Bijective counting of involutive Baxter permutations

Eric Fusy (LIX, Ecole Polytechnique)

Part 1: Baxter families

Baxter permutations

We adopt the diagram-representation of a permutation

Baxter permutations

Def: Whenever there are 4 points in position

then the dashed square is not empty.

(i.e., no pattern $25\overline{3}14$ nor $41\overline{3}52$)

$$\pi = 53497810612$$

Characterisation

- Inductive construction: at each step, insert n either
 - just before a left-to-right maximum (among i of them)
 - just after a right-to-left maximum (among j of them)

Insertion at left-to-right min:

- choose k in [1..i]
- update: i:=k, j:=j+1

Insertion at right-to-left min:

- choose k in [1..j]
- update: j:=k, i:=i+1

Baxter families

Def: Any combinatorial family with generating tree isomorphic to the generating tree T with root (1,1) and children rule

is called a Baxter family

Parallel with Catalan families: one catalytic parameter

Children rule is:

Other Baxter family: plane bipolar ori.

- Bipolar orientation = acyclic orientation with unique source and unique sink
- Planar map = graph embedded in the plane, no edge-crossing

Plane bipolar orientation =

- bipolar orientation on a planar map
- the source and the sink are incident to the outer face

Other Baxter family: plane bipolar ori.

Two possibilites for inserting the topleft edge:

A countable Baxter family: triples of paths

A countable Baxter family: triples of paths

Counting (by Gessel-Viennot's lemma):

$$q_n = \frac{1}{\binom{n+1}{1}\binom{n+1}{2}} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$

Bijective links and bibliography

Triples of paths

Baxter permutations

[Chung et al'78] [Mallows'79] [Ackerman et al'06] [Bonichon et al'08] Plane bipolar orientations

[R. Baxter'01]

Part 2: Baxter permutations and plane bipolar orientations

Baxter permutation -> plane bipolar orientation (hint: #ascents is distributed like #vertices)

(hint: #ascents is distributed like #vertices)

- Ascents of π are in 1-to-1 correspondence with ascents of π^{-1}
- Place a white vertex at the intersection

(hint: #ascents is distributed like #vertices)

- Ascents of π are in 1-to-1 correspondence with ascents of π^{-1}
- Place a white vertex at the intersection

Dominance drawing:

draw segment (x,y) -> (x',y') whenever x<x' and y<y'

Dominance drawing:

draw segment (x,y) -> (x',y') whenever x<x' and y<y'

$$\pi = 53497810612$$

Erase the black vertices (all have degree 2)

$$\pi = 53497810612$$

Erase the black vertices (all have degree 2)

Theorem [Bonichon, Bousquet-Mélou, F'08]: The mapping is the canonical bijection (implements the isomorphism between generating trees)

Symmetry properties of the bijection

• The bijection ``commutes'' with transformations in the dihedral group D₄

Part 3: bijective counting of involutive Baxter permutations

Results

Univariate formula (bijective proof of formula by M. Bousquet-Mélou):
 The number of involutive Baxter perm. with no fixed point and with 2n elements is

$$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)} \binom{2n}{n}$$

Multivariate formula: number of involutive Baxter perm. with

2n non-fixed points p fixed points

2k descents not crossing the diagonal r descents crossing the diagonals

is:
$$\frac{\binom{p+r}{r}\binom{n+p-1}{k}^2\binom{n}{t}}{nq^2(q+1)(k+1)(t+1)} \cdot \left| \begin{array}{ccc} q(q+1) & q(q-1) & s(s-1) \\ k(q+1) & (k+1)q & s(t+1) \\ k(k-1) & k(k+1) & t(t+1) \end{array} \right|$$

where q := n + p - k, s := n - k - r, t := k + r

Baxter invol. -> monosource ori.

Keep the part of the picture below the axis x=y

This yields a monosource orientation (acyclic, single source, possibly many sinks all in the outer face)

Encoding monosource orientations

Encoding monosource orientations

i corners

Encoding monosource orientations *i* corners

merge sinks encode decorated Length i corners

Generic picture

Baxter permutations *n* elements

$$\frac{1}{\binom{n+1}{1}\binom{n+1}{2}} \sum_{r=0}^{n-1} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$

Baxter involutions *n* two-cycles no fixed point

$$\frac{3\cdot 2^{n-1}}{(n+1)(n+2)} \binom{2n}{n}$$

Useful lemma:

$$\mathbf{a_{n,k}} = (\mathbf{2k+1}) \frac{(\mathbf{2n+2k})!}{\mathbf{n}!(\mathbf{n+2k+1})!}$$

Useful lemma:

$$\mathbf{a_{n,k}} = (\mathbf{2k+1}) rac{(\mathbf{2n+2k})!}{\mathbf{n}!(\mathbf{n+2k+1})!}$$

Useful lemma:

$$\mathbf{a_{n,k}} = (2k\!+\!1) \frac{(2n\!+\!2k)!}{n!(n\!+\!2k\!+\!1)}$$

Useful lemma:

$$\mathbf{a_{n,k}} = (\mathbf{2k+1}) \frac{(\mathbf{2n+2k})!}{\mathbf{n}!(\mathbf{n+2k+1})!}$$

Useful lemma:

$$\mathbf{a_{n,k}} = (\mathbf{2k+1}) \frac{(\mathbf{2n+2k})!}{\mathbf{n}!(\mathbf{n+2k+1})!}$$

