harmonic331

function, with Dirichlet conditions; it is the same as for the simple walk, see (7) and (26).332

The next term satisfies Lv1 = −3v0, and therefore is bi-harmonic. Note that in fact, using333

the explicit expression of the Laplacian L, it is obvious that any polynomial of degree at334

most 2p− 1 is polyharmonic of order p, since for any polynomial f of degree k, Lf has degree335

at most k − 2 (it is a discrete equivalent of Lemma 1).336

To derive a full asymptotic expansion of (24), we shall use the Laplace method applied to337

the counting coefficients rewritten as an integral, in the spirit of [22, p. 75–79] (alternatively338

one can apply the saddle-point method [17, Chap. B VIII] in the framework of analytic339

combinatorics in several variables [14, 19]). We choose to postpone it to Appendix B, since340

the computations are a bit long, though straightforward.341

I Example 6 (The simple random walk). The step set is {←, ↑,→, ↓}, with uniform transition342

probabilities 1
4 . We have (6) by [9]. Again, starting from (6), one can prove that343

q((i, j), (0, 0);n) ∼ 4
π

4n
∑
p≥0

vp(i, j)
n3+p ,344

where the first few terms in the asymptotic expansion are345 {
v0(i, j) = (i+ 1)(j + 1),
v1(i, j) = − 1

4 (i+ 1)(j + 1)(2i2 + 2j2 + 4i+ 4j + 15). (26)346

Again, v0 is harmonic, and since Lv1 = − 3
2v0, v1 is bi-harmonic.347

I Example 7 (The tandem walk). The step set is {↖,→, ↓} with uniform transition probab-348

ilities 1
3 . From [10, Prop. 9], we know that:349

q((i, j), (0, 0);n) = (i+ 1)(j + 1)(i+ j + 2)(3m+ 2i+ j)!
m!(m+ i+ 1)!(m+ i+ j + 2)! ,350

with n = 3m+ 2i+ j. In this case, writing the asymptotic expansion351

q((i, j), (0, 0);n) ∼
√

3
2π 3n

∑
p≥0

vp(i, j)
n4+p ,352

one has for the harmonic function v0 and the bi-harmonic function v1,353 {
v0(i, j) = (i+ 1)(j + 1)(i+ j + 2),
v1(i, j) = − 1

9 (i+ 1)(j + 1)(i+ j + 2)(3i2 + 3j2 + 3ij + 9i+ 9j + 38). (27)354
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3.2 Functional equation approach in the discrete case355

We implement here the functional equation method to construct polyharmonic functions.356

We start by recalling the key arguments in the harmonic case; details may be found in [20].357

For a harmonic function h, we denote by H its generating function, namely,358

H(x, y) =
∑
i,j≥0

h(i, j)xiyj .359

The kernel of the random walk is defined as the polynomial360

K(x, y) = xy

 ∑
−1≤k,`≤1

pk,`x
−ky−` − 1

 .361

The harmonic equation Lh = 0 yields the following functional equation362

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0). (28)363

To solve (28), one first proves that the function H(x, 0) (and similarly H(0, y)) satisfies a364

boundary value problem (see [20]):365

1. H(x, 0) is analytic in GX ,366

2. H(x, 0) is continuous on GX \ {1},367

3. For all x in the boundary of GX except at 1, H(x, 0) satisfies the boundary equation:368

K(x, 0)H(x, 0)−K(x, 0)H(x, 0) = 0.369

Here, GX is a certain domain bounded by the curve X+([y1, 1]) ∪X−([y1, 1]), where X±(y)370

are the branches of the algebraic function defined by K(X(y), y) = 0. Indeed, writing K as371

K(x, y) = α̃(y)x2 + β̃(y)x+ γ̃(y),372

where α̃, β̃, γ̃ are polynomials of degree 2 whose coefficients depend on the model, we have373

X±(y) =
−β̃(y)±

√
δ̃(y)

2α̃(y) ,374

where δ̃(y) = β̃(y)2 − 4α̃(y)γ̃(y). The functions X± are thus meromorphic on a cut plane,375

determined by the zeros of δ̃.376

It follows by [20] that K(x, 0)H(x, 0) may be written as a function of a certain conformal377

mapping ω (see [20, Eq. (3.1)] for its explicit expression):378

K(x, 0)H(x, 0) = P (ω(x)),379

where P is an arbitrary entire function, for example a polynomial. This represents the380

analogous statement as (19) in the continuous setting. By the functional equation (28), one381

eventually finds that382

H(x, y) = P (ω(x))− P (ω(X+(x)))
K(x, y) ,383

which again should be compared with (20) in the continuous case.384

For a bi-harmonic function v, satisfying Lv = h with h a harmonic function, the functional385

equation now writes386

K(x, y)V (x, y) = K(x, 0)V (x, 0) +K(0, y)V (0, y)−K(0, 0)V (0, 0)− xyH(x, y), (29)387
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where V is the generating function of v, i.e., V (x, y) =
∑
i,j≥0 v(i, j)xiyj ; compare with388

(21). Notice that the equation (29) is very close to functional equations coming up in walk389

enumeration problems.390

Plugging the roots of the kernel into (29), one has391

K(X±(y), 0)V (X±(y), 0) +K(0, y)V (0, y)−K(0, 0)V (0, 0)−X±(y)yH(X±(y), y) = 0,392

which leads to the boundary equation393

K(x, 0)V (x, 0)−K(x, 0)V (x, 0) = y (xH(x, y)− xH(x, y)) , (30)394

for x on the boundary of GX (except at 1).395

Note that a general method to solve this kind of boundary value problem (30) exists [16],396

for any quantity in the right-hand side, ending up in some contour integral expression for397

the unknown function K(x, 0)V (x, 0). We choose to provide below examples with simpler,398

integral-free expressions. Indeed, the resolution of (30) is made easier in some peculiar cases,399

for instance when the right-hand side of (30) is zero (which occurs for the simple random400

walk, see Example 6 below), or when it can be decoupled in the terminology of [6] (which is401

analogous to the continuous setting and holds for the tandem walk, see Appendix C).402

I Example 6 (continued). We consider here the case of the simple random walk,with kernel403

K(x, y) = xy

(
1
4

(
x+ 1

x
+ y + 1

y

)
− 1
)
.404

The domain GX is the open unit disk, and the conformal mapping ω admits the expression405

ω(x) = x
(1−x)2 , see [20]. A computation shows that ω(X+(y)) = −ω(y), thus one gets that406

the generating function of a harmonic function h may be written as407

H(x, y) = P (ω(x))− P (−ω(y))
K(x, y) .408

Choosing P (x) = x
4 leads to409

H(x, y) =

1
4x

(1−x)2 +
1
4y

(1−y)2

xy
(

1
4 (x+ 1

x + y + 1
y )− 1

) = 1
(1− x)2(1− y)2 =

∑
i,j≥0

(i+ 1)(j + 1)xiyj ,410

that is, H is the generating function of the unique positive harmonic function, see (26).411

We now consider bi-harmonic functions. Using the explicit form of H, one sees that the412

right-hand side of Eq. (30) vanishes. Indeed, we have413

414

X+(y)H(X+(y), y)−X−(y)H(X−(y), y)415

= X+(y)P
′(ω(X+(y)))ω′(X+(y))
α̃(y)(X+(y)−X−(y)) −X−(y)P

′(ω(X−(y)))ω′(X−(y))
α̃(y)(X−(y)−X+(y)) ,416

417

which is equal to zero since ω(X+(y)) = ω(X−(y)) and418

X+(y) ω′(X+(y))
X+(y)−X−(y) −X−(y) ω′(X−(y))

X−(y)−X+(y) = 0419

by straightforward computations. The boundary equation has thus exactly the same form as420

the one in the harmonic case, so we get that on the boundary of GX ,421

K(x, 0)V (x, 0) = Q(ω(x)),422
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for some polynomial Q. Using (twice) the functional equation (29), the general form for the423

generating function of a bi-harmonic v satisfying Lv = h, with h harmonic, is thus424

V (x, y) = Q(ω(x))−Q(−ω(y)) +X+(y)yH(X+(y), y)− xyH(x, y)
K(x, y) ,425

with426

H(x, y) = P (ω(x))− P (−ω(y))
K(x, y) and H(X+(y), y) = P ′(ω(X+(y)))ω′(X+(y))

α̃(y)(X+(y)−X−(y)) .427

For instance, taking P (x) = x and Q the zero polynomial leads to the bi-harmonic function428

(non symmetrical in i and j)429

v(i, j) = (i+ 1)j(j + 1)(j + 2).430

Indeed, one has431

X+(y)H(X+(y), y) = − y

(1− y)4 ,432

so the generating function V writes433

V (x, y) = −4y
(1− x)2(1− y)4 ,434

which is easily inverted. On the other hand, taking P (x) = x and Q(x) = −2x2 − 5
2x, one435

obtains the bi-harmonic function436

v(i, j) = (i+ 1)(j + 1)(2i2 + 2j2 + 4i+ 4j + 15),437

which is (up to a multiplicative constant) the bi-harmonic function v1 appearing in Eq. (26).438

Another example will be treated in Appendix C.439
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A Detailed computations for the standard Brownian motion in the503

quadrant504

Here we apply the functional equation approach to the case of the Brownian motion in the505

quarter plane with identity covariance matrix. The kernel γ is equal to γ(x, y) = 1
2
(
x2 + y2) ,506

so c± = ±i and θ = π
2 , see (18). The functional equation (17) for h harmonic is then507

(x2 + y2)L(h)(x, y) = L1(h)(y) + L2(h)(x),508

which leads to509

L(h)(x, y) =
P
( 1
y2

)
− P

(
− 1
x2

)
x2 + y2 .510

In case when P is the degree 1 polynomial P (x) = x, one gets L(h)(x, y) = 1
x2y2 which is the511

Laplace transform of the well-known unique positive harmonic function within the quarter512

plane h(x, y) = xy.513

More generally, the choice of P (x) = −(2j)!(−x)j leads to the Laplace transform (in514

Cartesian coordinates) of the harmonic function f2j,j defined in (14). Indeed, recall that515

f2j,j(ρ, θ) = ρ2j sin (2jθ), which is written in Cartesian coordinates as follows. Recall that516

the Chebyshev polynomial Uj of the second kind is defined as Uj(cos θ) sin θ = sin(jθ), j ≥ 0,517

and admits the expression518

Uj(z) = zj
bj/2c∑
k=0

(
j + 1

2k + 1

)
(1− z−2)k.519

Hence, thanks to the explicit expression of U2j−1, the harmonic function f2j,j can be written,520

in Cartesian coordinates (x, y) = (ρ cos θ, ρ sin θ),521

f2j,j(x, y) =
j−1∑
k=0

(−1)k
(

2j
2k + 1

)
y2k+1x2j−(2k+1).522

The Laplace transform of f2j,j is now computed using L(xnyk) = n!k!
xn+1yk+1 , and one obtains523

L(f2j,j)(x, y) = (2j)!
j−1∑
k=0

(−1)k 1
y2k+2x2j−2k = (2j)!

( 1
x2

)j − (− 1
y2

)j
x2 + y2 . (31)524

For v bi-harmonic, the functional equation (21) is525

(x2 + y2)L(v)(x, y) = L1(v)(y) + L2(v)(x) + 2L(h)(x, y),526

and the general form of the Laplace transform of v writes527

L(v)(x, y) =
Q
( 1
y2

)
−Q

(
− 1
x2

)
+ 2

x4P
′(− 1

x2

)
+ 2

P
(

1
y2

)
−P
(
− 1
x2

)
x2+y2

x2 + y2 , (32)528

where P and Q are arbitrary polynomials. Choosing P (x) equal to x and Q(x) of degree 2,529

equal to x2, gives that530

L(v)(x, y) = x2 + y2

x4y4 = 1
x2y4 + 1

x4y2 ,531
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which is the Laplace transform of the function v(x, y) = (x2 + y2)xy, which corresponds in532

polar coordinate (ρ, θ) to the bi-harmonic function f4,2(ρ, θ) = ρ4 sin 2θ defined in (14).533

More generally, choosing534

P (x) = (−1)j+1(2j)!2(2j + 1)xj and Q(x) = (−1)j+1(2j)!2(2j + 1)jxj+1
535

leads to the bi-harmonic function f2j+2,j . Indeed, since f2j+2,j(x, y) = (x2 + y2)f2j,j(x, y),536

one has, from the usual properties of the Laplace transform, that L(f2j+2,j) = ∆L(f2j,j). As537

such, by applying the Laplacian to the Laplace transform of f2j,j given in (31), one obtains538

that539
540

L(f2j+2,j)(x, y) =541

(2j)!2(2j + 1)
x2y2(x2 + y2)2

{
(j + 2)x2y2

(( 1
x2

)j
−
(−1
y2

)j)
+ j

(
y4
( 1
x2

)j
− x4

(−1
y2

)j)}
.542

543

Now, plugging the above choice of P and Q in Eq. (32) gives easily the formula.544

B Complete asymptotic expansion for the diagonal walk545

As an explicit example, we provide a complete asymptotic expansion for the number (24) of546

n-excursions from the origin to (i, j) for the diagonal walk with steps from {↗,↖,↘,↙}.547

A straightforward way to obtain such an asymptotic expansion is to apply the standard548

Laplace’s method (see [17, p. 755]) using an integral representation of (24) (in [22, p. 75–549

79], this is applied to obtain first order asymptotic estimates in lattice paths enumeration550

problems). This leads to an explicit new family of polynomials (vp)p≥0 of increasing degree,551

where vp is the polyharmonic function of order p+ 1 appearing in the expansion (25), see552

Corollary 9.553

Let us first introduce the necessary notations. Projecting the walk onto the coordinate554

axes, one gets two decoupled prefixes of Dyck paths. Hence (24) is obtained by a simple555

application of the reflection principle in the one-dimensional case, which gives that the556

number of non-negative paths from 0 to λ with n steps is given by557

m(λ, n) :=
(

n
n+λ

2

)
−
(

n
n+λ+2

2

)
= λ+ 1

n+λ+2
2

(
n
n+λ

2

)
, (33)558

with λ ≡ n mod 2. Using the simple integral representation of the binomial coefficient559 (
n

k

)
= 1

2π

∫ π

−π
e−ikt(1 + eit)ndt,560

one readily obtains the following integral representation for m(λ, n):561

m(λ, n) = 2
π

∫ π/2

−π/2
2n(cos y)n sin((λ+ 1)y) sin(y)dy. (34)562

Now define the sequence (α(m))m≥1 as563

α(m) = (4m − 1)|B2m|22m

2m(2m)! , (35)564

where the B2m’s are the Bernoulli numbers, which can be defined through the Riemann zeta565

function at even integers:566

ζ(2m) = |B2m|(2π)2m

2(2m)! .567
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Define also, for s ≥ k ≥ 0,568

Bαs,k := Bs,k (α(2), . . . , α(s− k + 2)) , (36)569

the rational numbers obtained by evaluating the partial ordinary Bell polynomial in the570

variables α(m+ 1). Recall that by definition, see for instance [13], the partial ordinary Bell571

polynomials in the variables (xk)k≥1 are the polynomials obtained by performing the formal572

double series expansion:573

exp
(
u
∑
m≥1

xmt
m
)

=
∑

n≥k≥0
Bn,k(x1, . . . , xn−k+1)tnu

k

k! .574

Note that the polynomial Bn,k contains p(n, k) monomials, where p(n, k) stands for the575

number of partitions of n into k parts, see [13] for details and for an explicit expression of576

these polynomials. Finally, define for p ≥ k ≥ 0,577

Cαk,p = 1
k!

p∑
j=k

(−1)j

(2p− 2j + 1)!B
α
j,k. (37)578

We first give a complete asymptotic expansion for prefixes of Dyck paths.579

I Theorem 8. Let m(λ, n) be the number of non-negative paths from 0 to λ ∈ Z+ given by580

(33). The following asymptotic expansion holds as n→∞:581

m(λ, n) ∼ 2
√

2 2n√
π

1
n3/2

∑
j≥0

(−1)j

nj
hj(λ),582

where for j ≥ 0,583

hj(λ) =
j∑
p=0

p∑
k=0

(−1)k

(2(j − p) + 1)!C
α
k,pm2(k+j+1)(λ+ 1)2(j−p)+1, (38)584

where m2k = (2k)!
2kk! is the 2k-th Gaussian moment and Cαk,p is defined in (37).585

Hence, the above theorem gives, in the one-dimensional case, an asymptotic expansion of586

the number of non-negative paths in terms of polyharmonic functions. Indeed, it is easily587

seen that the polynomial hj has degree 2j + 1, so is polyharmonic of order j + 1 for the588

one-dimensional Laplacian Lf(x) = 1
2 (f(x+ 1) + f(x− 1))− f(x).589

Since the number of n-excursions for the diagonal walk is the product of two numbers of590

(decoupled) Dyck paths, one readily obtains the following corollary.591

I Corollary 9. Let q(0, (i, j);n) be the number of diagonal paths with n steps from the origin592

to (i, j) and confined in the quadrant, given by (24). Then593

q(0, (i, j);n) ∼ 8
π

1
n3 4n

∑
p≥0

(−1)p

np
vp(i, j),594

where, with hk defined in (38),595

vp(i, j) =
p∑
k=0

hk(i)hp−k(j).596
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15:18 Polyharmonic functions in cones

Clearly, the polynomial function vp has degree 2p+ 1 and thus is polyharmonic of order p+ 1597

for the Laplacian associated to the diagonal walk. The set of exponents (16) appearing in598

the asymptotic expansion is here 3 + N.599

Proof of Theorem 8. To obtain the claimed asymptotic expansion, we apply the Laplace600

method as in [17, p. 755] to the integral representation of m(λ, n) in (34). Indeed, the cosine601

function admits only one maximum in the interval [−π2 ,
π
2 ], at y = 0, and the contribution to602

the integral outside any fixed segment containing 0 is exponentially small and as such can be603

discarded for an asymptotic consideration.604

So, first, we perform the change of variable θ = y√
n
to get605

m(λ, n) = 2n 2
π

1
n1/2

∫ π
2
√
n

−π2
√
n

cos
(

y√
n

)n
sin
(

y√
n

)
sin
(

(λ+ 1) y√
n

)
dy.606

The next step is to consider an asymptotic expansion of the integrand as n→∞. Using the607

Weierstrass product formula for the cosine function,608

cos y =
∞∏
k=1

(
1− 4y2

π2(2k − 1)2

)
609

and the Taylor series of the logarithm function, one has610

log cos (y) = −
∑
m≥1

α(m)y2m,611

where the sequence (α(m))m≥1 is defined in (35). Note that an interpretation of the sequence612

(α(m))m≥1 is that they correspond to the cumulant sequence of the Bernoulli distribution613

1
2δ+1 + 1

2δ−1. Now one has, using α(1) = 1
2 and the Taylor series of the exponential function,614

cos
(

y√
n

)n
= exp

(
n log cos

(
y√
n

))
= e−y

2/2
∑
s≥0

1
ns

s∑
k=0

(−1)k

k! Bαs,k y
2(k+s),615

where Bαs,k is the partial ordinary Bell polynomial defined in (36). Now, using the Taylor616

series of the sine function, and after some elementary manipulations, one gets617

618

cos
(

y√
n

)n
sin
(

y√
n

)
sin
(

(λ+ 1) y√
n

)
619

= e−y
2/2 1

n

∑
j≥0

(−1)j

nj

j∑
p=0

p∑
k=0

(−1)k
Cαk,p

(2(j − p) + 1)!y
2(k+j)+2(λ+ 1)2(j−p)+1,620

621

where Cαk,p is defined in (37).622

The next step in the Laplace method is to neglect the tails. Hence, we write623

m(λ, n) ∼ 2
π

2n

n3/2

∑
j≥0

(−1)j

nj

j∑
p=0

p∑
k=0

(−1)kCαk,p
(2(j − p) + 1)! (λ+1)2(j−p)+1

∫ κn

−κn
e−y

2/2y2(k+j)+2dy,624

where κn is chosen so that the error bounds are exponentially small (for instance one can625

choose arbitrarily κn = n1/10). Completing the tails of the Gaussian integral, that is626 ∫ κn

−κn
e−y

2/2y2(k+j)+2dy ∼
∫
R
e−y

2/2y2(k+j)+2dy =
√

2π (2(k + j + 1))!
2k+j+1(k + j + 1)! =

√
2πm2(k+j+1),627
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where m2k = (2k)!
2kk! is the 2k-th Gaussian moment, one finally obtains, with hj defined in (38),628

that629

m(λ, n) ∼ 2
√

2 2n√
π

1
n3/2

∑
j≥0

(−1)j

nj
hj(λ). J630

C The example of tandem walks631

In this subsequent example, we consider the tandem walk with steps from {↖,→, ↓}, see632

Example 7. In this case, the functional equation approach admits a nicer form because the633

right-hand side of Eq. (30) can be decoupled, that is, can be written as G(X+(y))−G(X−(y)),634

for some function G. The computations are close to the continuous case but are quite tedious.635

First, from [20], we know that the generating function H of a harmonic function h is of the636

form637

H(x, y) = P (ω(x))− P (ω(X+(y)))
K(x, y) , (39)638

where the conformal mapping ω is given by ω(x) = x2

(1−x)3 . The unique positive harmonic639

function v0(i, j) = 1
2 (i+ 1)(j + 1)(i+ j + 2) of (27) is obtained choosing P (x) = 1

3x.640

Using the general form of H, one has641
642

yX+(y)H(X+(y), y)− yX−(y)H(X−(y), y) =643

3yX+(y)ω′(X+(y))
X+(y)−X−(y) P ′(ω(X+(y)))− 3yX−(y)ω′(X−(y))

X−(y)−X+(y) P ′(ω(X−(y))).644

645

Define now the decoupling function on GX :646

F (x) = −ω(x)2

x
= − x3

(1− x)6 . (40)647

Some computations show that648

yX+(y)ω′(X+(y))
X+(y)−X−(y) −

yX−(y)ω′(X−(y))
X−(y)−X+(y) = F (X+(y))− F (X−(y)).649

Minding the fundamental fact that ω(X+(y)) = ω(X−(y)), it follows that650

yX+(y)H(X+(y), y)− yX−(y)H(X−(y), y) = G(X+(y))−G(X−(y)),651

where G(x) = 3F (x)P ′(ω(x)). One deduces that the generating function V (x, y) for a652

bi-harmonic function v satisfying Lv = h admits the form653

1
K(x, y)

(
Q(ω(x))−Q(ω(X+(y)))+G(x)−G(X+(y))+X+(y)yH(X+(y), y)−xyH(x, y)

)
,654

where H has the general form given by Eq. (39) and G(x) = 3F (x)P ′(ω(x)) with the655

decoupling function F defined in Eq. (40). Note that this has to be compared with Theorem 4.656

Choosing P (x) = x and Q = 0 leads to the bi-harmonic function657

v(i, j) = (j+ 1)(i+ 1)(i+ j+ 2)(2i3 + 3i2j+ 14i2 + 5ij+ 24i− 3ij2− 2j3− 4j2 + 6j). (41)658

To obtain to bi-harmonic function v1 of (27), one chooses P (x) = − 8
9x and Q(x) = 8

3x
2 + 76

27x.659

This is obtained by noticing that an appropriate linear combination of the bi-harmonic660

function (41) and of v1 is harmonic and its generating function corresponds to the term661

Q(ω(x))−Q(ω(X+(y)))
K(x, y) .662

As such, computing its generating function leads to the polynomial Q.663
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