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Plane graphs and straight-line drawings
• A plane graph is a graph drawn in the plane up to

continuous deformation.

plane graph G straight-line drawing of G

• Quadrangulation: plane graph with all faces of degree 4

quadrangulation Q straight-line drawing of Q
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Plane graphs and straight-line drawings
• A plane graph is a graph drawn in the plane up to

continuous deformation.

plane graph G straight-line drawing of G

• Quadrangulation: plane graph with all faces of degree 4

quadrangulation Q straight-line drawing of Q
maximal bipartite

plane graph – p.2/13



Principle of the algorithm

quadrangulation Q
partial triangulation of Q
+ transversal structure

add edges

remove edges
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Transversal structures

1) For each inner vertex:

2) Border vertices:

the 4 bunches
are not empty

Example: ⇒

• Transversal structure: each inner edge receives an
orientation and a color (blue or red) such that
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Link with bipolar orientations
• Bipolar orientation= acyclic orientation with unique

minimum (source) and unique maximum (sink)

• The blue (resp. red) edges form a bipolar orientation

• The two bipolar orientations are transversal

Red edges

Blue edges
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Partial triangulation of Q into t.s.
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Partial triangulation of Q into t.s.
Bicolor the vertices of Q.
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Partial triangulation of Q into t.s.
Associate plane graph M on black vertices.

Quadrangulation Q Plane graph M

edge angle
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Partial triangulation of Q into t.s.
Compute a bipolar orientation of M .

Quadrangulation Q Plane graph M

edge angle
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Partial triangulation of Q into t.s.
Bicolor and orient inner edges of Q.

Quadrangulation Q Plane graph M

edge angle

right

left

down

top
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Partial triangulation of Q into t.s.
We obtain an uncomplete transversal structure.

acyclic

not bipolar

acyclic

not bipolaruncomplete
transversal structure
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Partial triangulation of Q into t.s.
Add edges to complete the transversal structure.

uncomplete

add red
edges

add blue
edges

transversal structure

not bipolar not bipolar bipolar bipolar
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Straight-line drawing using t.s.
• The blue (resp. red) edges form a bipolar orientation.

• Use the red edges to give abscissas and blue edges to
give ordinates using face-counting operations

Red map

Blue map
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The red map gives abscissas (1)
Let v be an inner vertex of T

Let Pr(v) be the unique path passing by v which is:

• the rightmost one before arriving at v

• the leftmost one after leaving v

v v⇒

Pr(v)
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The red map gives abscissas (2)
The absciss of v is the number of faces of the red map on the
left of Pr(v)

A A

⇒ A has absciss 3
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The blue map gives ordinates (1)
Similarly we define Pb(v) the unique blue path which is:

• the rightmost one before arriving at v

• the leftmost one after leaving v

v
⇒ Pb(v)

v
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The blue map gives ordinates (2)
The ordinate of v is the number of faces of the blue map
below Pb(v)

⇒ B has ordinate 4

B B
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Execution of the algorithm
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Execution of the algorithm
Let fr be the number of faces of the red map

fr = 7
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Execution of the algorithm
Let fb be the number of faces of the blue map

fr = 7

fb = 5
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Execution of the algorithm
Take a regular grid of width fr and height fb and place the 4
border vertices of T at the 4 corners of the grid

– p.12/13



Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate
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Execution of the algorithm
Link each pair of adjacent vertices by a segment
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Results

remove
added edges

• The drawing is a straight-line drawing of Q

• If Q has n vertices, the semi-perimeter verifies

W + H = n − 1 − ∆,

where ∆ is the number of alternating 4-cycles of Q.
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