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Motivations for bijections
• efficient manipulation of maps (random generation algo.)

• key ingredient to study distances in random maps

typical distances of order n1/4 ( 6= n1/2 in random trees)

Theo: [Le Gall, Miermont’13]

Upon rescaling distances by n1/4, Mn converges to a continuum
random metric space called the Brownian map

large tree large map

today’s
topic!

Mn := random quadrangulation n faces

(Rk: for random trees, rescaling by n1/2, convergence to CRT)



The 2-point function
• Let G = ∪nG[n] be a family of maps (or trees, or graphs)

where n is a size-parameter (# faces, # edges, # vertices,...)

• Let G◦◦ = family of objects from G with 2 marked vertices v1, v2

let G◦◦d := subfamily of G◦◦ where dist(v2, v2) = d

The counting series Gd ≡ Gd(t) of G◦◦d with respect to
the size is called the 2-point function of G

v1

v2

n = 8
d = 3

(or one marked vertex and one rooted edge, etc.)
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The counting series Gd ≡ Gd(t) of G◦◦d with respect to
the size is called the 2-point function of G

v1

v2

n = 8
d = 3

(or one marked vertex and one rooted edge, etc.)

• Let Xn := dist(v1, v2) in a random object from G◦◦[n]

Then P(Xn = d) =
[tn]Gd(t)

[tn]G◦◦(t)
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Consider a random plane tree on n edges with two marked corners
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The 2-point function of plane trees

1 2 distance d = 3

Consider a random plane tree on n edges with two marked corners

Gd(t) = tdC(t)2d+2 where C(t) = 1 + tC(t)2

= C(t)2E(t)d d th power of series E(t)=C(t)−1= 1−2t−
√
1−4t

2t

with square-root singularity (also explains
√
n)
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The Schaeffer bijection
bijection between: - vertex-pointed quadrangulations with n faces

i+2

i+1 i+1

i

i+1

ii

i+1

Local rule in each face:

- well-labelled trees with n edges and min-label= 1

Crucial property: the label `(v) of a vertex is its distance (in Q)
from the pointed vertex
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Reexpressing the 2-point function of quadrangulations
Let G = ∪nG[n] = family of quadrangulations, with n = #(faces)

Let G◦◦ = { quadrangulations + marked vertex v + marked edge e }
G◦◦d := subfamily where dist(v, e) = d+ 1

Then Gd(t)= generating function (by edges) of rooted well-labelled trees
with root-vertex label = d and min-label = 1
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Reexpressing the 2-point function of quadrangulations
Let G = ∪nG[n] = family of quadrangulations, with n = #(faces)

Let G◦◦ = { quadrangulations + marked vertex v + marked edge e }
G◦◦d := subfamily where dist(v, e) = d+ 1

Then Gd(t)= generating function (by edges) of rooted well-labelled trees
with root-vertex label = d and min-label = 1

Rk: Let Ri(t) = GF of rooted well-labelled trees where root-label = i
and min-label ≥ 1

Then Gd(t) = Rd(t)−Rd−1(t)



An equation system for the Ri(t)

Ri(t) counts i

>0

= i

i 1 i 1 i 1. . .i

=
1

1− t(Ri−1(t) +Ri(t) +Ri+1(t))

>0 >0 >0 >0

[Bouttier, Di Francesco, Guitter’03]
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An equation system for the Ri(t)

Ri(t) counts i

>0

= i

i 1 i 1 i 1. . .i

=
1

1− t(Ri−1(t) +Ri(t) +Ri+1(t))

>0 >0 >0 >0

Hence the Ri(t) are specified by (infinite!) equation system:

R0 = 0, Ri(t) = 1 + tRi(t) ·
(
Ri−1(t) +Ri(t) +Ri+1(t)

)
for i ≥ 1

Rk: The series R(t) = limi→∞Ri(t) satisfies R(t) = 1 + 3tR(t)2

=
∑
n≥0 3

nCatnt
n

[Bouttier, Di Francesco, Guitter’03]



Computing the Ri(t) iteratively

We have R1(t) =
∑
n≥0

2 · 3n(2n)!
n!(n+ 2)!

tn = R− tR3

and for i ≥ 1 we have Ri = 1 + tRi · (Ri−1 +Ri +Ri+1)

⇓

Ri+1 =
Ri − 1

tRi
−Ri−1 −Ri
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Computing the Ri(t) iteratively

We have R1(t) =
∑
n≥0

2 · 3n(2n)!
n!(n+ 2)!

tn = R− tR3

and for i ≥ 1 we have Ri = 1 + tRi · (Ri−1 +Ri +Ri+1)

⇓

Ri+1 =
Ri − 1

tRi
−Ri−1 −Ri

⇒ compute R2, R3, . . . iteratively
each Ri has a rational expression in t and R

hence has a rational expression in R (since t = R−1
3R2 )

this rational expression does not take a nice form by a simple inspection



Approach for finding a nice explicit expression
[Bouttier, Di Francesco, Guitter’03]

First step: ansatz Ri(t) = R(t) ·
(
1− c(t) · x(t)i +O(x2i)

)
with x(t) to be determined

Rk: should have x(t) = Θ(t) as t→ 0 since R(t)−Ri(t) = Θ(ti)
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Approach for finding a nice explicit expression
[Bouttier, Di Francesco, Guitter’03]

First step: ansatz Ri(t) = R(t) ·
(
1− c(t) · x(t)i +O(x2i)

)
with x(t) to be determined

Inject into equation Ri = 1 + tRi · (Ri−1 +Ri +Ri+1)

R · (1− cxi) = 1 + tR2 · (1− cxi)(3− cxi−1 − cxi − cxi+1) +O(x2i)

Rk: should have x(t) = Θ(t) as t→ 0 since R(t)−Ri(t) = Θ(ti)

R(1− ε) = 1 + tR2 · (1− ε)(3− ε(x−1 + 1 + x)) +O(ε2)

m ε = cxi

extracting coefficient [ε] gives −R = tR2 · (−3− x−1 − 1− x)

m
R− 3tR2 = tR2 · (1 + x−1 + x)

m
1 + x+ x−1 = 1

tR2



Expressing the Ri(t) in terms of x(t)

1 + x+ x−1 =
1

tR2
=
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R− 1
• We have

hence R(t) is rational in terms of x(t), we find R =
x2 + 4x+ 1

x2 + x+ 1

[Bouttier, Di Francesco, Guitter’03]
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1 + x+ x−1 =
1

tR2
=

3

R− 1
• We have

hence R(t) is rational in terms of x(t), we find R =
x2 + 4x+ 1

x2 + x+ 1

• We then substitute in the expressions of R1, R2, R3, . . . in terms of R
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and recognize the explicit expression Ri = R
(1− xi)(1− xi+3)

(1− xi+1)(1− xi+2)

• To check that this guessed expression works
we have to check that this gives a power series for each i ≥ 0,

and that R0 = 0, Ri = 1 + tRi · (Ri−1 +Ri +Ri+1) for i ≥ 1

(true since x(t) = tR(t)2 · (1 + x(t) + x(t)2))

We let F (x, y) = R(x)
(1− y)(1− yx3)

(1− yx)(1− yx2)
(y plays the role of xi)

and check F (t, x) = 1 + t(x)F (x, y) · (F (x, yx−1) + F (x, y) + F (x, yx))



Exact expression

Ri = R
(1− xi)(1− xi+3)

(1− xi+1)(1− xi+2)

The generating functions Ri ≡ Ri(t) are expressed as

[Bouttier, Di Francesco, Guitter’03]

with R ≡ R(t) given by R = 1 + 3tR2

and x ≡ x(t) given by x = tR2(1 + x+ x2)

- combinatorial derivations in

References:

- first derivation in BDG’03: ‘Geodesic distances in planar graphs’

[Bouttier, Guitter’12]: ‘planar maps and continued fractions’
(+ general determinant expressions for maps with bounded face-degrees)

[Guitter’17]: ‘The distance-dependent two-point function of quadrangulations:
a new derivation by direct recursion’



Asymptotic considerations
• Two-point function of (plane) trees:

Gd(t) = (tR2)d

with R = 1 + tR2 = 1−
√
1−4t
2t

Gd is the d th power of a series having a square-root singularity

⇒ d/n1/2 converges in law (Rayleigh law, density u exp(−u2/2))

x(t) ∼ 1− (1− t)α ⇒

• Two-point function of quadrangulations:

Gd(g) ∼d→∞ a1x
d + a2x

2d + · · ·
where x = x(t) has a quartic singularity

⇒ d/n1/4 converges to an explicit law [BDG’03]

Convergence in the two cases “follows” from (proof by Hankel contour)

[tn]xun
α
∼

1

2πn

∫ ∞
0

e−sIm(exp(−usαeiπα))ds

[Banderier, Flajolet, Louchard, Schaeffer’03]: for 0 < α < 1,

t→ 1

d = 5
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Recall the classical bijection from (rooted) quadrangulations to maps
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The 2-point function of planar maps
Recall the classical bijection from (rooted) quadrangulations to maps

Hence R2d+1(t) = GF (by edges) of rooted maps + marked vertex v
such that v is at face-distance ≤ d from root-vertex

What about the 2-point function of maps for the edge-distance?

vertex v at edge-distance 2k
from the root-vertex

v
v

vertex v at face-distance k
from the root-vertex



The Ambjørn-Budd bijection
a different bijection between quadrangulations and maps

[Ambjørn-Budd’13]
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Hence Rd(t) = GF (by edges) of rooted maps + marked vertex v
such that v is at edge-distance ≤ d− 1 from root-vertex



Distances from the meta-bijection Φ ?

local rule

accessible from v0

Example for a 0-gonal source (pointed vertex v0)

no ccw cycle
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inverse bijection can be done via growing a cactus from the mobile
other way of doing the inverse bijection by labelling the white corners
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- every white corner of label i ≥ 2
throws an edge to next corner i− 1
in a ccw walk around the tree

4

4
- then every white corner of label 1

throws an edge to new created vertex

cf Schaeffer’s bijection
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(at least geodesic length L(e))

[Addario-Berry&Albenque’13]: for Gn a random simple triangulation (or
random simple quadrangulation) on n vertices, and e a random edge of Gn,

length(P (e)) ∼ L(e)

P (e)

(in their proof that Gn converges to Brownian map)



‘Quasi’ 2-point function for simple quadrangulations
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the 2-point function w.r.t. length of rightmost walk is

Gi(s) = ri(s)− ri−1(s)

where ri(s) = 1 + s · ri−1(s)ri(s)ri+1(s)

similar expression for ri(s) as for Ri(t) (cf [Bouttier,Guitter’10])
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