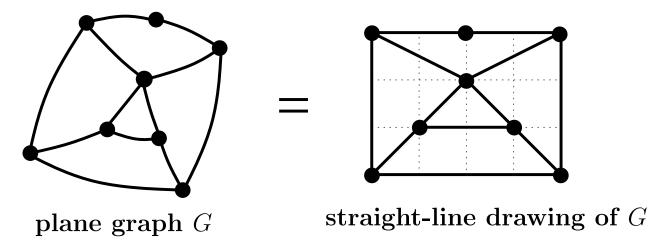
Straight-line drawing of quadrangulations

Éric Fusy

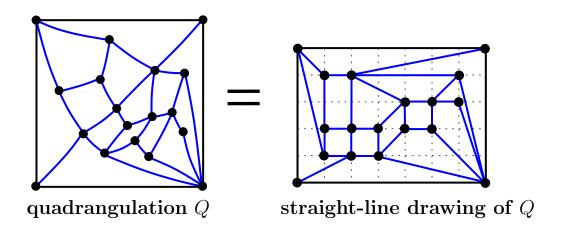
Algorithms Project, INRIA Rocquencourt

Plane graphs and straight-line drawings

 A plane graph is a graph drawn in the plane up to continuous deformation.

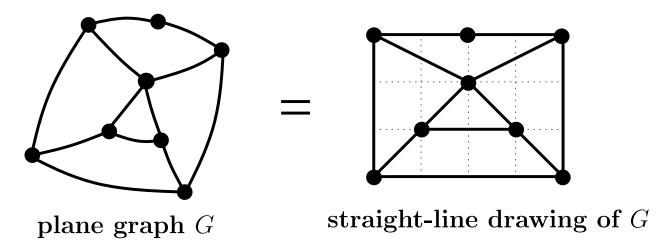


Quadrangulation: plane graph with all faces of degree 4

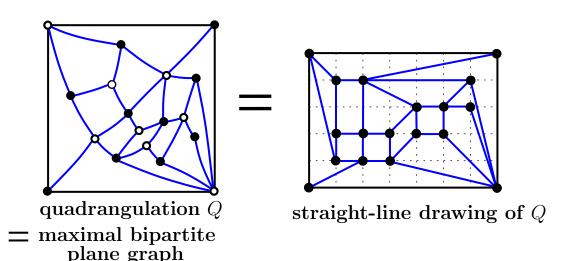


Plane graphs and straight-line drawings

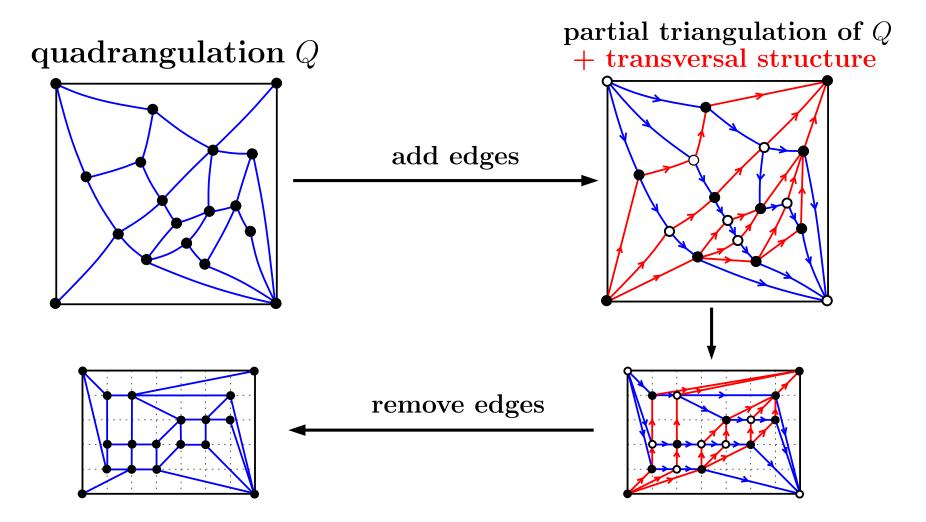
 A plane graph is a graph drawn in the plane up to continuous deformation.



Quadrangulation: plane graph with all faces of degree 4

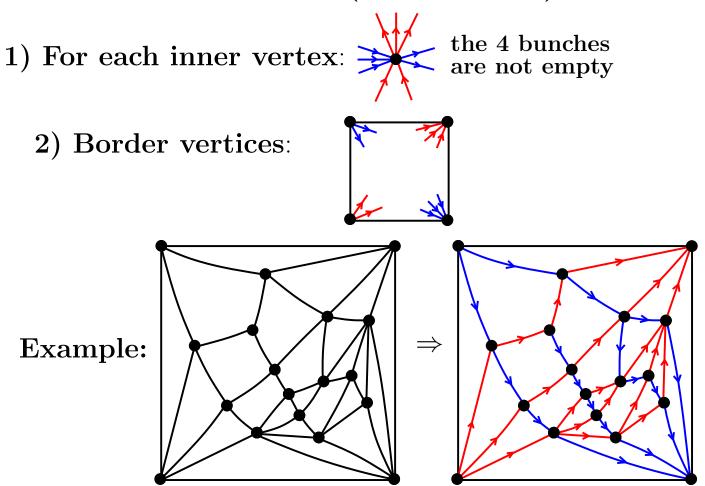


Principle of the algorithm



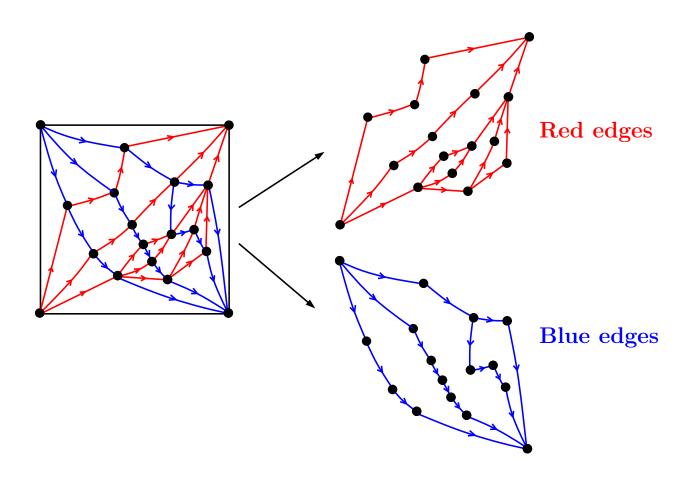
Transversal structures

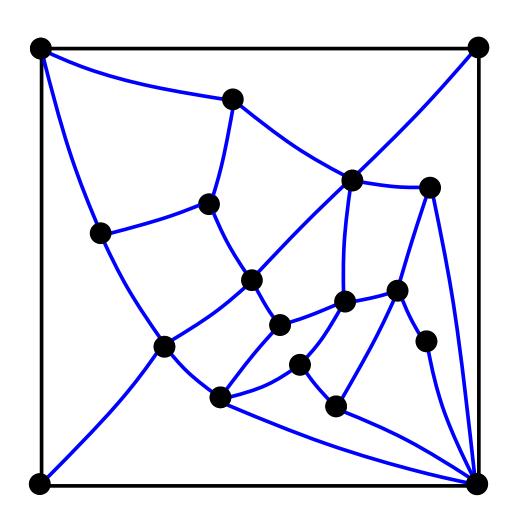
• Transversal structure: each inner edge receives an orientation and a color (blue or red) such that



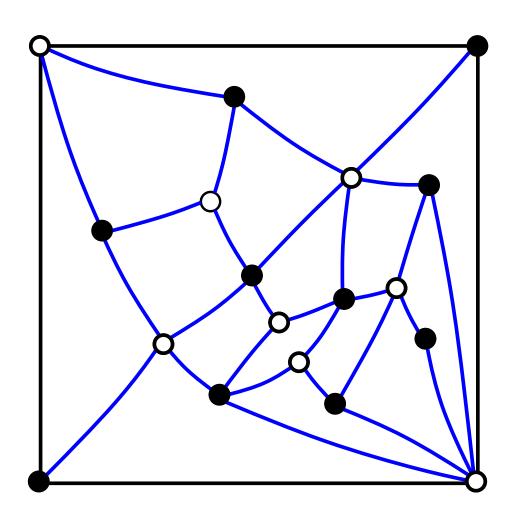
Link with bipolar orientations

- Bipolar orientation= acyclic orientation with unique minimum (source) and unique maximum (sink)
- The blue (resp. red) edges form a bipolar orientation
- The two bipolar orientations are transversal

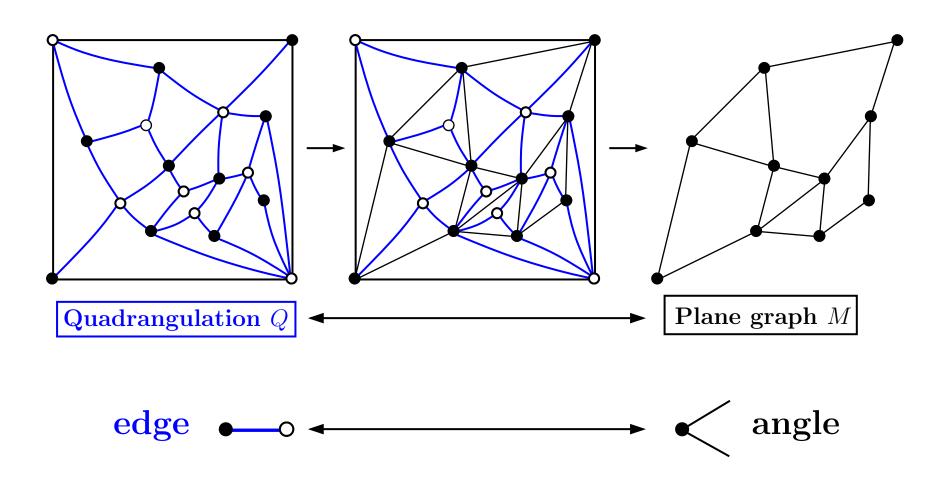




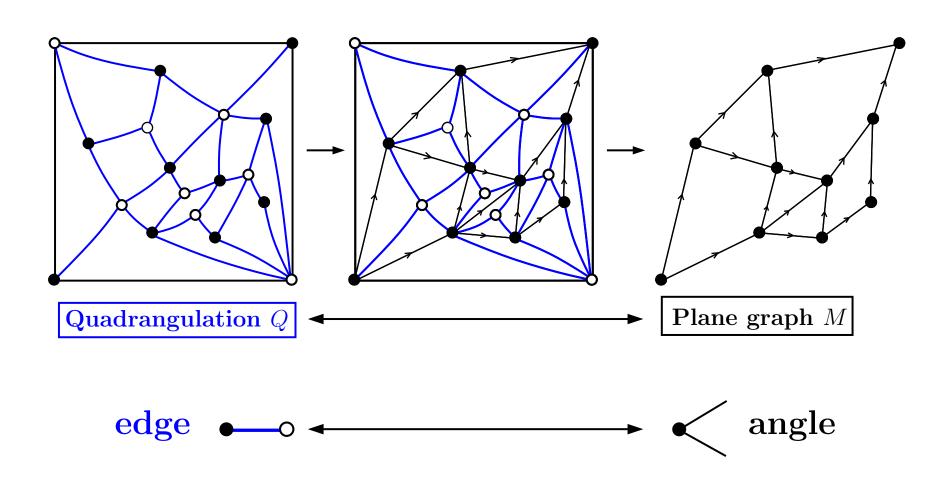
Bicolor the vertices of Q.



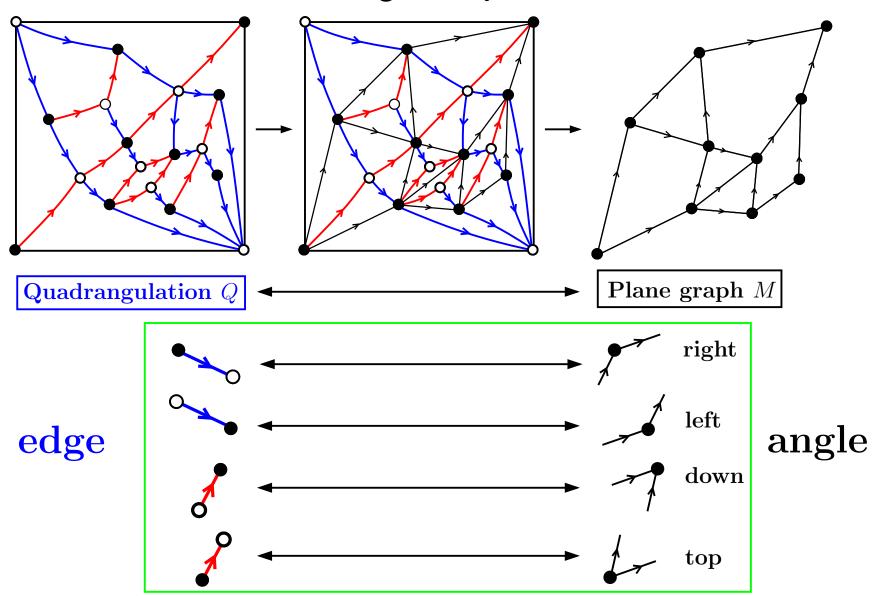
Associate plane graph M on black vertices.



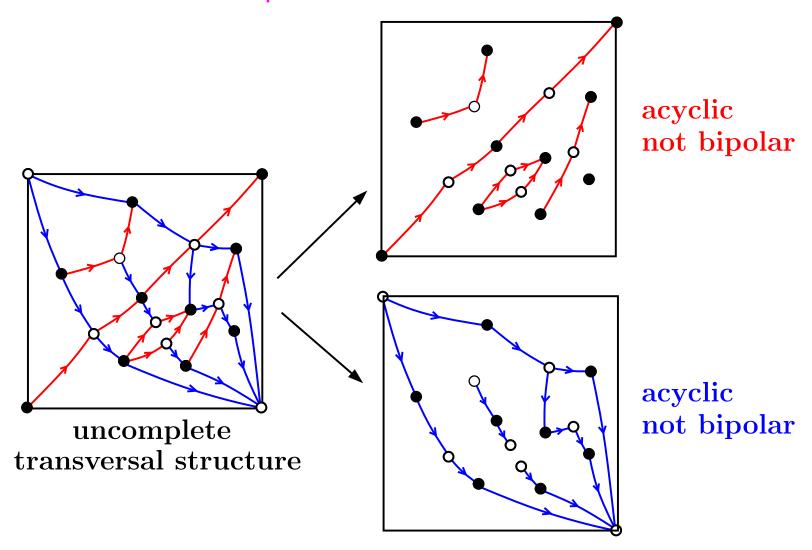
Compute a bipolar orientation of M.



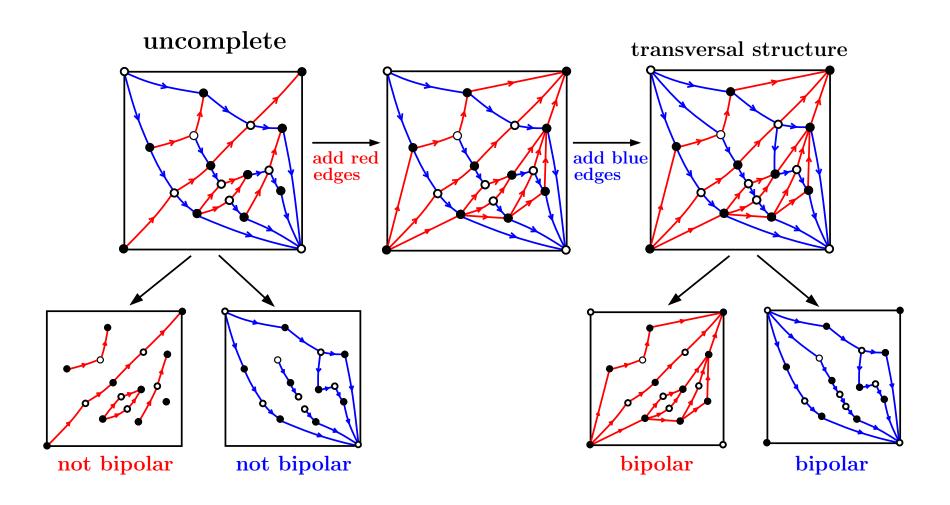
Bicolor and orient inner edges of Q.



We obtain an uncomplete transversal structure.

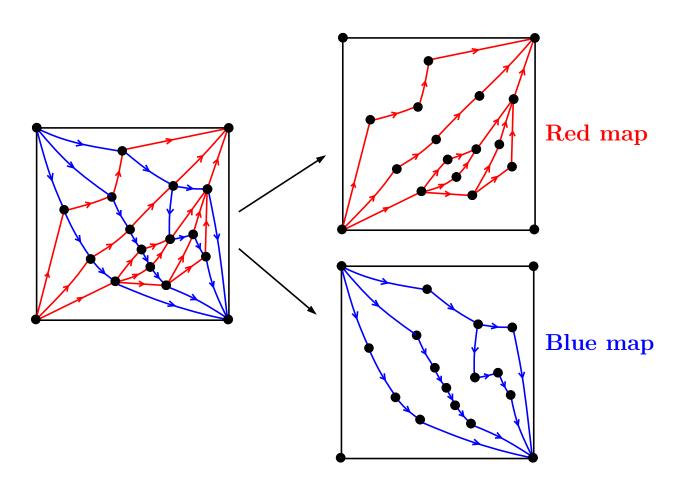


Add edges to complete the transversal structure.



Straight-line drawing using t.s.

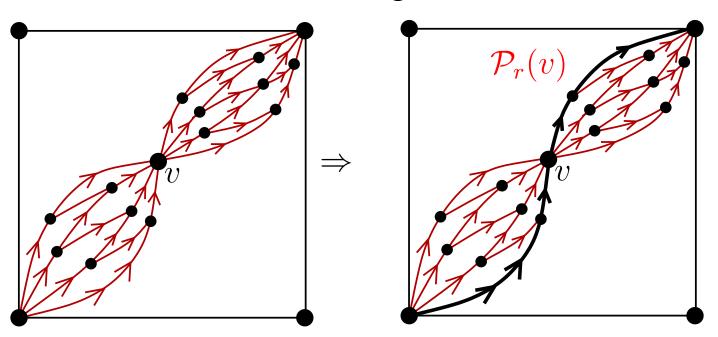
- The blue (resp. red) edges form a bipolar orientation.
- Use the red edges to give abscissas and blue edges to give ordinates using face-counting operations



The red map gives abscissas (1)

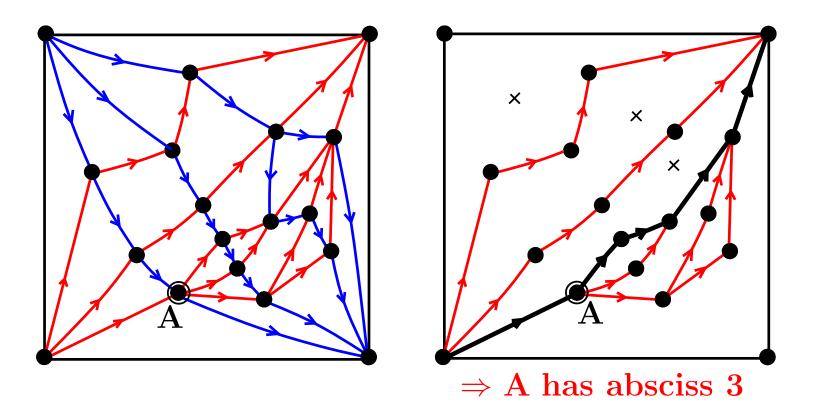
Let v be an inner vertex of TLet $\mathcal{P}_r(v)$ be the unique path passing by v which is:

- the rightmost one before arriving at v
- the leftmost one after leaving v



The red map gives abscissas (2)

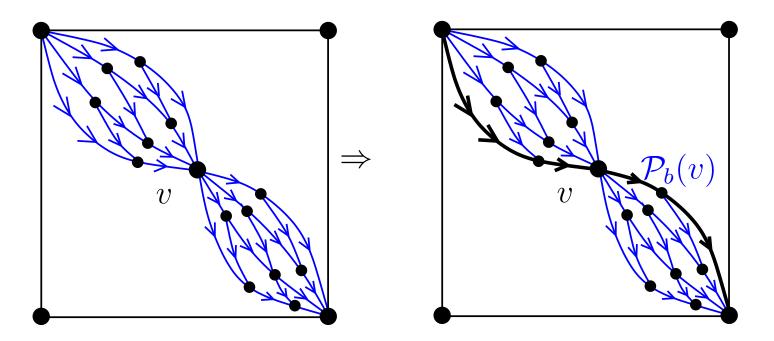
The absciss of v is the number of faces of the red map on the left of $\mathcal{P}_r(v)$



The blue map gives ordinates (1)

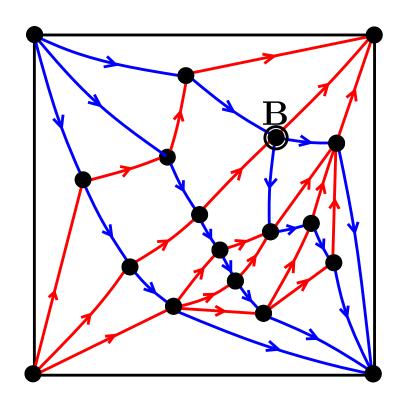
Similarly we define $\mathcal{P}_b(v)$ the unique blue path which is:

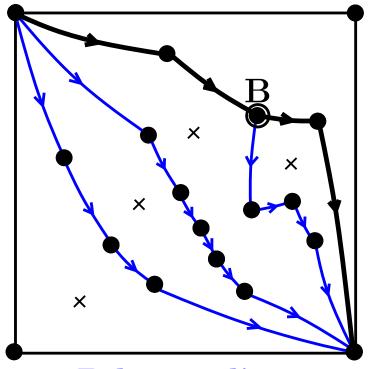
- the rightmost one before arriving at v
- the leftmost one after leaving v



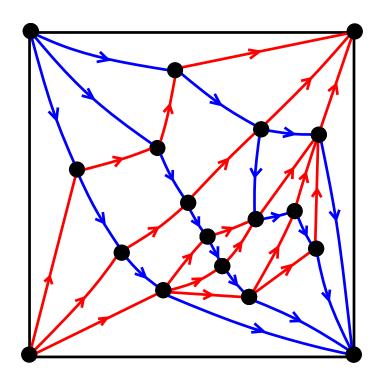
The blue map gives ordinates (2)

The ordinate of v is the number of faces of the blue map below $\mathcal{P}_b(v)$

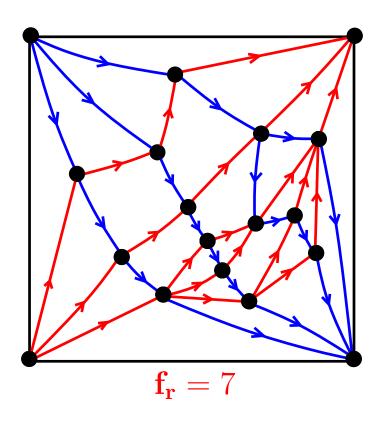


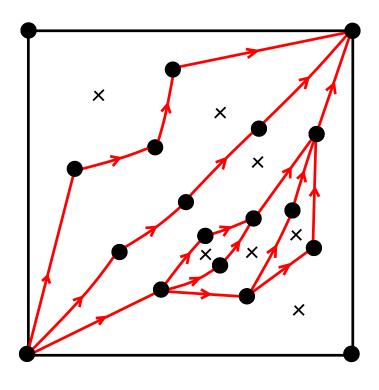


 \Rightarrow B has ordinate 4

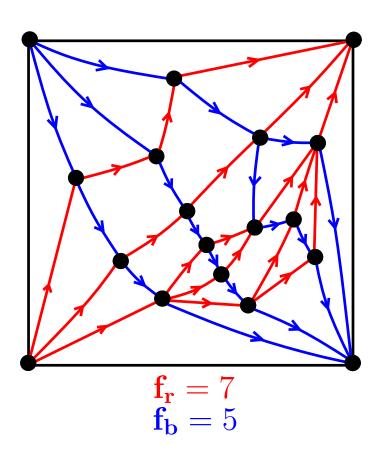


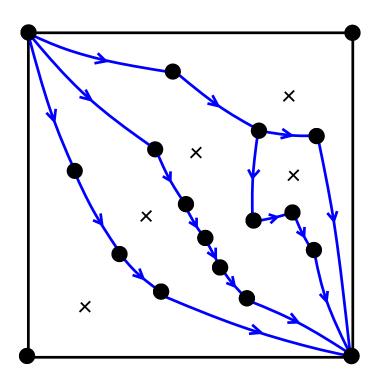
Let f_r be the number of faces of the red map



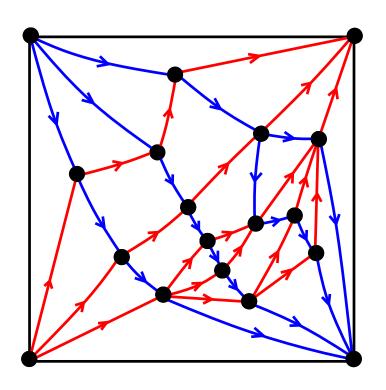


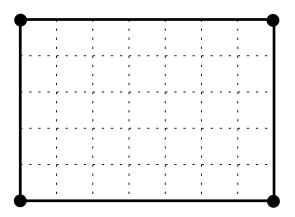
Let f_b be the number of faces of the blue map



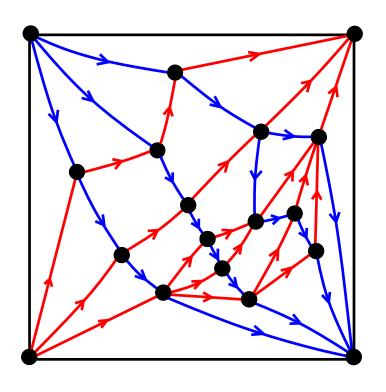


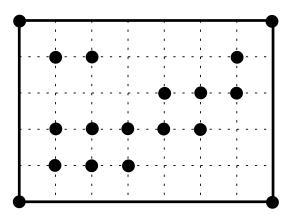
Take a regular grid of width f_r and height f_b and place the 4 border vertices of T at the 4 corners of the grid



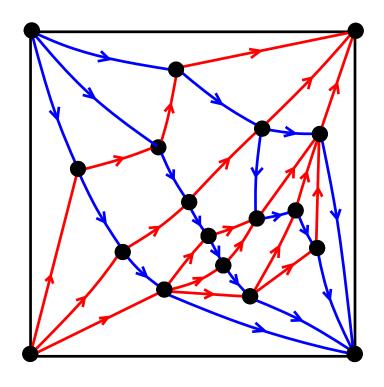


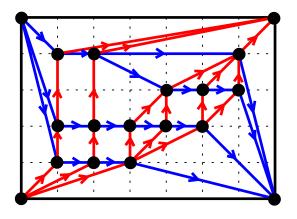
Place all other points using the red path for absciss and the blue path for ordinate



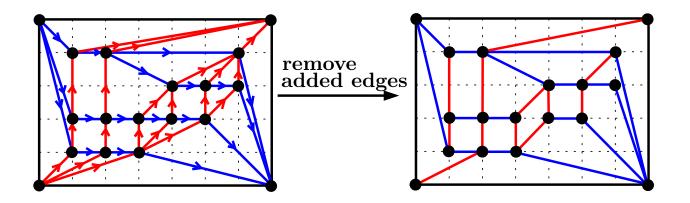


Link each pair of adjacent vertices by a segment





Results



- The drawing is a straight-line drawing of Q
- If Q has n vertices, the semi-perimeter verifies

$$W + H = n - 1 - \Delta,$$

where Δ is the number of alternating 4-cycles of Q.