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Combinatorial classes

A combinatorial class C is a set of objects such that

Each object γ ∈ C has a size |γ| ∈ N (e.g. number of
vertices in a graph)

For n ≥ 0, the number of objects of size n in C is finite.
This number cn is called the nth coefficient of C
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Example: binary trees

Each inner node has a left son and a right son
The size is the number of inner nodes

cn = c0cn−1 + . . . + ckcn−1−k + . . . + cn−1c0

k n-1-k

= ∪ . . .∪ ∪ . . .∪

n-1n-1n

c1 = 1

c3 = 5

c2 = 2
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Random generation at a fixed size n

For a given size n ≥ 0, we want a procedure that picks up an
object of size n under the uniform distribution:

Pr(γ) =
1

cn
for each γ ∈ C of size n

Pr = 1
5 Pr = 1

5
Pr = 1

5 Pr = 1
5 Pr = 1

5

Binary trees: uniform distribution for n = 3
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Motivations for random generation
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A general procedure: the recursive method

Idea: (Nijenhuis and Wilf’78, Flajolet et al’94) compute the
correct probability at the root of the decomposition from the
coefficients to have the uniform distribution.

cn = c0cn−1 + . . . + ckcn−1−k + . . . + cn−1c0

k n-1-k

Proportion of =
ckcn−1−k

cn

⇒ Recursive algorithm:

Sample(n): 1) choose k ∈ {0, . . . , n − 1} under the distribution Pr(k) = ckcn−1−k

cn

2) return

Sample(k) Sample(n-1-k)
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Drawback: large auxiliary memory

To sample at size n, we need the coefficients c1, . . . , cn

⇒ this requires a quadratic number of bits
n cn

1 1
2 2
3 5
4 14
5 42
6 132
7 429
8 1430
9 4862

10 16796

n cn

11 58786
12 208012
13 742900
14 2674440
15 9694845
16 35357670
17 129644790
18 477638700
19 1767263190
20 6564120420

n cn

21 24466267020
22 91482563640
23 343059613650
24 1289904147324
25 4861946401452
26 18367353072152
27 69533550916004
28 263747951750360
29 1002242216651368
30 3814986502092304
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Generating functions

The generating function of a class C is defined as:

C(x) :=
∑

γ∈C
x|γ|

=
∑

n≥0

cnxn

There is a critical value ρ > 0 such that the sum defining the
generating function converges for x < ρ and not for x > ρ
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Generating functions: rules of calculations

Disjoint union: C = A∪ B ⇒ C(x) = A(x) + B(x)

Proof:
∑

γ∈A∪B

x|γ| =
∑

γ∈A

x|γ| +
∑

γ∈B

x|γ|

Cartesian prod: C = A× B ⇒ C(x) = A(x) ·B(x)

Proof:
∑

(γ1,γ2)∈A×B

x|(γ1,γ2)| =
∑

γ1,γ2

x|γ1|+|γ2| =
∑

γ1∈A

x|γ1|
∑

γ2∈B

x|γ2|

= ∪

C CC

C(x) = 1 + C(x)xC(x)

simpler than cn = c0cn−1 + . . . + ckcn−1−k + . . . + cn−1c0.
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Boltzmann samplers

Introduced by Duchon, Flajolet, Louchard and Schaeffer
(2002)

Relax the constraint of fixed size (cf recursive method) for
random generation.

The distribution is spread over all objects of the class.

An object is drawn with probability proportional to the
exponential of its size (cf statistical physics)
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Boltzmann samplers: definition

Let C be an unlabelled combinatorial class
(e.g. binary trees)
Ordinary generating function:

C(x) =
∑

γ∈C
x|γ| =

∑

n≥0

cnxn,

where |γ| is the size of γ.

Given x > 0 (x ≤ ρC) a fixed real value,
a Boltzmann sampler ΓC(x) is a procedure that draws each
object γ of C with probability:

Pr(γ) = x|γ|

C(x)
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Analogy with statistical physics

Combinatorics Stat. Phys.

Structure γ State s

size n Energy E

Generating function Partition function
C(x) =

∑
γ x|γ|

Z =
∑

s e−βE

Boltz: P(γ) = x|γ|

C(x) Boltz: P(s) = e−βE

Z

Structure γ
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Finite sets

Let E = (γ1, . . . , γd) E(x) =
∑d

i=1 x|γi|

ΓE(x)

γ1 γi γd

x|γi|

E(x)

. . .

. . .

. . .

x|γd|

E(x)
x|γ1|

E(x) . . .
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The basic construction rules: union

Union: Let C = A ∪ B. Assume we have Boltzmann samplers
ΓA(x) for A and ΓB(x) for B. Define ΓC(x) as:

ΓC(x)

B(x)
C(x)

A(x)
C(x)

ΓA(x) ΓB(x)

Then ΓC(x) is a Boltzmann sampler for A∪ B.

Proof: Let γ ∈ A ∪ B

If γ ∈ A, then Pr(γ) = A(x)
C(x) ·

x|γ|

A(x) = x|γ|

C(x) .

If γ ∈ B, then Pr(γ) = B(x)
C(x) ·

x|γ|

B(x) = x|γ|

C(x) .
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The basic construction rules: product

Product: Let C = A× B. Assume we have Boltzmann
samplers ΓA(x) for A and ΓB(x) for B. Define ΓC(x) as:

ΓC(x) : γ1 ← ΓA(x)
γ2 ← ΓB(x)
return (γ1, γ2)

Then ΓC(x) is a Boltzmann sampler for A∪ B :
Proof: an object γ = (γ1, γ2) has probability:

x|γ1|

A(x)

x|γ2|

B(x)
=

x|γ1|+|γ2|

A(x) ·B(x)
=

x|γ|

C(x)
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Example: binary trees

or

C C
C

Generating function

C(x) = 1 + xC(x)2
Boltzmann sampler

ΓC(x)

return return

ΓC(x) ΓC(x)

Pr = 1
C(x)

Pr = xC(x)2

C(x)
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A first Sampling dictionary

Theorem

A Boltzmann sampler can be designed for any class having a
recursive specification with the constructions ∪ and ×. The
complexity is linear in the size of the output object.

construction generator

C = ∅ ΓC(x) := return ∅

C = {•} ΓC(x) := return {•}

C = A+ B ΓC(x) :=
(

Bern A(x)
C(x) −→ ΓA(x) | ΓB(x)

)

C = A× B ΓC(x) := ( ΓA(x); ΓB(x) )
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Choosing x to draw objects around a target-size

The probability of drawing an object of size n is:

Px(Size = n) =
∑

|γ|=n

x|γ|

C(x)
=

cnxn

C(x)

→ size distributions for different values of x.

Bicolored necklaces Finite languages
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Boltzmann samplers vs the recursive method

Boltzmann recursive method

size distribution Pr(size = n) = cnxn

C(x) fixed size n

auxiliary memory O(log(n)) O(n2)

time per generation O(n2) Exact O(n log(n)) Exact
O(n) Approx
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MSet
Cyc

New constructions for
Boltzmann samplers

(with Philippe Flajolet and Carine Pivoteau)
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Cyc

A first construction: MSet2

MSet2(A) ∼= unorderer pairs of objects de A

C = MSet2(A)

C(z) =
1

2
A2(z) +

1

2
A(z2) [ 2MSet2(A)=A2+∆A2 ]

Algorithm: ΓC(x)

if Bern
(

1
2

A2(x)
C(x)

)

= 1 then

Return ( ΓA(x),ΓA(x) )
else

a← ΓA(x2);
Return (a, a);

end if
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Proof that the algorithm is correct

Proof.

Let γ = 〈γ1, γ2〉 be an unordered pair of objects of A. The
probability that γ is drawn by ΓC(x) is:

1 γ1 6= γ2

Px(γ) =
1

2

A(x)2

C(x)

x|γ1|

A(x)

x|γ2|

A(x)
× 2 =

x|γ|

C(x)

2 γ1 = γ2

Px(γ) =
1

2

A(x)2

C(x)

x|γ1|

A(x)

x|γ1|

A(x)
+

1

2

A(x2)

C(x)

x2|γ1|

A(x2)
=

x|γ|

C(x)
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Application

Unembedded binary trees
(Otter trees)

B = Z + MSet2(B)

B(z) = z +
1

2
B2(z) +

1

2
B(z2)

→ �

→ �〈 ΓB(x),ΓB(x) 〉

→ ot← ΓB(x2);

return �〈 ot, ot 〉;
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General MSet

LetM := MSet(A) be the class of all multisets of objects of A.

M(z) = exp

(
∞∑

k=1

1

k
A(zk)

)

=

∞∏

k=1

exp

(
1

k
A(zk)

)
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General MSet

LetM := MSet(A) be the class of all multisets of objects of A.

M(z) = exp

(
∞∑

k=1

1

k
A(zk)

)

=

∞∏

k=1

exp

(
1

k
A(zk)

)

taille=3

taille=4

taille=2

taille=1

exp(1
2A(z2))exp(A(z)) exp(1

3A(z3)) MSet(A)
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Algorithm for general MSet

M(z) = exp

(
∞∑

k=1

1

k
A(zk)

)

=

∞∏

k=1

exp

(
1

k
A(zk)

)

size=3

size=4

size=2

size=1

exp(A(z)) MSet(A)exp(1
2A(z2)) exp(1

3
A(z3))

add γ

γ ← ΓA(x)

repeat Poiss(A(x3)
3 ) times

γ ← ΓA(x3)

add 3 copies of γ

repeat Poiss(A(x)) times repeat Poiss(A(x2)
2 ) times

γ ← ΓA(x2)

add 2 copies of γ
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Algorithm for general MSet (2)

Algorithm ΓMSet[A](x)

k ←− MaxIndex(x);
for i from 1 to k − 1 do {

p←− Pois
(

1
i
A(xi)

)
;

repeat p {
γ ← ΓA(xi);
Add i copies of γ to the MSet

}
}
p←− Pois≥1

(
1
k
A(xk)

)
;

repeat p {
γ ← ΓA(xk);
Add k copies of γ to the MSet

}
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Algorithm for general MSet (2)

Algorithm ΓMSet[A](x)

k ←− MaxIndex(x);
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1
i
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Result

Theorem

If we have a Boltzmann sampler ΓA(x) for A, then
ΓMSet[A](x) is a Boltzmann sampler for MSet(A).
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

→ 13, 10, 2, 1, 1
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

→ 5, 3, 2
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;
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Generation of a partition (multiset of integers)

k = 3;
p1 = 5;
p2 = 3;
p3 = 1;

→ 1
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General unembedded trees

T = Z ×MSet(T )
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Series-parallel circuits

C = P + S + Z

S = Seq≥2(P + Z)

P = MSet≥2(S + Z)

P

S

P

S S

P

S
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Generating function for cycles

C = Cyc(A) ⇒ C(z) =
∑

k≥1

ϕ(k)

k
log

1

1−A(zk)

m :=

k := 3
j := 5
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Algorithm

ΓCyc[A](x)

k ←− ReplicationOrder(x); # how many copies of s

j ←− Loga
(
A(xk)

)
; length of s

s←− ΓA(xk), . . . ,ΓA(xk)
︸ ︷︷ ︸

j times

; sequence

Return ( m, . . . ,m
︸ ︷︷ ︸

k times

);

Definition: X follows a Loga law of parameter λ if:

P(X = j) =
1

log(1− λ)−1

λj

j
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Cycles of integers

C = Cyc(Z × Seq(Z))

C(z) =
∞∑

k=1

ϕ(k)

k
log

1

1− zk

1−zk
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Functional graphs

M = MSet(C)
C = Cyc(G)
G = Z ×MSet(G)
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Result

Theorem

If a combinatorial class C has a recursive specification with
the constructions

{∪,×,Seq,MSet,Cyc}

then a Boltzmann sampler can be designed for C.

This list of constructions can be completed by constructions
with cardinality restrictions (e.g. MSet2)

This applies for several classes:

partitions, compositions, necklaces,...

trees,

regular languages,

functional graphs,...
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Complexity

Theorem

By choosing a suitable value for the parameter x, one has the
following complexities for approximate size and fixed size:

Integer partitions of size n O(
√

n log n) O(n)

Unembedded trees of size n O(n) O(n2)

Necklaces, circular compositions of size n O(n) O(n)

Mobiles of size n O(n) O(n2)

Functional graphs of size n O(n) O(n
√

n)
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Random sampling of plane
partitions

(with Olivier Bodini and Carine Pivoteau)
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