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Overview

« Structures we study:

A N )

paths trees maps

» Distance-parameters
- typical (depth, distance between 2 vertices)

- extremal (height, radius, diameter)



Part 1: distances in plane
trees



Plane trees

* Plane tree = tree embedded in the plane

D

 Rooted Plane tree = plane tree + marked corner

N

* Rooted plane tree <-> Dyck path

A A

IR AN




Profile of a plane tree
4

* Qverview:
- show (using cyclic lemma) that h = 2 - Typical Level
- show limit profile (Rayleigh law)



Cyclic lemma to count Dyck paths
* Def: quasi-bridge = walk ending at {y = -1}
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Cyclic lemma to count Dyck paths
* Def: quasi-bridge = walk ending at {y = -1}
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Quasi-bridge (by re-rooting)




Vertical span of a path

Def: vertical span := MaxOrdinate - MinOrdinate
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Vertical span and cyclic lemma




Vertical span and cyclic lemma

o) = vs(Q) if marked point before MaxOrdinate
vs(D) = vs(Q) + 1 if marked point after MaxOrdinate



Vertical span and cyclic lemma
D Q

— vs(D) =vs(Q) + (0 or 1)



Vertical span and cyclic lemma
Q

— vs(D) =vs(Q) + (0 or 1)

Also, vs(D) =h + 1



Vertical span and cyclic lemma

UYAN

— vs(D) =vs(Q) + (0 or 1)

Also, vs(D) = h + 1 vs(Q) = h (Q) + hy(Q) +1



Vertical span and cyclic lemma

hfl

— vs(D) = vs(Q) + (0 or 1)

Also, vs(D) = h + 1 vs(Q) = h (Q) + hy(Q) +1

Hence |h(D) = h(Q) + hy(Q) + (0 or -1)




Combinatorial interpretation of h/(Q)
Q < D + marked point < T + marked corner

W 1AM \b

h,(Q) = distance L between the 2 marked corners



Combinatorial interpretation of h/(Q)
Q < D + marked point < T + marked corner

W 1

h,(Q) = distance L between the 2 marked corners

PATHS:  h(D) = h)(Q) + hi(Q) + (0 or -1)

Y

TREES: h(T) = I: + L;+ (0 or-1)

A

extremal typical same distribution as L



Distribution of L (Meir & Moon'78)

* Use generating functions (cf this morning)

« Two marked corners at distance k
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2T(z) 2k +2)nl(n +1)!

Pr(L = k) @n+DVﬂT@)_0%+h+m( — k)!

(using the Lagrange inversion formula)



Distribution of L (Meir & Moon'78)

k) (2k +2)n!(n +1)!

(1) P (L =

(2n+1)[ ]T(z):(n+k+2)( — k)!



Distribution of L (Meir & Moon'78)

k) (2k + 2)nl(n 4+ 1)!

(1) P (L =

(2n+1)[ ]T(z):(n+k+2)( — k)!

Vo >0, P,(L=axvn) ~ —=2xexp(—a?)



Distribution of L (Meir & Moon'78)
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(2k +2)n!(n +1)!

) P (L = (2n+1)[ ]T(z) T+ k+2)(n— k)
M 1
Ve >0, P,(L=2zvn) ~ —an exp(—2?)
U

L/v/n — dx-2zexp(—2*) Rayleigh law
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Distribution of L (Meir & Moon'78)
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2T (2 (2B +2)nl(n+1)!

O P (L=Fk) =7, + 1)[2"]T(z) B (n +k+2)!(n— k)!
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Vo >0, P,(L=2xyn) ~ —2xexp(—2?)

\U/ n— 00 T

L/vn — da-2zexp(—z?) Rayleigh law

Rq: (i) implies uniform tail P, (L/\/n > z) < ae " Vn,x

jMoments of L / n2 converge to moments of Rayleigh law



The Rayleigh law / stable laws

cf [Banderier, Flajolet, Schaeffer, Soria'01]

Case A\ =1/2
ifr P,(X, =k) o [2"]T(u)"
with T(u) — 1 — C(l — u)l/Q 4+

Xn
then 73

> Rayleigh law
k
Rk: T(u)" = PGF(Z Z) with Tail(Z;) ~ k=3/2

k

1

EZ Z; — Stable law parameter 1/2
i=1



The Rayleigh law / stable laws

cf [Banderier, Flajolet, Schaeffer, Soria'01]

General )\ € (0,1)
if P (Xn =Fk)oc [2"]T(u )

with T'(u) =1 —¢(1 — )

then “‘n - G (u) du

A
n A/\\/ related to Stable,
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kl/AZ Z; — Stable law parameter \
1=1



The Rayleigh law / stable laws

cf [Banderier, Flajolet, Schaeffer, Soria'01]

General )\ € (0,1)
if P (Xn =Fk)oc [2"]T(u )

with T'(u) =1 —¢(1 — )

then “‘n - G (u) du

A
n k/\k/ related to Stable,
Rk: T(u)* = PGF(Z Z:), with Tail(Z;) ~ k™!

kl/AZ Z; — Stable law parameter \
1=1

Here A = 1/2 (for maps \ = 1/4)



Expectation/tail for the height

h=L+L +(0or-1)




Expectation/tail for the height

h=L+L +(0or-1)

Expectation: E,,(h) = 2E, (L) + €, with e € [—1,0]

— E, (h) ~ \/Ty/1 | [De Bruijn, Knuth, Rice'72]




Expectation/tail for the height

h=L+L +(0or-1)

Expectation: E,,(h) = 2E, (L) + €, with e € [—1,0]

E(Rayleigh)

= |, (h) ~ \/T\/n | [De Bruijn, Knuth, Rice'72]

Exponential tail: P, (h > k) < 2P, (L > k/2)

—

P,(L/y/n>z) <ae " Vn,x

P,.(h/vn>2z) <2ae "




Limit distribution for the height

Two possible approaches:
« Singularity analysis [Flajolet, Odlyzko’82], [Flajolet et al.’93]

System Yn(z) =1/(1 —yn—1(z)) [height < h]
Singular expansion of y;, — y;,_1 for h = |xz\/n|

heirght , .22
:PIP’( _)—>E (2k%2? — 1)e F'"
- Continuous Iim|t [Aldous] keZ
N
\ ! \’\ ;MM\(.
W \ M M Nm
— (" rfw w "
" 'M' iy,

W‘ | - Image credit
| h i J-F. Marckert

If functional F': C[0,1] — R is continuous for ||.||~, then

F(D, /V/n) — F(brownian excursion)



Part 2: distances in planar
quadrangulations



Planar maps

« Planar map = planar graph embedded on the sphere

Planar map Embedded in the plane

* Quadrangulation = planar map with faces of degree 4
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Profile of a pointed quadrangulation

Profile for vertices: (4,4,4,2) Profile for edges: (4,8,8,0)



Well-labelled trees

A well-labelled tree is a plane tree where:

- each vertex v has a
non-negative label

- the labels at each edge (v,V’)
differ by at most 1

- at least one vertex has label 1
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A well-labelled tree is a plane tree where:

- each vertex v has a
non-negative label

- the labels at each edge (v,V’)
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e Rooted well-labelled tree = well-labelled tree + marked corner
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Well-labelled trees

A well-labelled tree is a plane tree where:

- each vertex v has a
non-negative label

- the labels at each edge (v,V’)
differ by at most 1

- at least one vertex has label 1

e Rooted well-labelled tree = well-labelled tree + marked corner
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(2n)!
nl(n+1)!

(there are 3~ such trees with n edges)



Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]




Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

1) Place a red leg in each corner



Well-labelled tree -> pointed quadrangulation
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1) Place a red leg in each corner



Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’d1]

2) Repeat: - choose a leg of label i>1
- “throw” it to next corner of label i-1
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Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

3) Create a new vertex labelled 0 in the outer face



Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

3) Create a new vertex labelled 0 in the outer face



Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

4) Connect all remaining legs (label 1) to the new vertex



Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

/I
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4) Connect all remaining legs (label 1) to the new vertex

O




Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

"Q

5) Delete the black edges




Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

5) Delete the black edges



Well-labelled tree -> pointed quadrangulation
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Well-labelled tree -> pointed quadrangulation
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Well-labelled tree -> pointed quadrangulation
[Schaeffer’'98], also [Cori&Vauquelin’81]

- faces are of degree 4

- labels = distances from
pointed vertex



The mapping is a bijection

Theorem [Schaeffer’'98]. The mapping is a bijection
from well-labelled trees to pointed quadrangulations

vertex label | & > vertex at distance i
corner label i & > edge at level i
edge & > face




The mapping is a bijection

Theorem [Schaeffer’'98]. The mapping is a bijection
from well-labelled trees to pointed quadrangulations

vertex label i & > vertex at distance i
corner label i & > edge at level |
edge & > face
(2n)!

Corollary: there are 3" ] guadrangulations with n faces,
72.{1N .
a marked vertex, and a marked edge



Relative levels

T+ 2marked corners cq,co < (Q,v) + 2marked edges e, e5

l(ca) —l(c1) = level(ez) — level(e)




Relative levels are in the scale n'4

L is of order n'/?
= l(cy) — l(cy) is of order VL, i.e., nt/4




Relative levels are in the scale n'/4

is of order nl/?
— [ C’2 — f(ﬁ) is of order \/f, i.e., 7'),1/4

Precisely

- dt g(t)

771/4 n—oo

+ 00
2\/7/ —3t’~’/4a~f — 2

where ¢(t




Relation typical level / radius




Relation typical level / radius

h +1 = Level(randomedge) L :=h,+1/2=Level-1/2



Relation typical level / radius

h +1 = Level(randomedge) L :=h,+1/2=Level-1/2

r=L+ L’
A A AN

/]

extremal typical same distribution as L




lHlustration

* For pointed quadrangulations with 2 faces

— —_— — _—

(1/2, 3/2, 3/2) (1/2,1/2, 3/12)  (1/2,1/2, 1/2) distance L
2 2 1 radius r

E(r) = (2+2+1)/3 = 5/3
E(L) = (7/2 + 5/2 + 3/2)/9 = 5/6

E(r)=2 E(L) in each fixed size




Conseqguence on the profile

typical level-
difference n1/4

A

\4

. typical
level

radius



Consequence on the profile

typical level-
difference n1/4

Typical level (& radius) also of order n"4:

\4

. typical
level

radius

- Chassaing-Schaeffer'04: continuous limit (brownian snake)
- Bouttier-Di Francesco-Guitter'03: exact GF expressions



Exact GF expression

[Bouttier, Di Francesco, Guitter’'03]
R.(z) := GF well-labelled trees with root-label < k



Exact GF expression

[Bouttier, Di Francesco, Guitter’'03]

R.(z) := GF well-labelled trees with root-label < k
1

Equation: R, (z) =
q k(2) 1 — 2(Rr—1(2) + Ri(2) + Ri+1(2)
1

R =1lim R, satisfies R =
LIk 1 —32R

ke




Exact GF expression

[Bouttier, Di Francesco, Guitter’'03]
R.(z) := GF well-labelled trees with root-label < k

Equation: R.(z) =
! W)= z(Rie-1(2) + Ri(2) + Rit1(2)

1
R =lim R; satisfies R =
L k 1 — ?)ZR
. (1 — %) (1 — 2F+3)
Exact solution: R, = R(l — R (1 — 2h2)

1
z+—+1=
where o+ — T
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Exact GF expression

[Bouttier, Di Francesco, Guitter’'03]

R.(z) := GF well-labelled trees with root-label < k
1

Equation: R (z) =

2

1 — 2(Rr-1(2) + Ri(z) + Rrg1(2)

1
R =1im R), satisfies R =
o 1 —3zR
, (1 — %) (1 — 2F+3)
Exact solution: R, = R(1 — R ) (1 = 2k 12)

1
r+—+1= ‘
where . s

Rk: 2 =1—¢(1—z/p)/*4 ...
Level
— o 1/4 > du g(u)

b related to Stable,,




