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Motivations for bijections
e efficient manipulation of maps (random generation algo.)

e key ingredient to study distances in random maps

typical distances of order n'/* (# n'/2 in random trees) t’?c?p?i}c/:!s

Theo: [Le Gall, Miermont’13] M, := random quadrangulation n faces

Upon rescaling distances by nl'/4, M,, converges to a continuum
random metric space called the Brownian map

(Rk: for random trees, rescaling by n'/2, convergence to CRT)

large tree large map




The 2-point function

e Let G = U, G[n| be a family of maps (or trees, or graphs)
where n is a size-parameter (# faces, # edges, # vertices,...)

o Let G°° = family of objects from G with 2 marked vertices v1, v
(or one marked vertex and one rooted edge, etc.)
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let G7° := subfamily of G°° where dist(vg,v2) = d Z ;

The counting series G4 = G4(t) of G3° with respect to
the size is called the 2-point function of G
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e Let G = U, G[n| be a family of maps (or trees, or graphs)
where n is a size-parameter (# faces, # edges, # vertices,...)

o Let G°° = family of objects from G with 2 marked vertices v1, v
(or one marked vertex and one rooted edge, etc.)

let G7° := subfamily of G°° where dist(vg,v2) = d s

n=3~§
d=3

The counting series G4 = G4(t) of G3° with respect to
the size is called the 2-point function of G

e Let X,, := dist(vy,v2) in a random object from G°°|n)|

t"Ga(t)

Then P(X,, = d) = 7m0 s
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The 2-point function of plane trees

Consider a random plane tree on n edges with two marked corners

R /\< X )2 distance d = 3

Gq(t) = t4C(¢)24+2  where C(t) = 1 4+ tC(t)?

= (t)2 dth power of series E(t)=C(t)—1= 1—2t—22/1_74t
~——" with square-root singularity (also explains /)

d+1 /2n + 2
Lagrange inversion = [t"]|G4(t) = _( )
n n+d
~ in\j; xe_‘”Z for \/iﬁ S
and we have [t"]|G°°(t) = Cat,, - (2n — 1) ~ 2-;1;:&
1
= P(Xn=d) ~ _2356_962 hence An » law of density e

I/ /m Vi (Rayleigh law)



The Schaeffer bijection

bijection between: - vertex-pointed quadrangulations with n faces
- well-labelled trees with n edges and min-label= 1

Crucial property: the label /(v) of a vertex is its distance (in Q)
from the pointed vertex



Reexpressing the 2-point function of quadrangulations

Let G = U, G|n| = fami
Let G°° = { quadrangu
G5° 1= subfamily w

y of quadrangulations, with n = #(faces)

ations + marked vertex v + marked edge ¢ }

nere dist(v,e) =d+1

Then G4(t)= generating function (by edges) of rooted well-labelled trees
with root-vertex label = d and min-label =1



Reexpressing the 2-point function of quadrangulations

Let G = U, G|n| = fami
Let G°° = { quadrangu
G5° 1= subfamily w

y of quadrangulations, with n = #(faces)

ations + marked vertex v + marked edge ¢ }

nere dist(v,e) =d+1

Then G4(t)= generating function (by edges) of rooted well-labelled trees
with root-vertex label = d and min-label =1

Rk: Let R;(t) = GF of

rooted well-labelled trees where root-label = 1

and min-label > 1
Then Gd(t) = Rd(t) — Rd_l(t)



An equation system for the R;(?)

[Bouttier, Di Francesco, Guitter'03]
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An equation system for the R;(?)

[Bouttier, Di Francesco, Guitter'03]

R;(t) counts =
> ()

T 1—t(Ri_1(t) + Ri(t) + Riy1 (D))

Hence the R;(t) are specified by (infinite!) equation system:

Ry =0, Ri(t) =14+ tRi(t) - (Ri—1(t) + Ri(t) + Ri+1(t)) for i > 1

Rk: The series R(t) = lim;_, o, R;(t) satisfies R(t) = 1 + 3tR(t)?
= D >0 3" Catpt”



Computing the R;(t) iteratively

2-3"(2n)!
We have R;(t) = Z 3"(2n)

t" = R — tR’
= n!(n + 2)!

and for i > 1 we have R; =1+ tR; - (R;_1 + R; + Ri41)

4
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Computing the R;(t) iteratively

2-3"(2n)!
We have R;(t) = Z 3"(2n)

t" = R — tR’
= n!(n + 2)!

and for i > 1 we have R; =1+ tR; - (R;_1 + R; + Ri41)

Y
R, —1
R, 1 = —R,_1— R;
+1 IR, 1
= compute Ry, R3, ... iteratively

each R; has a rational expression in t and R

hence has a rational expression in R (since t = 1:-32];1)

this rational expression does not take a nice form by a simple inspection
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Approach for finding a nice explicit expression
[Bouttier, Di Francesco, Guitter’03]

First step: ansatz R;(t) = R(¢) - (1 — c(t) - z(t)" + O(z*"))
with x(t) to be determined

Rk: should have z(t) = ©(t) as t — 0 since R(t) — R;(t) = O(t*)

Inject into equation R, = 14+ tR; - (Ri—1+ R; + Rij+1)
R-(1—cx')=1+tR? (1 —-cx")(3—cz* ! —ca® —cx*T!) + O(z?*)
Te=ca’

R1—e)=1+tR2-(1—)(3—e(z~ ' +1+2))+O(e2)

extracting coefficient [¢] gives —R=tR? (-3 —z 1 —-1—1)
0
R—3tR?=tR? - (1+z ! +2)
0

l+z+2 1=




Expressing the R;(t) in terms of x(?)
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1 3
e Wehave 14+xz+z 1= _ 2

tR2  R-—1
2
. . . . - +4xr + 1
hence R(t) is rational in terms of z(?), we find R = —;
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Expressing the R;(t) in terms of x(?)

[Bouttier, Di Francesco, Guitter’03]

1 3
We h 1 e =
e \We have l+x+<x S 1
2
. . . . - +4xr + 1
hence R(t) is rational in terms of z(?), we find R = —;
zc+x+1
e We then substitute in the expressions of Ry, Ry, R3,... in terms of R

(1 —2*)(1 — z*+3)

and recognize the explicit expression | R, = R . .
& PRER =P (1— zit1)(1 — 2i+2)

e To check that this guessed expression works
we have to check that this gives a power series for each 7 > 0,

(true since z(t) = tR(t)* - (1 + x(t) + z(t)?))
and that By = 0, R, =1+1tR; - (Ri—l + R; + Rz’—|—1) fore>1

We let F(z,y) = R(z) ((11_—;33)((11—};;)) (y plays the role of ')

and check F(t,z) =1+ t(x)F(x,y) - (F(z,yz~ 1) + F(x,y) + F(z,yz))



Exact expression
[Bouttier, Di Francesco, Guitter’03]

The generating functions R; = R;(t) are expressed as

(1 —z*)(1 — z*+3)
(1 — 2i+1)(1 — 2i+2)

R, =R

with R = R(t) given by R = 1 + 3tR?
and x = z(t) given by x = tR?*(1 + z + x°)

References:
- first derivation in BDG'03: ‘Geodesic distances in planar graphs’

- combinatorial derivations in

[Bouttier, Guitter'12]: ‘planar maps and continued fractions’
(4 general determinant expressions for maps with bounded face-degrees)

[Guitter’l?]: ‘The distance-dependent two-point function of quadrangulations:
a new derivation by direct recursion’



Asymptotic considerations
e Two-point function of (plane) trees:

o T R

with R =1+ tR? = 14— d=5

(G4 is the d th power of a series having a square-root singularity

= d/n'/? converges in law (Rayleigh law, density uexp(—u?/2))

e Two-point function of quadrangulations:

Ga(9) ~dsoo a1 + agz? + - - -

where z = x(t) has a quartic singularity
= d/n1/4 converges to an explicit law [BDG’03]

Convergence in the two cases “follows” from (proof by Hankel contour)
[Banderier, Flajolet, Louchard, Schaeffer’'03]: for 0 < a < 1,
oY 1 e .
r(t)~1—(1—-1)%= [t"]z"" ~ — e “Im(exp(—us“e'™?))ds
t—1 2™ Jo
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The 2-point function of planar maps
Recall the classical bijection from (rooted) quadrangulations to maps

vertex v at edge-distance 2k vertex v at face-distance k
from the root-vertex from the root-vertex

Hence Rogq11(t) = GF (by edges) of rooted maps + marked vertex v
such that v is at face-distance < d from root-vertex

What about the 2-point function of maps for the edge-distance?



The Ambjgrn-Budd bijection [Ambjgrn-Budd’13]

a different bijection between quadrangulations and maps

‘opposite’ Schaeffer rules
@) @

@
@ @

Hence R4(t) = GF (by edges) of rooted maps + marked vertex v
such that v is at edge-distance < d — 1 from root-vertex



Distances from the meta-bijection ¢ ?
Example for a 0-gonal source (pointed vertex vy)

accessible from vy §§' % @

no ccw cycle

local rule

/.

e
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inverse bijection can be done via growing a cactus from the mobile

other way of doing the inverse bijection by labelling the white corners
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Distances from the meta-bijection ¢ ?
inverse bijection can be done via growing a cactus from the mobile

other way of doing the inverse bijection by labelling the white corners

- every white corner of label 7 > 2

B o throws an edge to next corner ¢ — 1
1A ® . in a ccw walk around the tree
& N/ - - then every white corner of label 1
3 ----- . 3 throws an edge to new created vertex

cf Schaeffer's bijection
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Distances from the meta-bijection ¢ ?

P(e)

recover the orientation

white corner c - - edge €

label of ¢ - >~ length of ‘rightmost walk
P(e) starting from e

(at least geodesic length L(e))

[Addario-Berry&Albenque’l13]: for G,, a random simple triangulation (or
random simple quadrangulation) on n vertices, and e a random edge of G,,,

length(P(e)) ~ L(e)
(in their proof that GG,, converges to Brownian map)



‘Quasi’ 2-point function for simple quadrangulations

the 2-point function w.r.t. length of rightmost walk is
Gi(s) =7i(s) —ri—1(s)

where 7;(s) =14+ s-r;—1(s)ri(s)rir1(s)

similar expression for r;(s) as for R;(t) (cf [Bouttier,Guitter'10])



