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Combinatorics of maps



Surfaces

• All surfaces here are closed and orientable

• Classification: one surface in each genus g

 g=0 (sphere)  g=1 (torus)  g=2



Graphs on surfaces, maps

• Graph on surface = graph G embedded on a surface Sg
(no edge-crossings)

         Not a map
(cylindric component)

 A map
(3 faces)

• G is a map if the components of G\ Sg are topological disks



How to display a map ?

• g=0: project on the plane

outer face Planar map

• g>1 : Sg like a 4g-polygon + identifications of sides

• g=1 : Sg like a square with identified opposite sides



Enumeration of planar maps
• Strikingly simple counting formulas

• Recursive method: [Tutte 60’s]
Bijective method: [Cori-Vauquelin’84], [Schaeffer’97]
(bijections rely on combinatorial structures: orientations,…)



Counting maps in higher genus
• No exact counting formula known, but

– Can write recurrences [Bender-Canfield’84]
– Some bijections work [Chapuy-Marcus-Schaeffer’98]
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• No exact counting formula is known, but
– Can write recurrences [Bender-Canfield’84]
– Some bijections work [Chapuy-Marcus-Schaeffer’98]
– Simple asymptotic pattern [Bender-Canfield’86, Gao’93]

   A map in genus g ‘is like’ a planar map with  Θ(g) marked edges

• ‘is like’ can be made rigorous in some cases:
– Counting maps with a unique face [Chapuy’08]
– This talk: Schnyder woods can be extended to genus

g>0 by allowing Θ(g) ‘special edges’ [Castelli, F, Lewiner’08]

Counting maps in higher genus



Schnyder woods for planar
triangulations



Planar triangulations

 n inner vertices  

 3n inner edges  



Definition of Schnyder woods
Each inner edge is
directed and colored
in red, green or blue

Local rules:

• Every planar triangulation admits a Schnyder wood [Schnyder’89]



Fundamental property
• Schnyder wood     3 spanning trees (one for each color)



Applications of Schnyder woods
Graph drawing Coding

Planarity criterion

[Schnyder’90, Bonichon-Felsner-Mosbah’04]

[Schnyder’89, Felsner-Zickfeld’04]

[He-Kao-Lu’99, Bernardi-Bonichon’07, Poulalhon-Schaeffer’03]

0110000110…



Computing a Schnyder wood

Traversal algorithm:
the faces are 
conquerred 
progressively

[Schnyder’89]
reformulated by
[Brehm’03]



First step: Conquer 
The outer face

Computing a Schnyder wood
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Computing a Schnyder wood

Conquest step:



Result
• At each step, take care that the chosen vertex is

not incident to a chord (nor to the bottom outer edge)

 is forbidden

• There is always such a vertex

admissible vertex

• Hence the algorithm terminates, it outputs a Schnyder wood
[Schnyder’89, Brehm’03]

 is accepted



Triangulations in higher genus

A triangulation
of genus 1
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Triangulations in higher genus

A triangulation
of genus 1,
with a root-face.

n inner vertices

3(n+2g) inner edges

No hope to
have outdegree 3
everyhwhere  
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Conquest in higher genus

 Can not extend
conquered area C

Special step:
- choose chord e
- make it fat
- add it to C 

C : disk->cylinder
Sg\C : torus->cylinder
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Conquest in higher genus

 Can not extend
conquered area C

Special step:
- choose chord e
- make it fat
- add it to C 

C : cylinder->torus
Sg\C : cylinder->disk



Conquest in higher genus

Continue
and finish !
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Conquest in higher genus

Conquest step:



Conquest in higher genus

Finished !



Main result

• Theorem [Castelli, F, Lewiner’08]: The conquest  (with 2g
special steps) terminates. Running time is O((n+g)g).
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Main result

• Theorem [Castelli, F, Lewiner’08]: The conquest  (with 2g
special steps) terminates. Running time is O((n+g)g).

• The structure computed is called a g-Schnyder wood

• Our traversal procedure is inspired by handlebody theory:

Handlebody decomposition 
of a torus

From [Rossignac et al’03]:
``EdgeBreaker’’ procedure



Properties in higher genus
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• TR={red edges}+{R-B}+{R-G} is a spanning tree
• GR=TR+ {2g special edges} is a spanning submap with 1 face

• GB={blue edges}+{B-R}+{B-G} is a spanning submap with 1+2g faces

• GG={green edges}+{G-R}+{G-B} is a spanning submap with 1+2g faces

Properties in higher genus



Application to coding



Motivation: mesh compression
• Triangulations are the combinatorial part of triangular meshes

mesh of genus 0  mesh of genus 2

• Naïve encoding: vertices are labelled {1,2,…,n}
store the faces (vertex-triples), takes memory of order n log(n)

• This talk: Schnyder woods      encoding in 4n+O(g log(n)) bits
(extends encoding procedure of [He-Kao-Lu’99, Bernardi-Bonichon’07] to any genus)



Encoding a planar triangulation
• Reduces to encoding a Schnyder wood
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Encoding a planar triangulation
• Some information is redundant

locate corners
that can have
ingoing green
half-edges



Encoding a planar triangulation

is coded by 2 words:What we obtain:
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• WR codes the red tree
  (Dyck word)
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Encoding a planar triangulation

2 encoding words:

• WR codes the red tree
  (Dyck word)

2) WG=0,0,0,0,1,0,2,1,2,3

 at framed corners
• WG codes green indegrees

code length is 4n-8

1) WR=abaaabaabbbbaabbaabbab
 WG      binary word length 2n-6
WR has length 2n-2,
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Encoding in higher genus
• Everything works the same ! (walk along red cut-graph)

• Code-length is 4n+O(g log(n))

s e



Results (coding)
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can be encoded with 4n+O(g log(n)) bits. Coding and
decoding take time O((n+g)g)
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Results (coding)

• In higher genus, best known rate is 4n+O(g log(n)) bits:
        - our encoding  based on Schnyder woods

            - Edgebreaker of [Rossignac et al]

• In genus 0, bijective coding [Poulalhon-Schaeffer’03] optimal

• Lower bound (entropy): 3.245n+O(g log(n)) bits [Gao]

• Theorem [Castelli, F, Lewiner’08]: A genus g triangulation
can be encoded with 4n+O(g log(n)) bits. Coding and
decoding take time O((n+g)g)



Conclusion
• We extend definition/computation of Schnyder woods to higher genus

• In genus g>0, there are 2g `special’ edges

• Schnyder wood -> code triangulation of genus g>0 in 4n+O(g log(n)) bits

planar toroidal


