On the diameter of random planar graphs

Eric Fusy (LIX, Ecole Polytechnique) joint work with Guillaume Chapuy, Omer Gimenez, Marc Noy

Planar map = planar embedding of a graph

Planar map = planar embedding of a graph

(rooting is enough to avoid symmetries)

Planar map = planar embedding of a graph

(rooting is enough to avoid symmetries)

Planar graph = graph with at least one planar embedding

(needs to label all vertices to avoid symmetries)

Planar map = planar embedding of a graph

(rooting is enough to avoid symmetries)

Planar graph = graph with at least one planar embedding

(needs to label all vertices to avoid symmetries)

• Random planar graph $G_n \neq random planar map M_n$

Main result

Theorem: Let G_n be the random (unembedded) planar graph with n vertices. Then

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

Conjecture:

$$\frac{1}{n^{1/4}} \text{Diam}(G_n)$$
 converges in law

Related results

Random planar structures

Random map M_n :

• Radius $(M_n)/n^{1/4}$ converges in law

[Chassaing-Schaeffer'04], [Marckert-Miermont'06],...

Random tree T_n :

- $h(T_n)/n^{1/2}$ converges in law
- $\mathbb{P}(h(T_n) \notin [n^{1/2-\epsilon}, n^{1/2+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$

[Flajolet et al'93]

Random graph (Erdös-Rényi)

For each fixed $\lambda > 1$

 $\operatorname{Diam}(G(n, p = \lambda/n) \sim c_{\lambda} \log(n))$

with high probability

[Riordan-Wormald'09]

We recall the classical scheme:

We recall the classical scheme:

 Can carry out counting (exact/asymptotic) along the scheme: [Bender,Gao,Wormald'02], [Giménez,Noy'05]

We recall the classical scheme:

- Can carry out counting (exact/asymptotic) along the scheme: [Bender,Gao,Wormald'02], [Giménez,Noy'05]
- Here we carry large deviation statements of the form:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

We recall the classical scheme:

- Can carry out counting (exact/asymptotic) along the scheme: [Bender,Gao,Wormald'02], [Giménez,Noy'05]
- Here we carry large deviation statements of the form:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

Part I: counting scheme for connected planar graphs

Connectivity in graphs

General

Connected

2-connected

3-connected

- [Tutte'66]:
- a connected graph decomposes into 2-connected components
- a 2-connected graph decomposes into 3-connected components

Connected -> 2-connected

The incidences between cut-vertices and blocks forms a tree

Vertex-rooted formulation:

$$\Rightarrow C^{\bullet}(x,y) = x \exp(B'(C^{\bullet}(x,y),y))$$

• Edge-rooted formulation [Trakhtenbrot'58]:

An edge-rooted 2-connected planar graph is either:

or

Oľ

$$\overrightarrow{G_2}(x,y) \approx \overrightarrow{G_3}\left(x,\overrightarrow{G_2}(x,y)\right)$$

(modulo series-parallel operations)

3-connected graphs -> maps

- [Whitney]: 3-connected planar graphs \simeq 3-connected maps
- [Tutte'63]: Use the decomposition the reverse way and take the embedding into account

$$\overrightarrow{M_1}(y) = \overrightarrow{M_2} \left(y(1 + \overrightarrow{M_1}(y))^2 \right)$$

 \Rightarrow Can extract $\overrightarrow{M_1}(y)$ from $\overrightarrow{M_2}(y)$ (similarly can extract $\overrightarrow{M_2}(y)$ from $\overrightarrow{M_3}(y)$)

Count graphs reduces to count maps

Count maps via quadrangulations

- There are several methods to count (rooted) maps:
 - recursive [Tutte'63]
 - bijective: either directly or via quadrangulations

Count maps via quadrangulations

- There are several methods to count (rooted) maps:
 - recursive [Tutte'63]
 - bijective: either directly or via quadrangulations
- Bijection between maps and quadrangulations ([Tutte]):
 - 1) Insert a star inside each face
 - 2) Delete the edges of the original map

 \Rightarrow #rooted maps *n* edges = #rooted quadrangulations *n* faces

Bijection [Schaeffer'98] (also [Cori, Vauquelin'84]):

1) Start from a vertex-pointed quadrangulation with vertices labelled by the distance from the pointed vertex

Bijection [Schaeffer'98] (also [Cori, Vauquelin'84]):

Bijection [Schaeffer'98] (also [Cori, Vauquelin'84]):

3) Delete the red edges and the pointed vertex

- A well-labelled tree is a plane tree where:
 - each vertex v has a positive label
 - the labels at each edge (v,v')
 differ by at most 1
 - at least one vertex has label 1

- A well-labelled tree is a plane tree where:
 - each vertex v has a positive label
 - the labels at each edge (v,v')
 differ by at most 1
 - at least one vertex has label 1

Rooted well-labelled tree = well-labelled tree + marked corner

(there are $3^n \frac{(2n)!}{n!(n+1)!}$ such trees with n edges)

The mapping is a bijection

Theorem [Schaeffer'98]: The mapping is a bijection between pointed quadrangulations and well-labelled trees

The mapping is a bijection

Theorem [Schaeffer'98]: The mapping is a bijection from well-labelled trees to pointed quadrangulations

Corollary: there are $3^n \frac{(2n)!}{n!(n+1)!}$ quadrangulations with n faces, a marked vertex, and a marked edge

Summary of counting scheme

Part II: carry large deviation estimates for the diameter along the counting scheme

We carry large deviation statements of the form:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

We carry large deviation statements of the form:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

Quad. via well-labelled trees

Let Q_n random pointed quadrangulation with n+1 vertices $Q_n \simeq T_n$ the random well-labelled tree with n vertices

+ discrepancy of labels along k-path is of order k^{1/2}

Radius(Q_n) ``of order'' n^{1/4}

Quad. via well-labelled trees

Let Q_n random pointed quadrangulation with n+1 vertices $Q_n \simeq T_n$ the random well-labelled tree with n vertices

+ discrepancy of labels along k-path is of order k^{1/2}

easily: Radius
$$(Q_n) \in [n^{1/4-\epsilon}, n^{1/4+\epsilon}]$$
 a.a.s.

(Precise convergence results in [Chassaing Schaeffer'04])

Quadrangulations -> Maps

 $\operatorname{dist}_Q \approx \operatorname{dist}_M \operatorname{modulo} \operatorname{max} \operatorname{face-degree} \Delta$:

 $\mathbf{dist}_Q(v, v') \leq 2 \cdot \mathbf{dist}_M(v, v')$

 $\mathbf{dist}_M(v, v') \leq \Delta \cdot \mathbf{dist}_Q(v, v')$

 Δ is small: $\mathbf{P}_n(\Delta \geq k) = O(\exp(-ck))$

$$\Rightarrow$$
 Diam $(M_n) \in [n^{1/4-\epsilon}, n^{1/4+\epsilon}]$ a.a.s.

Maps -> 2-connected maps

[Gao, Wormald'99], [Banderier, Flajolet, Schaeffer, Soria'01]:

- The random map M_n has typically a core of size n/3 +n^{2/3}θ
- The other components are small (size O(n^{2/3}))

For each of the highlighted families:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

For each of the highlighted families:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

Can carry it until connected planar graphs

• For each of the highlighted families:

$$\mathbb{P}(\mathrm{Diam}(G_n) \notin [n^{1/4-\epsilon}, n^{1/4+\epsilon}]) = O(\exp(-n^{\Theta(\epsilon)}))$$

- Can carry it until connected planar graphs
- Is it possible to carry a statement such as $E(Diam(G_n)) = \Theta(n^{1/4})$?