# Schnyder woods generalized to higher genus

Eric Fusy (Ecole Polytechnique, Paris) joint work with Luca Castelli Aleardi and Thomas Lewiner

# **Combinatorics of maps**

### Surfaces

- All surfaces here are closed and orientable
- Classification: one surface in each genus g



### Graphs on surfaces, maps

• Graph on surface = graph G embedded on a surface  $S_g$  (no edge-crossings)





• G is a map if the components of G\  $S_g$  are topological disks





### How to display a map?

• g=0: project on the plane



g=1: S<sub>g</sub> like a square with identified opposite sides



g>1 : S<sub>g</sub> like a 4g-polygon + identifications of sides

### **Enumeration of planar maps**

Strikingly simple counting formulas



Recursive method: [Tutte 60's]

Bijective method: [Cori-Vauquelin'84], [Schaeffer'97] (bijections rely on combinatorial structures: orientations,...)

- No exact counting formula known, but
  - Can write recurrences [Bender-Canfield'84]
  - Some bijections work [Chapuy-Marcus-Schaeffer'98]
  - Simple asymptotic pattern [Bender-Canfield'86, Gao'93]]

$$\mathcal{M} = \cup_{g,n} \mathcal{M}_g[n]$$
 a map family (e.g. triangulations)

Then 
$$|\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} c_g \gamma^n n^{5(g-1)/2}$$
.

- No exact counting formula is known, but
  - Can write recurrences [Bender-Canfield'84]
  - Some bijections work [Chapuy-Marcus-Schaeffer'98]
  - Simple asymptotic pattern [Bender-Canfield'86, Gao'93]

$$\mathcal{M} = \bigcup_{g,n} \mathcal{M}_g[n]$$
 a map family (e.g. triangulations)

Then 
$$|\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} c_g \gamma^n n^{5(g-1)/2}$$
.

$$\Rightarrow |\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} |\mathcal{M}_0[n]| \cdot n^{\Theta(g)}$$

- No exact counting formula is known, but
  - Can write recurrences [Bender-Canfield'84]
  - Some bijections work [Chapuy-Marcus-Schaeffer'98]
  - Simple asymptotic pattern [Bender-Canfield'86, Gao'93]

$$\mathcal{M} = \bigcup_{g,n} \mathcal{M}_g[n]$$
 a map family (e.g. triangulations)

Then 
$$|\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} c_g \gamma^n n^{5(g-1)/2}$$
.

$$\Rightarrow |\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} |\mathcal{M}_0[n]| \cdot n^{\Theta(g)}$$

A map in genus g 'is like' a planar map with  $\Theta(g)$  marked edges

- No exact counting formula is known, but
  - Can write recurrences [Bender-Canfield'84]
  - Some bijections work [Chapuy-Marcus-Schaeffer'98]
  - Simple asymptotic pattern [Bender-Canfield'86, Gao'93]

$$\mathcal{M} = \bigcup_{g,n} \mathcal{M}_g[n]$$
 a map family (e.g. triangulations)

Then 
$$|\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} c_g \gamma^n n^{5(g-1)/2}$$
.

$$\Rightarrow |\mathcal{M}_g[n]| \underset{n \to \infty}{\sim} |\mathcal{M}_0[n]| \cdot n^{\Theta(g)}$$

A map in genus g 'is like' a planar map with  $\Theta(g)$  marked edges

- 'is like' can be made rigorous in some cases:
  - Counting maps with a unique face [Chapuy'08]
  - This talk: Schnyder woods can be extended to genus g>0 by allowing  $\Theta(g)$  'special edges' [Castelli, F, Lewiner'08]

# Schnyder woods for planar triangulations

### Planar triangulations



### Definition of Schnyder woods



Every planar triangulation admits a Schnyder wood [Schnyder'89]

### **Fundamental property**

Schnyder wood → 3 spanning trees (one for each color)



### **Applications of Schnyder woods**









Traversal algorithm: the faces are conquerred progressively

[Schnyder'89] reformulated by [Brehm'03]



First step: Conquer

The outer face













































































## Computing a Schnyder wood



#### Conquest step:



#### Result

 At each step, take care that the chosen vertex is not incident to a chord (nor to the bottom outer edge)



is forbidden



is accepted

There is always such a vertex



admissible vertex

 Hence the algorithm terminates, it outputs a Schnyder wood [Schnyder'89, Brehm'03]

#### Triangulations in higher genus



A triangulation of genus 1

#### Triangulations in higher genus



A triangulation of genus 1, with a root-face.

*n* inner vertices  $\downarrow \\ 3(n+2g) \text{ inner edges}$ 

#### Triangulations in higher genus



A triangulation of genus 1, with a root-face.

*n* inner vertices

3(n+2g) inner edges

No hope to have outdegree 3 everyhwhere























Can not extend conquered area C

#### Special step:

- choose chord e
- make it fat
- add it to C



Can not extend conquered area C

Special step:

- choose chord e
- make it fat
- add it to C

C: disk->cylinder

 $S_q$  \ C: torus->cylinder































Can not extend conquered area C

Special step:

- choose chord e
- make it fat
- add it to C

C: cylinder->torus

 $S_q$  \ C : cylinder->disk



































#### Main result

- Theorem [Castelli, F, Lewiner'08]: The conquest (with 2g special steps) terminates. Running time is O((n+g)g).
- The structure computed is called a g-Schnyder wood



#### Main result

- **Theorem** [Castelli, F, Lewiner'08]: The conquest (with 2g special steps) terminates. Running time is O((n+g)g).
- The structure computed is called a g-Schnyder wood
- Our traversal procedure is inspired by handlebody theory:



Handlebody decomposition of a torus

From [Rossignac et al'03]: "EdgeBreaker" procedure







T<sub>R</sub>={red edges}+{R-B}+{R-G} is a spanning tree





- T<sub>R</sub>={red edges}+{R-B}+{R-G} is a spanning tree
- G<sub>R</sub>=T<sub>R</sub>+ {2g special edges} is a spanning submap with 1 face





- T<sub>R</sub>={red edges}+{R-B}+{R-G} is a spanning tree
- G<sub>R</sub>=T<sub>R</sub>+ {2g special edges} is a spanning submap with 1 face
- G<sub>B</sub>={blue edges}+{B-R}+{B-G} is a spanning submap with 1+2g faces





- T<sub>R</sub>={red edges}+{R-B}+{R-G} is a spanning tree
- G<sub>R</sub>=T<sub>R</sub>+ {2g special edges} is a spanning submap with 1 face
- G<sub>B</sub>={blue edges}+{B-R}+{B-G} is a spanning submap with 1+2g faces
- G<sub>G</sub>={green edges}+{G-R}+{G-B} is a spanning submap with 1+2g faces

# Application to coding

#### Motivation: mesh compression

Triangulations are the combinatorial part of triangular meshes



mesh of genus 0



mesh of genus 2

- Naïve encoding: vertices are labelled {1,2,...,n}
  store the faces (vertex-triples), takes memory of order n log(n)
- This talk: Schnyder woods → encoding in 4n+O(g log(n)) bits (extends encoding procedure of [He-Kao-Lu'99, Bernardi-Bonichon'07] to any genus)

Reduces to encoding a Schnyder wood



Reduces to encoding a Schnyder wood























Some information is redundant



can erase green outer half-edges



Some information is redundant



locate corners that can have ingoing green half-edges

• Some information is redundant



locate corners that can have ingoing green half-edges







1) W<sub>R</sub>=abaaabaabbbbaabbaab

W<sub>R</sub> has length 2n-2,



1) W<sub>R</sub>=abaaabaabbbbaabbaab

W<sub>R</sub> has length 2n-2,



- 1) W<sub>R</sub>=abaaabaabbbbaabbaab
- 2)  $W_G = 0,0,0,0,1,0,2,1,2,3$

W<sub>R</sub> has length 2n-2,

 $W_G \simeq$  binary word length 2n-6



- 1) W<sub>R</sub>=abaaabaabbbbaabbaab
- 2)  $W_G = 0,0,0,0,1,0,2,1,2,3$

W<sub>R</sub> has length 2n-2,

 $W_G \simeq$  binary word length 2n-6



code length is 4n-8

# Encoding in higher genus

• Everything works the same! (walk along red cut-graph)





# Encoding in higher genus

Everything works the same! (walk along red cut-graph)





• Code-length is  $4n+O(g \log(n))$ 

 Theorem [Castelli, F, Lewiner'08]: A genus g triangulation can be encoded with 4n+O(g log(n)) bits. Coding and decoding take time O((n+g)g)

- Theorem [Castelli, F, Lewiner'08]: A genus g triangulation can be encoded with 4n+O(g log(n)) bits. Coding and decoding take time O((n+g)g)
- Lower bound (entropy): 3.245n+O(g log(n)) bits [Gao]

- Theorem [Castelli, F, Lewiner'08]: A genus g triangulation can be encoded with 4n+O(g log(n)) bits. Coding and decoding take time O((n+g)g)
- Lower bound (entropy): 3.245n+O(g log(n)) bits [Gao]
- In genus 0, bijective coding [Poulalhon-Schaeffer'03] optimal

- Theorem [Castelli, F, Lewiner'08]: A genus g triangulation can be encoded with 4n+O(g log(n)) bits. Coding and decoding take time O((n+g)g)
- Lower bound (entropy): 3.245n+O(g log(n)) bits [Gao]
- In genus 0, bijective coding [Poulalhon-Schaeffer'03] optimal
- In higher genus, best known rate is 4n+O(g log(n)) bits:
  - our encoding based on Schnyder woods
  - Edgebreaker of [Rossignac et al]

#### Conclusion

We extend definition/computation of Schnyder woods to higher genus



- In genus g>0, there are 2g `special' edges
- Schnyder wood -> code triangulation of genus g>0 in 4n+O(g log(n)) bits