Duality relations for constrained walks

Éric Fusy (CNRS/LIX)

joint work with Mireille Bousquet-Mélou, Julien Courtiel, Mathias Lepoutre, Marni Mishna, and Kilian Raschel

Duality phenomenon for paths

We say two path families \mathcal{A} and \mathcal{B} are dual if

- both families use the same steps, such that ${\cal A}$ has stronger endpoint constraint, ${\cal B}$ has stronger domain constraint
- there is a length-preserving **bijection** between $\mathcal A$ and $\mathcal B$

Example in 2D: (step-set $\{\uparrow, \leftarrow, \downarrow, \rightarrow\}$)

Duality phenomenon for paths

We say two path families \mathcal{A} and \mathcal{B} are dual if

- both families use the same steps, such that ${\cal A}$ has stronger endpoint constraint, ${\cal B}$ has stronger domain constraint
- there is a length-preserving **bijection** between ${\mathcal A}$ and ${\mathcal B}$

Example in 2D: (step-set $\{\uparrow, \leftarrow, \downarrow, \rightarrow\}$)

Motivations:

- mapping $\mathcal{A} \to \mathcal{B}$ for **counting** (\mathcal{A} easier)
- mapping $\mathcal{B} o \mathcal{A}$ for **random generation** (early-abort rejection)

Duality phenomenon for paths

We say two path families \mathcal{A} and \mathcal{B} are dual if

- both families use the same steps, such that ${\cal A}$ has stronger endpoint constraint, ${\cal B}$ has stronger domain constraint
- there is a length-preserving **bijection** between $\mathcal A$ and $\mathcal B$

Example in 2D: (step-set $\{\uparrow, \leftarrow, \downarrow, \rightarrow\}$)

Motivations:

- mapping $\mathcal{A} \to \mathcal{B}$ for **counting** (\mathcal{A} easier)
- mapping $\mathcal{B} o \mathcal{A}$ for **random generation** (early-abort rejection)

gen \mathcal{B} : while not fails generate random walk step by step reject as soon as walk leaves domain for \mathcal{B} (if not, success!)

1st bijection:

1st bijection:

Rk: implies

1st bijection:

Rk: implies

Rk: extends to $r \ge 1$ paths

[Proctor'83, Elizalde'15, Hanaker et al.'17]

2nd bijection:

via Dyck paths with marked down-steps ending on x-axis

Outline of the talk

Duality relations for 2D walks using bijections to oriented maps

• Simple walks: $\{\uparrow, \leftarrow, \downarrow, \rightarrow\}$

using Bernardi-Bonichon bijection for Schnyder woods

• Tandem walks: $\{\leftarrow,\uparrow,\searrow\}$ (and extension)

using Kenyon et al. bijection for bipolar orientations

Outline of the talk

Duality relations for 2D walks using bijections to oriented maps

• Simple walks: $\{\uparrow, \leftarrow, \downarrow, \rightarrow\}$

using Bernardi-Bonichon bijection for Schnyder woods

• Tandem walks: $\{\leftarrow,\uparrow,\searrow\}$ (and extension)

using Kenyon et al. bijection for bipolar orientations

Simple walks

Schnyder woods on triangulations

[Schnyder'89]

Schnyder wood = choice of a direction and color (red, green, or blue) for each inner edge, such that:

Local conditions:

at each inner vertex

at the outer vertices

yields a **spanning tree** in each color

Bijection for Schnyder woods [Bernardi, Bonichon'07]

Some information is redundant:

just need the blue tree and positions of the ingoing red edges

Bijection for Schnyder woods [Bernardi, Bonichon'07]

Some information is redundant:

just need the blue tree and positions of the ingoing red edges

Bottom Dyck path: contour of blue tree

Some information is redundant:

just need the blue tree and positions of the ingoing red edges

red indegrees

Bottom Dyck path: contour of blue tree

Bijection for Schnyder woods [Bernardi, Bonichon'07]

The mapping is a bijection from Schnyder woods with n+3 vertices to non-crossing pairs of Dyck paths of lengths 2n

mirror 🔷

Extension to prove

Bijection extended to

Tandem walks

Tandem walks

A tandem-walk is a walk in \mathbb{Z}^2 with step-set $\{N,W,SE\}$

in the plane \mathbb{Z}^2

in the half-plane $\{y \ge 0\}$

in the quarter plane \mathbb{N}^2

cf 2 queues in series

Duality relation for tandem walks

There is a bijection between:

 \bullet tandem walks of length n staying in the quarter plane \mathbb{N}^2

ullet tandem walks of length n staying in the half-plane $\{y \geq 0\}$ and ending at y=0

Rk: The bijection preserves the number of SE steps

Link to Young tableaux of height ≤ 3

• There is a bijection between:

tandem walks of length n staying in the quadrant \mathbb{N}^2 , ending at (i,j)

Young tableaux of size n and height ≤ 3 , of shape

(after s steps, current y = #N - #SE, current x = #SE - #W)

Bijection with Motzkin walks [Gouyou-Beauchamps'89]

An extension of the walk model

General model:

step-set: ● the SE step

• every step (-i,j) (with $i,j \ge 0$)

level:= i + j

An extension of the walk model

The bijection (using bipolar orientations) preserves the number of SE-steps and the number of steps in each level $p\geq 1$

different bijection using automata rules [Chyzak-Yeats'18]

Bipolar and marked bipolar orientations

bipolar orientation:

(on planar maps)

 $= \mbox{acyclic orientation} \\ \mbox{with a unique source } S \\ \mbox{and a unique sink } N \\ \mbox{with } S, N \mbox{ incident to the outer face} \\$

Bipolar and marked bipolar orientations

bipolar orientation:

(on planar maps)

 $= \mbox{acyclic orientation} \\ \mbox{with a unique source } S \\ \mbox{and a unique sink } N \\ \mbox{}$

with S, N incident to the outer face

inner vertex

marked bipolar orientation:

a marked vertex $W \neq N$ on left boundary a marked vertex $E \neq S$ on right boundary

The Kenyon et al. bijection

[Kenyon, Miller, Sheffield, Wilson'16]

start with $\bigvee_{W \in S}^{N \circ E}$ and read the walk step by step

• SE steps create a new black vertex

• steps (-i, j) create a new inner face (of degree i + j + 2)

The Kenyon et al. bijection

[Kenyon, Miller, Sheffield, Wilson'16]

general tandem-walk (in \mathbb{Z}^2)

♦ bijection

SE step

←

step
$$(-i,j)$$

marked bipolar orientation black vertex

inner face of degree i+j+2

Parameter-correspondence in the bijection

```
# "face-steps" \longrightarrow # inner faces of level p of degree p+2

# SE-steps # black vertices

1 + # steps \longrightarrow # plain edges (not dashed)
```


An involution on marked bipolar orientations

An involution on marked bipolar orientations

Effect of the involution on walks

ullet Specialize the involution at b=0

& specialize further at d=0

General situation in duality bijections

Two families \mathcal{A},\mathcal{B} of walks $A(t) = \sum_n a_n t^n \qquad B(t) = \sum_n b_n t^n$ want to prove bijectively that A(t) = B(t)

General situation in duality bijections

Two families \mathcal{A},\mathcal{B} of walks $A(t)=\sum_n a_n t^n$ $B(t)=\sum_n b_n t^n$ want to prove bijectively that A(t)=B(t)

There is a superfamily $\mathcal{C}\supset\mathcal{A},\mathcal{B}$ and an involution on \mathcal{C} exchanging two parameters i,j such that, with $C(t;u,v)=\sum c_{n,i,j}t^nu^iv^j$, we have

$$A(t) = C(t; 1, 0)$$
 $B(t) = C(t; 0, 1)$

General situation in duality bijections

Two families \mathcal{A},\mathcal{B} of walks $A(t)=\sum_n a_n t^n$ $B(t)=\sum_n b_n t^n$ want to prove bijectively that A(t)=B(t)

There is a superfamily $\mathcal{C}\supset\mathcal{A},\mathcal{B}$ and an involution on \mathcal{C} exchanging two parameters i,j such that, with $C(t;u,v)=\sum c_{n,i,j}t^nu^iv^j$, we have

$$A(t) = C(t; 1, 0)$$
 $B(t) = C(t; 0, 1)$

Ex: for tandem walks

mirror-involution via bipolar orientations

Ex: for 1D walks of even length $i \uparrow$

exchange involution $i \downarrow j$

extension for $r \geq 1$ walks: involutivity of jeu de taquin [Hanaker et al.'17]

Conjecture for double-tandem walks

Known:

[Yeats'14, Chyzak-Yeats'18]

Conjecture: There is an involution that realizes

and preserves the length and the number of steps in $\{\rightarrow,\downarrow,\nwarrow\}$