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Overview
• Transversal structures on triangulations

• Definition, cf Regular edge labelling: [Kant, He 97]
• Algorithm computing a transversal structure
• Combinatorial structure: distributive lattice

• Application: straight line drawing

• n vertices ⇒ grid of size 11
27n × 11

27n almost surely
• Reflects the transversal structure

• Bijection triangulations ⇔ ternary trees and applications
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Definition and properties of
transversal structures on

triangulations
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A particular family of triangulations
• We consider triangulations of the 4-gon (the outer face

is a quadrangle)

• No separating triangle (irreducibility)

Forbidden Irreducible
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Transversal structures
A transversal structure is an orientation and bicoloration (in
blue and red) of the inner edges such that:

Border vertices ⇒

Inner vertex ⇒

⇒Example:

cf Regular edge labelling [Kant, He 1997]
– p.5/31



Link with bipolar orientations
bipolar orientation = acyclic orientation with a unique
minimum and a unique maximum
The blue (resp. red) edges give a bipolar orientation
The two bipolar orientations are transversal

Sr

Nr

Nb

Sb
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Finding a transversal structure
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Finding a transversal structure
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Finding a transversal structure
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The set of transversal structures ?
• For each triangulation T , such transversal structures are

not unique

• Let XT be the set of transversal bicolorations of T

• What is the structure of XT ?

... ...
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The set XT is a distributive lattice

T=
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The set XT is a distributive lattice

color
switch
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The set XT is a distributive lattice

The unique transversal bicoloration of T without

We distinguish:

left alternating 4-cycles

right alternating 4-cycles

right alternating 4-cycle is said minimal

Flip operation: switch colors inside a right alternating
4-cycle
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Straight-line drawing algorithm
from the transversal structures
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Application to graph drawing
The transversal structure can be used to produce a planar
drawing on a regular grid
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The red map and the blue map of T

Red map

Blue map
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The red map gives abscissas (1)
Let v be an inner vertex of T
Let Pr(v) be the unique path passing by v which is:

• the rightmost one before arriving at v

• the leftmost one after leaving v

v v⇒

Pr(v)
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The red map gives abscissas (2)
The absciss of v is the number of faces of the red map on the
left of Pr(v)

AA

⇒ A has absciss 2
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The blue map gives ordinates (1)
Similarly we define Pb(v) the unique blue path which is:

• the rightmost one before arriving at v

• the leftmost one after leaving v

v
⇒ Pb(v)

v
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The blue map gives ordinates (2)
The ordinate of v is the number of faces of the blue map
below Pb(v)

BB

⇒ B has ordinate 4
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Execution of the algorithm
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Execution of the algorithm
Let fr be the number of faces of the red map

fr = 8
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Execution of the algorithm
Let fb be the number of faces of the blue map

fb = 7
fr = 8
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Execution of the algorithm
Take a regular grid of width fr and height fb and place the 4
border vertices of T at the 4 corners of the grid
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate

4 faces on the left
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate

3 faces below
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Execution of the algorithm
Place all other points using the red path for absciss and the
blue path for ordinate
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Execution of the algorithm
Link each pair of adjacent vertices by a segment
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Execution of the algorithm
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Results
• The obtained drawing is a straight line embedding

• The drawing respects the transversal structure:
• Red edges are oriented from bottom-left to top-right
• Blue edges are oriented from top-left to bottom-right

• If T has n vertices, the width W and height H verify

W + H = n − 1

similar grid size as He (1996) and Miura et al (2001)
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Compaction step
• Some abscissas and ordinates are not used

• The deletion of these unused coordinates keeps the
drawing planar

unused

unused
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Compaction step
• Some abscissas and ordinates are not used
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Compaction step
• Some abscissas and ordinates are not used

• The deletion of these unused coordinates keeps the
drawing planar
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Size of the grid after deletion
• If the transversal structure is the minimal one, the

number of deleted coordinates can be analyzed:

• After deletion, the grid has size 11
27n× 11

27n“almost surely”

• Reduction of 5
27 ≈ 18% compared to He and Miura et al
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Bijection between triangulations
and ternary trees
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Opening: triangulation⇒ternary tree
Compute the minimal transversal structure
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Opening: triangulation⇒ternary tree
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Opening: triangulation⇒ternary tree
Remove quadrangle
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Opening: triangulation⇒ternary tree
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Opening: triangulation⇒ternary tree
Keep the clockwisemost edge in each bunch
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Opening: triangulation⇒ternary tree
Keep the clockwisemost edge in each bunch
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Result
Theorem This mapping is a bijection between triangulations
with n inner nodes and ternary trees with n inner nodes

The inverse mapping: ternary trees→triangulations is also
explicit:
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Applications of the bijection

• Enumeration:⇒ Tn = 4
2n+2

(3n)!
n!(2n+1)!

• Random generation: linear-time uniform random sampler
of triangulations with n vertices

• Analysis of the grid size: almost surely 5n/27 deleted
coordinates for a random triangulation with n vertices
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Analysis of the size of the grid
using the bijection
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Size of the compact drawing ?
Let T be a triangulation with n vertices endowed with its
minimal transversal structure

• Unoptimized drawing: W + H = n − 1

• Delete unused coordinates⇒Compact drawing:

Wc + Hc = n − 1−#(unused coord.)

unused

unused

⇒

Theorem: #(unused coord.) ∼ 5n

27 almost surely
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Rule to give abscissa
The absciss of v is the number of faces of the red map on the
left of Pr(v)

AA

⇒ A has absciss 2
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Absciss ↔ face of the red-map
• Let fr be the number of faces of the red-map

• Let i ∈ [1, fr] be an absciss-candidate

• There exists a face fi of the red-map such that:

Abs(v) ≥ i ⇔ fi is on the left of Pr(v)

Example: i = 6

v
v

f6f6

Abs(v) = 2 < 6 Abs(v) = 6 ≥ 6
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Unused abscissa
An absciss-candidate i ∈ [1, fr] is unused iff:

Abs(v) ≥ i ⇒ Abs(v) ≥ i + 1

⇒ Faces fi and fi+1 can not be separated by a path Pr(v)
⇒ fi and fi+1 are contiguous

fi

BottomRight(fi)=TopLeft(fi+1)

v

⇒

CAN NOT HAPPEN

fi

fi+1

fi+1
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Unused abscissa and opening

Ternary tree

opening

Unused abscissa

Triangulation

Internal edge such thatcw−consecutive edge
at each extremity
is an internal edge
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Reduction to a tree-problem

How many

How many in a random ternary tree

in a random triangulation

How many unused abscissas in a random triangulation

Width of the grid of the compact drawing ?

⇒ ∼ 1

2

5n
27

(using generating functions)
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