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Planar maps / planar graphs

 Planar map = planar embedding of a graph
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(rooting is enough to avoid symmetries)
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(needs to label all vertices to avoid symmetries)

« Random planar graph G, 7£ random planar map M,



Main result

Theorem: Let G, be the random (unembedded) planar
graph with n vertices. Then

P(Diam(G,,) ¢ [n1/4_€,n1/4+€]) — O(exp(—n@(e)))

Conjecture:

1

WDiam(Gn) converges in law



Related results

Random planar structures
Random map M,,:
e Radius(M,,)/n'* converges in law

|Chassaing-Schaeffer’04], [Marckert-Miermont’06]....

Random tree 7.,
e h(T,)/n'’? converges in law
o P(R(T,) & [n'/? <. n'/**]) = O(exp(—n®))

[Flajolet et al’93]

Random graph (Erdos-Rényi)
For each fixed \ > 1
Diam(G(n,p = A/n) ~ cylog(n)
with high probability
[Riordan-Wormald’09]
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Overview

* We recall the classical scheme:

quadrangulations
maps conn.
graphs
2-conn. 2-conn.
maps grapns
3-conn. > 3-conn.
maps graphns

« (Can carry out counting (exact/asymptotic) along the scheme:
[Bender,Gao,Wormald'02], [Giménez,Noy'035]

 Here we carry large deviation statements of the form:

P(Diam(G,,) ¢ [nl/4_€,nl/4+€]) — O(exp(—n@(e)))



Part |I: counting scheme for
connected planar graphs



Connectivity in graphs

General $ D
Connected M

2-connected @3
3-connected M

« [Tutte'66]:
- a connected graph decomposes into 2-connected components
- a 2-connected graph decomposes into 3-connected components




Connected -> 2 connected

The incidences between cut-vertices and blocks forms a tree

 Vertex-rooted formulation:

= |C*(z,y) = xexp(B'(C*(x,y),y))




2-connected -> 3-connected

a —




2-connected -> 3-connected

% R

%§$

AN
v

parallel
component




2-connected -> 3-connected

) P T \\
y |
4 )
/ /
7 <N
[ /
LV, P
|\ it d N <
_ P X
S 1
series {.}'

component




2-connected -> 3-connected
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2-connected -> 3-connect\e{d
sk
"

« Edge-rooted formulation [Trakhtenbrot'58]:
An edge-rooted 2-connected planar graph is either:

(modulo series-parallel operations)




3-connected graphs -> maps

« [Whitney]: 3-connected planar graphs ™~ 3-connected maps
 [Tutte'63]: Use the decomposition the reverse way

and take the embedding into account

\'(_-\, /<
Dé = &!
>/
Mi(y) = My (y(1 + My (y))?)

= Can extract A_[f(y) from A_[;(y)

(similarly can extract A_[;(y) from A_[;(y))



Count graphs reduces to count maps

maps conn.
graphs

' }
| 2-conn. | 2-conn.
maps grapns
' }

3-conn. 3-conn.
maps graphns
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Count maps via quadrangulations

« There are several methods to count (rooted) maps:

- recursive [Tutte’63]

- bijective: either directly or via quadrangulations
 Bijection between maps and quadrangulations ([Tutte]):

1) Insert a star inside each face
2) Delete the edges of the original map

—> #rooted maps n edges = #rooted quadrangulations n faces



Quad. <-> well-labelled trees
Bijection [Schaeffer’'98] (also [Cori,Vauquelin’84]):

1) Start from a vertex-pointed
guadrangulation with vertices
labelled by the distance from
the pointed vertex




Quad. <-> well-labelled trees
Bijection [Schaeffer’'98] (also [Cori,Vauquelin’84]):

2) Draw a black edge in each
face according to the rule:

____________________________




Quad. <-> well-labelled trees
Bijection [Schaeffer’'98] (also [Cori,Vauquelin’84]):

3) Delete the red edges and
the pointed vertex




Quad. <-> well-labelled trees

A well-labelled tree is a plane tree where:

- each vertex v has a
positive label

- the labels at each edge (v,v’)
differ by at most 1

- at least one vertex has label 1



Quad. <-> well-labelled trees

A well-labelled tree is a plane tree where:

\2 = : E’/
- each vertex v has a \-\ \ /
positive label 0 ©
- the labels at each edge (v,V') \/

differ by at most 1 Z\T
- at least one vertex has label 1 (3)
=/

e Rooted well-labelled tree = well-labelled tree + marked corner

(2n)!
nl(n +1)!

(there are 3~ such trees with n edges)



The mapping is a bijection

Theorem [Schaeffer’'98]. The mapping is a bijection
between pointed quadrangulations and well-labelled trees

vertex label | & > vertex at distance i

corner label i & > edge at level i

edge & > face



The mapping is a bijection

Theorem [Schaeffer’'98]. The mapping is a bijection
from well-labelled trees to pointed quadrangulations

vertex label | & > vertex at distance i
corner label i & > edge at level i
edge & > face
Corollary: there are 3"”711((31) !1)! quadrangulations with n faces,

a marked vertex, and a marked edge



Summary of counting scheme
|\_Vell-labelled trees\

bijections ‘

| quadrangulations

‘ maps \ coni.
graphs

Tutte’s l f

decomposition 2-conn. 2-conn
maps grapis

3-conn. > 3-conn.
‘ maps \ graphs




Part ll: carry large deviation
estimates for the diameter
along the counting scheme



Iwell-labelled trees

bijections l

| quadrangulations

'
‘ maps \

Tutte’s ‘
decomposition 2-conn.
maps

'

3-conn.
maps

 We carry large deviation statements of the form:

coni.
graphs

!

2-conn.
graphs

!

3-conn.
graphs

P(Diam(G,,) ¢ [n'/4=¢, nt/4+€]) = O(exp(—n®9)))



well-labelled trees
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‘ quadrangulations \
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Quad. via well-labelled trees

Let Q, random pointed quadrangulation with n+1 vertices
Q, ~ T, the random well-labelled tree with n vertices

A

h(T,) of order n'/2

+ discrepancy of labels along k-path is of order k2

Radius(Q,,) ““of order” n'/4




Quad. via well-labelled trees

Let Q, random pointed quadrangulation with n+1 vertices
Q, ~ T, the random well-labelled tree with n vertices

A

h(T,) of order n'/2

+ discrepancy of labels along k-path is of order k2
easily: Radius(Q,,) € [7'1..1/4_6, 7-1,1/4“] 2.4.5.

(Precise convergence results in [Chassaing Schaeffer'04])



Quadranqulations -> Maps

D

idistQ ~ dist )y modulo max face-degree A:!

NN disto(v, ) < 2-dista(v, )
EW disty(v.) < A~ disto(v, ) |

A is small: Pn(A > k) = Ofexp(—ck))

_________________________________________________________________

= Diam(M,,) € [n1/4_€,nl/4+6] a.a.5.



Maps -> 2-connected maps
[Gao,Wormald'99], [Banderier,Flajolet,Schaeffer,Soria’01]:
e The random map M, has typically a core of size n/3 +n?36

* The other components are small (size O(n%3)) )/\
Airy
< law

Diam(M,) * ~ " Diam(B,)

Diam(B,,) € [n*/47¢, nt/4] a.as.



well-labelled trees

bijections ‘
quadrangulations
maps conr.
graphs
Tutte’s ‘ ?
decomposition 2-COonu. 2 COnm.
maps graphs
3-conn. 3-conn.
maps > graphs

* For each of the highlighted families: _
P(Diam(G,,) ¢ [n'/47¢, n/4+€]) = O(exp(—n®(9)))



well-labelled trees

bijections ‘

quadrangulations

' _
maps E
Tutte’s l f

decomposition 2-conm. 2-conn
maps graphs

' I
* For each of the highlighted families:
P(Diam(G,,) ¢ [n1/4_€,n1/4+€]) — O(eXp(—n@(e)))

e Can carry it until connected planar graphs




well-labelled trees
bijections ‘
quadrangulations
maps conr.
graphs
Tutte’s ‘
decomposition 2-conn. 2-co n.
maps grap
3-conn. 3-co
maps > grap

* For each of the highlighted families: _
P(Diam(G,,) ¢ [n'/47¢, n/4+€]) = O(exp(—n®(9)))

e Can carry it until connected planar graphs

e Is it possible to carry a statement such as E(Diam(G,)))= ©(n"4) ?



