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Abstract

We find the asymptotic number of 2-orientations of quadrangulations with n inner faces, and of 3-
orientations of triangulations with n inner vertices. We also find the asymptotic number of prime
2-orientations (no separating quadrangle) and prime 3-orientations (no separating triangle). The
estimates we find are of the form c ·n−αγn, for suitable constants c, α, γ, with α = 4 for 2-orientations
and α = 5 for 3-orientations. The proofs are based on singularity analysis of D-finite generating
functions, using the Fuchsian theory of complex linear differential equations.

Mathematics Subject Classifications (2000). 05A16, 05C10, 05C78

1 Introduction

In a previous paper [5] we studied 2-orientations of quadrangulations and 3-orientations of
triangulations from an enumerative point of view, focusing on bijections with other combi-
natorial objects, particularly trees and permutations. In this paper we focus on asymptotic
counting.

A quadrangulation Q is a plane graph in which every face is a quadrangle. Since every
face is bounded by an even circuit, a quadrangulation is bipartite; we always consider quad-
rangulations with a fixed 2-coloring of the vertices. We distinguish two non-adjacent black
vertices s and t on the outer face. An orientation of the edges of Q is a 2-orientation if every
vertex, except s and t, has outdegree two. From the count of edges it follows that s and t are
sinks in every 2-orientation.

Let qn be the number of 2-orientations among all quadrangulations with n inner faces. It
is well known [7] that qn also counts bipolar orientations on rooted planar maps with n edges
(the root going from the source to the sink), which has been shown by R. Baxter [2] —using
functional equations on generating functions— to satisfy the formula

qn =
1(

n+1
1

)(
n+1

2

)
n−1∑

r=0

(
n + 1

r

)(
n + 1
r + 1

)(
n + 1
r + 2

)
.
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Figure 1: Two quadrangulations and their 2-orientations.

Using standard tools for estimating combinatorial sums we find in Theorem 1 that

qn ∼ 25

π
√

3
n−48n,

where an ∼ bn means lim an/bn = 1.
A quadrangulation is called prime if it has at least 3 inner faces and any of its 4-cycles

is the boundary of a face. Accordingly, a 2-orientation of a prime quadrangulation is called
a prime 2-orientation. The smallest prime quadrangulation is the cube, which has 5 inner
faces, and has two distinct 2-orientations. Let pn be the number of prime 2-orientations
with n inner faces; pn also counts bipolar orientations on rooted 3-connected maps with n
edges (again the root going from the source to the sink). This follows from specializing the
bijection between 2-orientations and bipolar orientations to prime quadrangulations (indeed
rooted prime quadrangulations with n faces correspond to rooted 3-connected maps with n
edges [13]).

(1, 2)
(4, 3)

(2, 4) (4, 4)

Figure 2: All prime quadrangulations with 5, 7 and 8 inner faces. A pair (a, b) below a
quadrangulation Q indicates that Q allows a non-isomorphic choices of s, t on the outer face
and it has b 2-orientations for each choice. This yields p5 = 2, p7 = 12 and p8 = 24.

The sequence (pn) starts from n = 5 as 2, 0, 12, 24, 116, 418, 1722, . . .. We show in Theo-
rem 2 that the number of prime 2-orientations is asymptotically

pn ∼ c · n−4γn,

where≈ 0.51 and γ ≈ 5.52 are constants (rounded to the digits shown) which can be computed
analytically. For the proof we find first an equation linking the generating functions P (z) =∑

pnzn and Q(z) =
∑

qnzn, which reflects the decomposition of arbitrary quadrangulations
into prime quadrangulations.
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Given the form of the qn, the series Q(z) is D-finite, that is, is the solution of a linear
differential equation with polynomial coefficients. Using techniques from differential equa-
tions, we find the singular expansion of Q(z) near its dominant singularity 1/8 and then,
using functional inversion, the singular expansion of P (z). Finally transfer theorems give the
desired estimate.

We carry over the same program for 3-orientations. Consider a plane triangulation T , that
is, a maximal plane graph, with n vertices and three special vertices a1, a2, a3 in clockwise
order around the outer face. An orientation of the inner edges of T is a 3-orientation if every
inner vertex has outdegree three. From the count of edges it follows that the special vertices
ai are sinks in every 3-orientation.

a1

a3 a2

a2

a1

a3 a3

a1

a2

Figure 3: Three triangulations and their 3-orientations.

The number tn of 3-orientations among all triangulations with n inner vertices was shown
in [4] (see [3, 5] for alternative proofs) to be equal to cn+2cn − c2

n+1, where cn = 1
n+1

(
2n
n

)
is a

Catalan number. From this it follows easily, as shown in Theorem 3, that

tn ∼ 24
π

n−516n.

A 3-orientation is called prime if the underlying triangulation is 4-connected, that is, it
has no separating triangle. Let sn be the number of prime 3-orientations. The sequence
(sn) starts from n = 1 as 1, 0, 2, 9, 57, . . .. We show in Theorem 4 that the number of prime
3-orientations is asymptotically

sn ∼ c · n−5γn,

where in this case c ≈ 2.60 and γ ≈ 13.71. The proof is again based on a functional equa-
tion between T (z) =

∑
tnzn and S(z) =

∑
snzm, and on singular expansions and transfer

theorems for D-finite functions.
The following table summarizes the results in this paper.

Class of orientations Growth constant Subexponential order
2-orientations 8 n−4

prime 2-orientations 5.519568931499. . . n−4

3-orientations 16 n−5

prime 3-orientations 13.712839314390. . . n−5
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It is worth noticing that the subexponential order for the enumeration of structured maps
(rooted maps endowed with a specific combinatorial structure, such as an orientation or
a spanning tree) is not universal, being n−4 for 2-orientations and n−5 for 3-orientations
(another example is the subexponential term n−3 for the enumeration of rooted maps endowed
with a spanning tree [12]). This is in contrast to the asymptotic enumeration of rooted maps,
where the subexponential order n−5/2 occurs systematically (see, for instance, [1]).

2 Preliminaries

To obtain asymptotic estimates we take advantage of the framework of Analytic Combina-
torics, as developed in the book by Flajolet and Sedgewick [6]. Singularity analysis makes it
possible to estimate the coefficients fn from the behavior of the generating function

f(z) =
∑
n

fnzn

at its dominant singularity. We recall that a dominant singularity is one of smallest modulus.
By Pringsheim’s theorem, the radius of convergence ρ > 0 is always a dominant singularity [6].

More precisely, assume that f(z) is analytically continuable to a so-called ∆-domain for
ρ, of the form

Ω = {|z| < ρ(1 + δ), Arg(z − ρ) ∈ [φ, 2π − φ]},
for some δ > 0 and 0 < φ < π/2. Then the following transfer rules hold, where Γ(x) is Euler’s
gamma function.

Transfer rules. For α /∈ Z≥0 and r ∈ Z≥0 we have

f(z) ∼
z→ρ

(1− z/ρ)α ⇒ fn ∼
n→∞

1
Γ(−α)

n−α−1ρ−n, (1)

f(z) ∼
z→ρ

(z/ρ− 1)r log(z/ρ− 1) ⇒ fn ∼
n→∞ r!n−r−1ρ−n. (2)

Thus if we can show that f(z) in a ∆-domain at its dominant singularity behaves like the
left-hand side of one of the transfer rules, then we get a precise estimate for its coefficients.

The transfer rules also apply when there are finitely many singularities ζ1, . . . , ζ` on the
boundary of the disk of convergence, provided analytic continuation holds in a ∆-domain of
the form ζi · Ω around each singularity. The contribution of each singularity is given by the
transfer rules (with ρ replaced by ζi) and the asymptotics for fn is obtained by adding up the
contributions of all singularities. As we are going to see, one of the problems we have to face
is to rule out the possibility of other singularities besides the obvious one.

We also need some elements of the theory of linear differential equations in the complex
plane. Our basic reference in this topic is the classical book by Ince [10] (see [9] for a more
modern treatment). Let

p0(z)
dnf(z)

zn
+ p1(z)

dn−1f(z)
zn−1

+ · · ·+ pn−1(z)
df(z)
dz

+ pn(z)f(z) = 0, (3)

be a homogeneous linear differential equation whose coefficients pi(z) are polynomials in z.
Then the only finite singularities of a solution f(z) which can occur are the zeroes of the
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leading coefficient p0(z); notice in particular that there are no movable singularities, that is,
singularities which depend on the initial conditions. Let S be the set of zeroes of p0(z). Then
the analytic solutions of (3) in the neighbourhood of any point of C\S form a vector space
of dimension n over C. This implies that any solution of (3) is analytically continuable along
any path avoiding S.

The analytic theory of linear differential equations further extends to deal with singulari-
ties. However in this case one has to add further restrictions. If one wishes that the solution
through a singular point is well behaved, one has to impose the condition of the singular point
being regular. A necessary and sufficient condition for regularity is the following. Rewrite (3)
as

dnf(z)
zn

+ P1(z)
dn−1f(z)

zn−1
+ · · ·+ Pn−1(z)

df(z)
dz

+ Pn(z)f(z) = 0, (4)

where the Pi are now rational functions. A singular point z0 is regular if

Pi = O((z − z0)−i), for i = 1, . . . , n.

That is, Pi has a pole at z0 of order at most i. The terminology does not mean that the
solution is analytic, but refers to the fact that the possible divergence at the singularity is at
most polynomial.

If z0 is a regular singularity, then it can be shown that there exists a basis of solutions
B1(z), . . . , Bn(z) that are linear combinations of elements of the the form

Zµ(log Z)ks(Z),

where Z = z − z0 and s(Z) is analytic at zero, and the µ are complex numbers. Hence the
solutions are analytic in a slit domain {|Z| < δ}\{Z ≥ 0}. Moreover, the Bi(z) have singular
expansions at z0 that are explicitly computable [10, Chap.16].

We summarize the previous discussion as follows.

Lemma 1 A sufficient condition for a singular point z0 of Equation (3) to be regular is that
Pi = O((z − z0)−i), for i = 1, . . . , n. In this case there exists a basis of solutions that are
linear combinations of elements of the form Zµ(log Z)ks(Z), where Z = z − z0 and s(Z) is
analytic at zero.

3 Counting two-orientations

Let qn be the number of 2-orientations on quadrangulations with n inner faces, which satis-
fies [2]

qn =
1(

n+1
1

)(
n+1

2

)
n−1∑

r=0

(
n + 1

r

)(
n + 1
r + 1

)(
n + 1
r + 2

)
.

This expression is a sum involving binomial coefficients, and there are well established
techniques for estimating this kind of sums [14].

Theorem 1 (asymptotic number of 2-orientations) The number qn of 2-orientations
on quadrangulations with n inner faces satisfies asymptotically

qn ∼ 25

π
√

3
n−48n. (5)
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Proof. Let b(n, r) :=
(
n
r

)(
n

r+1

)(
n

r+2

)
. The asymptotic study of a sum such as

∑
r b(n, r) is

classically done in four steps.

1. Locate the index rmax of the largest summand b(n, r); in our case rmax = bn/2c up to
shifting by one or two.

2. Compute the asymptotics of b(n, r) around rmax. Using Stirling’s formula we find

b(n, rmax + r) = (2/π)3/28nn−3/2 exp(−6r2/n)(1 + O(1/n)) uniformly for r ≤ n2/3.

3. Select a window to focus on, and prove that the summand is negligible outside the
window. We find

b(n, rmax + r) = O(8n exp(−6n1/3)) uniformly for |r| ≥ n2/3,

so that the sum outside the window |r− rmax| ≤ n2/3 is negligible in front of b(n, rmax).

4. Show that the sum in the window converges to an integral. We find

n2/3∑

r=−n2/3

b(n, rmax + r) ∼ (2/π)3/28nn−3/2
n2/3∑

r=−n2/3

exp(−6r2/n)

∼ (2/π)3/28nn−3/2

(√
n

∫

R
exp(−6x2)dx

)
.

Since the integral equals
√

π/6, we finally obtain
∑

r b(n, r) ∼ 2/(π
√

3)8nn−1. This
yields the estimate of qn as claimed, since qn ∼ 2n−3

∑
r b(n + 1, r).

Recall that a 2-orientation is called prime if the underlying quadrangulation has at least
3 inner faces and has no separating quadrangle. Our aim is to find an asymptotic estimate
for pn.

The asymptotic number of prime 2-orientations is obtained by singularity analysis of the
corresponding generating function. Here is an outline of the strategy we follow:

1. Find an equation relating the generating function Q(z) =
∑

n qnzn for 2-orientations
and the generating function P (w) =

∑
n pnwn for prime 2-orientations, counted with

respect to the number of inner faces (Lemma 2).

2. Find the singular expansion of Q(z) at the dominant singularity 1/8 (Lemma 3), using
both the property that Q(z) is D-finite (solution of a linear differential equation with
polynomial coefficients) and the asymptotic estimate of qn = [zn]Q(z), obtained in
Theorem 1.

3. From the singular expansion of Q(z) and the equation relating Q(z) and P (w), de-
termine the dominant singularity ρ of P (w), and the singular expansion of P (w) at ρ
(Lemma 4). And show that ρ is the unique singularity of P (w) on the disk {w; |w| = ρ}
(Lemma 5).

4. Using the transfer rules, translate the singular expansion of P (w) to an asymptotic
estimate of the coefficients pn (Theorem 2).
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All calculations have been done with the help of the computer algebra system Maple [11].
The package DEtools has been particularly helpful to deal with the singularity analysis of
D-finite series.

Lemma 2 Let Q(z) =
∑

n qnzn and P (w) =
∑

n pnwn be the series counting respectively
2-orientations and prime 2-orientations with respect to the number of inner faces. Then

Q(z) = z +
2Q(z)2

1 + Q(z)
+ P (Q(z)). (6)

Proof. We rely on a well-known decomposition of a quadrangulation into prime compo-
nents [13], reformulated here for 2-orientations. First, define a diagonal of a quadrangulation
Q as a path of two inner edges connecting two opposite outer vertices of Q. A quadrangula-
tion is said to be black-diagonal if it has a diagonal connecting the two outer black vertices.
Let D(z) =

∑
n dnzn be the series counting black-diagonal 2-orientations with respect to the

number of inner faces. To construct a black-diagonal 2-orientation in a unambiguous way,
take a quadrangle Q and draw k ≥ 1 diagonals connecting the pair of black vertices of Q.
Then insert k + 1 non black-diagonal 2-orientations in the slots created by the k diagonals.
This construction yields

D(z) =
∑

k≥1

(Q(z)−D(z))k+1 =
(Q(z)−D(z))2

1− (Q(z)−D(z))
,

so that D(z) = Q(z)2/(1 + Q(z)). Next, define a non-diagonal quadrangulation as a quad-
rangulation having no diagonal, and define a non-diagonal 2-orientation as a 2-orientation of
a non-diagonal quadrangulation. A non-diagonal 2-orientation with at least two inner faces
is obtained from a prime 2-orientation by substituting every inner quadrangle (necessarily a
face) by an arbitrary 2-orientation: this gives the term P (Q(z)), since substitution of combi-
natorial objects corresponds to substitution in generating functions (we are using throughout
the symbolic approach for working with generating functions, as in [6]). The expression (6)
for Q(z) is simply obtained by summing the possible cases: the first term stands for the
2-orientation with no inner vertex, the second term for diagonal 2-orientations, and the third
term for non-diagonal 2-orientations with at least two inner faces.

Lemma 3 (singular behavior of Q(z)) The series Q(z) is analytically continuable to the
whole complex plane slit by the half-lines z ≥ 1/8 and z ≤ −1, and has the following singular
expansion as z tends to 1/8,

Q(z) = Z3 log(Z)α(Z) + β(Z) with Z = z − 1/8, (7)

where α(Z) and β(Z) are analytic at 0 and their expansions start as

α(Z) = 213/(33/2π) + O(Z), β(Z) = Q(1/8) + Q′(1/8)Z + O(Z2).

Proof. First, it is easy to show that qn is P -recursive, that is, satisfies a linear recurrence
with polynomial coefficients. Indeed qn is obtained from binomial coefficients using operators
(sum, termwise product, . . . ) that are well-known to keep the property of P -recursiveness,
see [6, App. B.4]. It turns out that the qn satisfy a second-order linear recurrence:
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(n + 3) (n + 2) qn −
(
7n2 + 7 n− 2

)
qn−1 − 8 (n− 1) (n− 2) qn−2 = 0.

Multiplying by zn and summing over n, the previous equation translates to the following
differential equation satisfied by Q(z) =

∑
n qnzn:

(−8 z4 − 7 z3 + z2
) d2

dz2
f (z) +

(−16 z3 − 28 z2 + 6 z
) d

dz
f (z) + (−12 z + 6) f (z)− 12 z = 0.

Remark. The recurrence was computed using the function sumrecursion from the Maple
package sumtools; it is also listed in entry A00181 from the On-Line Encyclopedia of Integer
Sequences. The differential equation is obtained using the function rectodiffeq from the
Maple package gfun.

As mentioned in Section 2, we need a homogenous equation normalized in d3f/dz3. This
is achieved upon replacing the left-hand side L(z) of the previous equation by zL′(z)−L(z),
and normalizing. The result is

d3

dz3
f (z) +

40 z2 + 42 z − 7
z(z + 1)(8z − 1)

d2

dz2
f (z) +

32z2 + 40z − 6
z2(z + 1)(8z − 1)

d

dz
f (z) +

6
z3(z + 1)(8z − 1)

f (z) = 0. (8)

The singularities of the coefficients (poles) are in S := {0,−1, 1/8}. As discussed earlier
the analytic solutions of (8) in the neighbourhood of any point of C\S form a vector space
of dimension 3 over C. This implies that any solution of (8) is analytically continuable along
any path avoiding S. In particular, the solution Q(z) =

∑
n qnzn, which is clearly analytic at

0, is continuable to the whole complex plane slit by the half-lines z ≥ 1/8 and z ≤ −1. This
is a ∆-domain for the dominant singularity 1/8, hence transfer theorems will apply.

For i ∈ {1, 2, 3}, the coefficient for the derivative of order 3− i in (8) is O((8z− 1)−i) , so
that 1/8 is a regular singularity. Hence there exists a basis of solutions B1(z), B2(z), B3(z)
of (8) that are analytic in a slit domain {|Z| < δ}\{Z ≥ 0}, where we set Z = z − 1/8.
Moreover, singular expansions at 1/8 of the basis functions are explicitly computable.

All calculations done, we find that two of the basis solutions are analytic and the third one
has a (convergent) singular expansion of the form f(Z)Z3 log(Z) + g(Z) for some functions
f(Z) and g(Z) analytic at 0. Therefore, as a linear combination of the basis solutions, Q(z)
has also a singular expansion of the form

Q(z) = log(Z)
∑

k≥3

akZ
k +

∑

k≥0

bkZ
k, with Z = z − 1/8,

holding in a slit neighborhood of 1/8. Notice that b0 = Q(1/8) and b1 = Q′(1/8).

Remark. The basis solutions are computed using the function formal sol from the Maple
package DEtools. At first sight it appears that only one of the solutions is analytic, but the
two solutions containing logarithmic terms can be combined into a second analytic solution.

Let us look at the singular part. Clearly Q(z) is singular at 1/8, otherwise the growth
rate of qn would be larger than 8, and Theorem 1 shows that it is equal to 8. Hence there
exists a smallest integer k ≥ 3 such that ak 6= 0. According to the transfer rule (2),

qn ∼
n→∞ akk!8−kn−k−18n.
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Comparing with the asymptotics of qn obtained in Theorem 1, we obtain k = 3 and a3 =
213/(33/2π). This concludes the proof.

Lemma 4 (singular expansion of P (w)) The generating function P (w) =
∑

n pnwn count-
ing prime 2-orientations has radius of convergence ρ = Q(1/8) ≈ 0.18, and the leading sin-
gular term of P (w) at ρ is

C(w − ρ)3 log(w − ρ), where C = 213/(Q′(1/8)433/2π),

holding in a “∆-neighborhood” for ρ, of the form

{|w − ρ| < δ′, Arg(w − ρ) ∈ [φ, 2π − φ]},

with δ′ > 0 and φ < π/2.

Proof. Let F (w) be the inverse function of Q(z). Setting w = Q(z) in Equation (6), we get

P (w) = w − 2w2/(1 + w)− F (w).

Since Q(1/8) < 1 and the only singularity of 2w2/(1 + w) is at w = −1, the radius of
convergence ρ of P (w) is the same as that of F (w). Since the series Q(z) has positive
coefficients, it defines an increasing function. It follows that the radius of convergence of the
inverse F (w) is ρ = Q(1/8) < +∞.

The singular expansion of F (w) at ρ is obtained iteratively from the one of its inverse Q(z)
at 1/8, given by Equation (7), using first w−ρ ∼ Q′(1/8) ·(z−1/8) and then repeatedly boot-
strapping. The leading singular term λ(z − 1/8)3 log(z − 1/8) of Q(z), with λ = 213/(33/2π),
yields a term

−λ/Q′(1/8)4(w − ρ)3 log(w − ρ)

in the expansion of P (w), which is the leading singular term.
Moreover, the singular expansion of P (w) at ρ holds in a neighborhood Ω of ρ, where

Ω is the image of a slit neighborhood {|z − 1/8| < δ}\{z ≥ 1/8}, with δ > 0. Since ρ′(w)
converges to a positive constant at w = ρ, it is locally conformal at ρ. Hence Ω contains a
“∆-neighborhood” for ρ, of the form

{|w − ρ| < δ′, Arg(w − ρ) ∈ [φ, 2π − φ]},

with δ′ > 0 and φ < π/2. Finally, since ρ is the smallest positive singularity of P (w),
Pringsheim’s theorem ensures that ρ is the radius of convergence of P (w).

Lemma 5 (uniqueness of dominant singularity of P (w)) The series P (w) has no sin-
gularity other from ρ on the closed disk {w; |w| ≤ ρ}, that is, P (w) is analytically continuable
around any w 6= ρ with |w| ≤ ρ.

Proof. First, since ρ is the radius of convergence of P (w), P (w) is analytic on the open
disk {w; |w| < ρ}. Recall that Q(z) and Q′(z) converge at 1/8, since the coefficients of
Q(z) are asymptotically equivalent to cn−48n. In addition, as we have seen Q(1/8) is equal
to ρ. Since F (Q(z)) = z, we have F ′(Q(z))Q′(z) = 1, so F ′(ρ) = 1/Q′(ρ) and P ′(ρ) =
1−4ρ/(1+ρ)+2ρ2/(1+ρ)2−F ′(ρ). In other words P ′(ρ) is finite, which ensures that P ′(w)
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(and similarly P (w)) is absolutely convergent on the closed disk {w; |w| ≤ ρ}. We claim that,
for w0 ∈ C(0, ρ)\{ρ}, Q is analytic at z0 := F (w0), i.e., z0 is not in S := {−1, 1/8}. The case
z0 = −1 is excluded easily. Indeed

|F (w)| = |w(1− w)/(1 + w)− P (w)| ≤ |w(1− w)/(1 + w)|+ |P (w)|,
hence for |w| = ρ (and using the fact that P (w) has nonnegative coefficients),

|F (w)| ≤ ρ
1 + ρ

1− ρ
+ P (ρ) ≈ 0.1873 + 0.0006 < 1,

computing P (ρ) as ρ(1− ρ)/(1 + ρ)− F (ρ) = ρ(1− ρ)/(1 + ρ)− 1/8.
Excluding z0 = 1/8 requires a bit more care. Notice that the function

|w − 2w2/(1 + w)| = |w||(1− w)/(1 + w)|
has its unique minimum on C(0, ρ) at ρ, and |P (w)| has its unique maximum on C(0, ρ) at ρ.
Therefore, for w ∈ C(0, ρ)\{ρ},

|z| = |F (w)| = |w(1− w)/(1 + w)− P (w)| ≥ |w(1− w)/(1 + w)| − |P (w)|
>

ρ(1− ρ)
1 + ρ

− P (ρ) = F (ρ) = 1/8,

that is, |z| > 1/8. Hence Q(z) is analytic at z0.
Now, take a path Pw0 from 0 to w0 that avoids the preimages (for Q(z)) of the singularities

{−1, 1/8}; and let Qz0 be the image of Pw0 by P (w). Since Qz0 avoids its singularities, Q(z)
is analytically continuable along Qz0 . In addition, all along Pw0 , there holds the equation
Q(P (w)) = w. Hence P (w) is the local inverse of Q(z) all along the path Pw0 . In particular
Q(z) is the local inverse of P (w) at the end of the path, i.e., at the point w0. Since Q(z) is
analytic at z0 = P (w0), we conclude that P (w) is analytic around w0.

From the singular expansion of P (w), the transfer rule (2) yields directly the following
asymptotic estimate for the number of prime 2-orientations.

Theorem 2 (asymptotic number of prime 2-orientations) Let pn be the number of prime
2-orientations with n inner quadrangles. Then

pn ∼ c · n−4γn, (9)

where c = Q(1/8)3214/(Q′(1/8)4
√

3π) ≈ 0.5097001 and γ = Q(1/8)−1 ≈ 5.5195689.

4 Counting three-orientations

We now focus on the enumeration of 3-orientations (equivalently, of Schnyder woods) on
triangulations. Recall that the number of 3-orientations with n inner vertices is cn+2cn−c2

n+1,
where cn = 1

n+1

(
2n
n

)
is a Catalan number.

Theorem 3 (asymtotic number of 3-orientations) Let tn denote the number of 3-orien-
tations with a fixed outer triangle and n inner vertices. Then

tn ∼ 24
π

n−516n. (10)
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Proof. From the formula above we get tn = 6(2n)!(2n + 2)!/(n!(n + 1)!(n + 2)!(n + 3)!).
Applying Stirling’s estimate, the estimate for tn follows easily.

Our study continues with the asymptotic enumeration of so-called prime 3-orientations,
which play a similar role for 3-orientations as prime 2-orientations for 2-orientations. Precisely,
a prime triangulation is defined as a triangulation with at least one inner vertex and where
each 3-cycle delimits a face (these are called simple by Tutte [15] and correspond exactly to the
triangulations that are 4-connected); and a prime 3-orientation is a 3-orientation on a prime
triangulation. The first prime triangulation is the tetrahedron, with has 4 vertices. As in
Section 3, we aim at finding an asymptotic estimate for the number sn of prime 3-orientations
with n inner vertices. (The coefficients sn start from n = 1 as 1, 0, 2, 9, 57, 400, 3066.)

Our study follows the same lines as for prime 2-orientations, except that we have to
deal with two dominant singularities (instead of a unique one for prime 2-orientations) when
analyzing the generating functions counting 3-orientations and prime 3-orientations.

Lemma 6 Let T (z) =
∑

n tnz2n+1 and S(w) =
∑

snw2n+1 be the series counting respectively
3-orientations and prime 3-orientations with respect to the number of inner faces (due to Euler
relation, the number of inner faces is of the form 2n+1, with n the number of inner vertices).
Then

T (z) = z + S(T (z)). (11)

Proof. A 3-orientation with at least one inner vertex is obtained from a prime 3-orientation
by substituting every inner face by an arbitrary 3-orientation: this gives the term P (T (z)),
while the term z takes account of the empty triangle. This is a classical approach introduced
by Tutte [15].

Lemma 7 (singular behavior of T (z)) The generating function T (z) has two dominant
singularities: 1/4 and −1/4. In addition, T (z) is analytically continuable to the whole complex
plane slit by the two half-lines z ≥ 1/4 and z ≤ −1/4; and the following singular expansions
hold at ±1/4:

T (z) = ±(Z4 log(Z)S1(Z) + S2(Z)), with Z = ±z − 1/4, (12)

where S1(Z) and S2(Z) are analytic at 0 and their expansions start as

S1(Z) =
1

26π
+ O(Z), S2(Z) = T (1/4) + T ′(1/4)Z + O(Z2).

Proof. We set t(y) :=
∑

n tnyn, so that T (z) = zt(z2). Hence singularities and singular
expansions of T (z) are directly obtained from those of t(y). the study of t(y) is completely
similar to the one of the generating function Q(z) counting 2-orientations. First we observe
that tn/tn−1 = 4(4n2−1)/((n+3)(n+2)), so that tn is P-recursive (of order 1). The recurrence
turns to a linear differential equation satisfied by t(y), which reduces to the homogenous
equation

d3

dy3
f (y) + 8

(12 y − 1)
y (16 y − 1)

d2

dy2
f (y) + 12

(−1 + 9 y)
y2 (16 y − 1)

d

dy
f (y) +

12
y2 (16 y − 1)

f (y) = 0. (13)

The only poles are 0 and 1/16. As a solution of (13), t(y), which is clearly analytic at 0,
is analytically continuable along any path avoiding 1/16, in particular t(y) is continuable to

11



the complex plane slit by z ≥ 1/16. The singularity analysis of t(y) is done in a completely
similar way as for Q(z) (Lemma 3). We find that two of the basis solutions of (13) are analytic
at 1/16 and the third one admits a singular expansion of the form α(Z)Z4 log(Z) + β(Z) for
some analytic functions α(Z) and β(Z). Therefore, t(z) has also a singular expansion of the
form

t(y) = log(Y )
∑

k≥4

akY
k +

∑

k≥0

bkY
k, with Y = y − 1/16,

Clearly b0 = t(1/16) and b1 = t′(1/16). According to the transfer rules 2, compared with the
asymptotic of tn obtained in Theorem 1, we obtain a4 = 1/π. The singularities and singular
expansions of T (z) immediately follow, as T (z) = zt(z2).

Lemma 8 (singular behavior of S(w)) The generating function S(w) =
∑

n snw2n+1 has
two dominant singularities at ±ρ, with ρ = T (1/4), and is analytically continuable to a
domain of the form {|z| < ρ(1 + δ), Arg(z− 1/4) ∈ [φ, 2π− φ], Arg(−z− 1/4) ∈ [φ, 2π− φ]}
(∆-domain with two singularities), for some δ > 0 and φ ∈ (0, π/2). The leading singular
terms of S(w) at ±ρ is

±C ·W 4 log(W ), with W = ±w−ρ and C = 1/(26πT ′(1/4)5).

Proof. According to Equation (11), the functional inverse U(w) of T (z) satisfies U(w) =
w − S(w). Hence the radius of convergence ρ of S(w) is the same as that of U(w). Since
U(w) is the inverse of an increasing function T (z), it follows that ρ = T (1/4). The singular
expansion of U(w) at ρ is easily obtained from that of T (z) at 1/4: the leading singular term
λ(z−1/4)4 log(z−1/4) of T (z), with λ = 1/(26π), yields a term−λT ′(1/4)−5(w−ρ)4 log(w−ρ)
in the singular expansion of U(w), which is the leading singular term. As argumented in the
proof of Lemma 4, the singular expansion of U(w) at ρ holds in a “∆-neighborhood” of ρ. As
U(w) = −U(−w), the singular expansion of U at −ρ is the opposite of the one at ρ, and holds
in a ∆-neighborhood of −ρ. It remains to show that S(w) is analytic on C(0, ρ)\{±ρ}. We
proceed similarly as in Lemma 5. First we check that, for w0 ∈ C(0, ρ)\{±ρ}, the function
T (z) is analytic at z0 := U(w0), i.e., z0 6= ±1/4; this follows from |z0| = |w0 − S(w0)| ≥
|w0| − |S(w0)| > ρ − S(ρ) = 1/4, so z0 6= ±1/4. Finally, by the same arguments as in
Lemma 5, we prove that T (z) is the local inverse of S(w) around w0.

From the transfer rule (2) applied to S(w) (there are two dominant singularities ±ρ,
whose contributions are added up), we obtain the following asymptotic estimate for sn =
[w2n+1]S(w).

Theorem 4 (asymptotic number of prime 3-orientations) Let sn be the number of prime
3-orientations with n inner vertices. Then

sn ∼ c · n−5γn, (14)

where c = 3 · 29 · T (1/4)3/(T ′(1/4)5π) ≈ 2.5976882 and γ = T (1/4)−2 ≈ 13.7128393.
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