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- there is a length-preserving bijection between A and B
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Duality phenomenon for paths
We say two path families A and B are dual if

- both families use the same steps, such that
A has stronger endpoint constraint, B has stronger domain constraint

Example in 2D: (step-set {↑,←, ↓,→})

- there is a length-preserving bijection between A and B

↔ ↔

Motivations:
- mapping A → B for counting (A easier)
- mapping B → A for random generation (early-abort rejection)

genB: while not fails
generate random walk step by step
reject as soon as walk leaves domain for B (if not, success!)
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Classical 1D example

A B
a2n =

(
2n
n

)
↔

Rk: extends to r ≥ 1 paths

k

2k

↔

[Proctor’83, Elizalde’15, Hanaker et al.’17]

r=2

1st bijection:
γ1 γ2

mir(γ1)γ2
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Classical 1D example
2nd bijection:

via Dyck paths with marked down-steps ending on x-axis

k = 3 excursions
below x-axis

ends at height 2k = 6

k = 3 marked steps

A

B

intermediate

flip marked steps

flip excursions
of marked steps



Outline of the talk
Duality relations for 2D walks using bijections to oriented maps

• Simple walks: {↑,←, ↓,→}

using Bernardi-Bonichon bijection for Schnyder woods

• Tandem walks: {←, ↑,↘}

↔

using Kenyon et al. bijection for bipolar orientations

(and extension)
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Simple walks



2D simple walk ↔ pair of directed walks
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2D simple walk ↔ pair of directed walks

a

a

a
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l l l

x

y x(t)+y(t)

x(t)−y(t)

2y
x

Rk: ↔ is the same as ↔

←→ ←→
easy Schnyder

woods

[Elizalde’15]
path manipulations

or



Schnyder woods on triangulations

at each inner vertex

at the outer vertices

yields a spanning
tree in each color

[Schnyder’89]

Schnyder wood = choice of a direction and color
(red, green, or blue) for each inner edge, such that:

Local conditions:
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Bijection for Schnyder woods
Some information is redundant:

[Bernardi, Bonichon’07]

just need the blue tree and positions of the ingoing red edges

u1

u2

u3

u4

u5

u6

Bottom Dyck path:
contour of blue tree

Upper Dyck path:
red indegrees

4th up-step

in(u4)=2



Bijection for Schnyder woods [Bernardi, Bonichon’07]

B

RG

deg(B) = 3

deg(R)=2

↔

The mapping is a bijection from Schnyder woods with n+ 3 vertices
to non-crossing pairs of Dyck paths of lengths 2n
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Proof of ↔

→ →

→ →

↗

↘

lmirror

Rk: ↔

proof via arc diagrams

also holds

[Courtiel,F,Lepoutre,Mishna’18]

[Courtiel,F,Lepoutre,Mishna’18]



Extension to prove

a

a
↔

a

a

a
a↔ ↔

Bijection extended to
a=2

→
a

a
←→· · ·

l l

a
· · ·

mirror



Tandem walks



Tandem walks
A tandem-walk is a walk in Z2 with step-set {N,W,SE}

in the plane Z2

in the half-plane {y ≥ 0}

in the quarter plane N2

cf 2 queues in series

y x

SEN W



Duality relation for tandem walks
There is a bijection between:

• tandem walks of length n

• tandem walks of length n

staying in the quarter plane N2

staying in the half-plane {y ≥ 0}
and ending at y = 0

m

⇔

start

end

start end

Rk: The bijection preserves the number of SE steps

t

y
Motzkin walk



Link to Young tableaux of height ≤ 3
• There is a bijection between:

tandem walks of length n staying in the quadrant N2, ending at (i, j)

Young tableaux of size n and height ≤ 3, of shape

m

i
j

1 2 5 8 9 11
3 6 7 10 13
4 12

1

2
3

4

5 6

7
8

9 10
11

12

13

walk
tableau

N
SE
W

(after s steps, current y = #N −#SE, current x = #SE −#W )

start

end



Bijection with Motzkin walks
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[Gouyou-Beauchamps’89]

tandem walk in N2tandem walk in N2
Young tableau
of height ≤ 3



Bijection with Motzkin walks

1 2 5 8 9 11
3 6 7 10 13
4 12

1

2
3

4

5
6

7
8

9 10
11

12

13

[Gouyou-Beauchamps’89]

Robinson
Schensted

involution
with no

tandem walk in N2tandem walk in N2
Young tableau
of height ≤ 3



Bijection with Motzkin walks

1 2 5 8 9 11
3 6 7 10 13
4 12

1

2
3

4

5
6

7
8

9 10
11

12

13

[Gouyou-Beauchamps’89]

Robinson
Schensted

involution
with no

matching
with no nesting

tandem walk in N2tandem walk in N2
Young tableau
of height ≤ 3



Bijection with Motzkin walks

1 2 5 8 9 11
3 6 7 10 13
4 12

1

2
3

4

5
6

7
8

9 10
11

12

13

[Gouyou-Beauchamps’89]

Robinson
Schensted

involution
with no

matching
with no nesting

Motzkin
walk

no nesting

FIFO

tandem walk in N2tandem walk in N2
Young tableau
of height ≤ 3



Bijection with Motzkin walks

1 2 5 8 9 11
3 6 7 10 13
4 12

1

2
3

4

5
6

7
8

9 10
11

12

13

[Gouyou-Beauchamps’89]

Robinson
Schensted

involution
with no

matching
with no nesting

Motzkin
walk

no nesting

no crossing

FIFO

LIFO

tandem walk in N2tandem walk in N2
Young tableau
of height ≤ 3



An extension of the walk model
General model:

step-set: • the SE step

level:= i+ j level 1
level 2

level 3

SE
x

y

• every step (−i, j) (with i, j ≥ 0)
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An extension of the walk model
General model:

step-set: • the SE step

level:= i+ j level 1
level 2

level 3

SE
x

y

• every step (−i, j) (with i, j ≥ 0)

1
2

3

4

5
6

7

8

9

10

startend

Example:

The bijection (using bipolar orientations) preserves the number of
SE-steps and the number of steps in each level p ≥ 1

different bijection using automata rules

We still have
↔

[Chyzak-Yeats’18]

[Bousquet-Mélou,F,Raschel’19]



Bipolar and marked bipolar orientations

N

S

bipolar orientation:

inner vertex

inner face

(on planar maps)

= acyclic orientation
with a unique source S
and a unique sink N

with S,N incident to the outer face



Bipolar and marked bipolar orientations

E

N

S

W

N

S

bipolar orientation: marked bipolar orientation:

indegree=1

outdegree=1

inner vertex

inner face

a marked vertex W 6=N on left boundary
a marked vertex E 6=S on right boundary

(on planar maps)

= acyclic orientation
with a unique source S
and a unique sink N

with S,N incident to the outer face



The Kenyon et al. bijection

N

S

W

E

N

S

W
E

N

S

W

N

S

W

E

E

• steps (−i, j) create a new inner face (of degree i+ j + 2)

• SE steps create a new black vertex
N

S

W
E

N

S

W

E

N=E

S

W

S

W

N=E

+SE-step +SE-step

[Kenyon, Miller, Sheffield, Wilson’16]

start with
N E

W S
and read the walk step by step



The Kenyon et al. bijection

N=E

W=S

S

N

E
W

S

W

S

W

S

W

S

N

E

W

N

W

E

S

E

S

N

W

S

W

E

N

S

W E

N

1
2

3

4

5
6

7

8

9

10

1 3 4 5

6 7 8 9 10

S

N=E

W2

N=E N=E

N=E

general tandem-walk (in Z2)

SE step black vertex

The Kenyon et al. bijection

step (−i, j) inner face of degree i+j+2

marked bipolar orientationbijection

[Kenyon, Miller, Sheffield, Wilson’16]



Parameter-correspondence in the bijection

1 + # steps # plain edges (not dashed)

# “face-steps” # inner faces

# SE-steps # black vertices

of level p of degree p+ 2

E

S

N

b+1 d

c+1
a

W

a

b

c

dstart
end



An involution on marked bipolar orientations

b+1

a

d

E

N

S

W

c+1

db+1

c+1a



An involution on marked bipolar orientations

b+1

a

d

E

N

S

W

c+1

a

d

b+1

c+1

E

S

N

W

db+1

c+1a

mirror

b+1

c+1

d

a

a↔ d



Effect of the involution on walks

E

S

N

b+1 d

c+1
a

W

c+1

ab+1

d

N

S

W

E
involution

a↔ d

a

b

c

dstart
end

ab

c

d

start end



a

b

c

dstart
end

ab

c

d

start end
involution

Proof of ↔
[Bousquet-Mélou,F,Raschel’19]



• Specialize the involution at b = 0

a

b

c

dstart
end

ab

c

d

start end
involution

Proof of ↔

a

d

d

a

& specialize further at d = 0

[Bousquet-Mélou,F,Raschel’19]
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Two families A,B of walks A(t) =

∑
n ant

n B(t) =
∑

n bnt
n

want to prove bijectively that A(t) = B(t)

There is a superfamily C ⊃ A,B and an involution on C exchanging
two parameters i, j such that, with C(t;u, v) =

∑
cn,i,jt

nuivj , we havetwo parameters i, j such that, with C(t;u, v) =
∑

cn,i,jt
nuivj , we have

A(t) = C(t; 1, 0) B(t) = C(t; 0, 1)

Ex: for tandem walks

i

j

Ex: for 1D walks 2j

i

j

i+j
i

mirror-involution
via bipolar orientations

exchange involution

extension for r ≥ 1 walks: involutivity of jeu de taquin [Hanaker et al.’17]

of even length



Conjecture for double-tandem walks

a

b

c

dstart
end

ab

c

d

start end

Step-set

Conjecture: There is an involution that realizes

and preserves the length and the number of steps in {→, ↓,↖}

Known: [Yeats’14, Chyzak-Yeats’18]

↔

↔


