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Binary search trees

A binary search tree (BST) is a data structure to store (comparable) items

Items are in increasing order “from left to right” in the BST

Insertion, deletion, search of an item are done in time O(h)
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Balancing a BST
Rotation operations can be used to decrease the height
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The adjacency graph for rotation-relations
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The Tamari lattice
The Tamari lattice Tn is the partial order on binary trees with n nodes
where the covering reation corresponds to right rotation
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Enumeration of intervals in the Tamari lattice

An interval in Tn is a pair (t, t′) such that t ≤ t′

68 intervals
n=4n=3
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Enumeration of intervals in the Tamari lattice

An interval in Tn is a pair (t, t′) such that t ≤ t′

68 intervals
n=4n=3

13 intervals

Theorem [Chapoton’06]: there are 2
n(n+1)

(
4n+1
n−1

)
intervals in Tn

Talk overview:
• 3 proofs of Chapoton’s result

• generalization to so-called “m-Tamari” lattices
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Reformulation of the Tamari lattice for Dyck paths

≺

Rk: if t ≤ t′ in Tn, then t is below t′

the converse is not true !

Q: How to test if a pair is an interval in Tn ?

Length-vector LD of D:

1
2 3

4

`1=4
`2=1

`4=1
`3=2

LD = (4, 1, 2, 1)

Lem: D ≤ D′ in Tn iff LD ≤ LD′
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Recursive method for intervals in the Tamari lattice
• Reduction of a Dyck path:

⇔
size n size n−1

• Reduction of an interval in Tn:

(removes 1st component in length-vector)

⇔

⇔ ,

⇔
,

D(t) = 1 + tD(t)2

Let an,i = #( intervals in Tn with i bottom contacts)

Let F (t, x) :=
∑

n,i an,it
nxi. Then F (t, 1) = 1 + t · Fx(t, 1)F (t, 1)

More generally:

F (t, x) = x + t · subs(xi = x + · · ·+ xi, F (t, x)) · F (t, x)

F (t, x) = x + txF (t, x)
F (t, x)− F (t, 1)

x− 1

size n size n−1



We present 3 methods for finding [tn]F (t, 1) from the equation above:

Hence the number of intervals in Tn is [tn]F (t, 1), with

F (t, x) = x + txF (t, x)
F (t, x)− F (t, 1)

x− 1

• bijective

• Solve the equation using the quadratic method

• Solve the equation by guessing/checking



Triangulations

n = 6 internal vertices
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Theo [Schnyder’90, Brehm’03]:

Any triangulation has a unique minimal Schnyder wood
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There is no loss of information in deleting the green edges
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The red-blue induced structure
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no clockwise circuit
(i.e., minimal)

⇔
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a blue ancester
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Decomposing a minimal red-blue structure

cf L.-F. Préville-Ratelle. Idea: apply T T1

T2

to the blue tree

A
,⇒ ⇒

Let an,i = #( triangulations with n + 3 vertices, deg(v1) = i + 1 )

v1 v1

Let F (t, x) :=
∑

n,i an,it
nxi.

F (t, x) = x + txF (t, x)
F (t, x)− F (t, 1)

x− 1
Then

⇒ #(intervals in Tn ) = #( triangulations n internal vertices)

(also direct bijection in [Bernardi,Bonichon’09])
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Moreover, minimal Schnyder woods give a bijection to count triangulations

⇒ there are 2
n(n+1)

(
4n+1
n−1

)
triangulations with n internal vertices
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⇒ −1 + 16 t + f + 3 tf2 + 8 t2f2 − 20 ft + f4t3 + 3 f3t2 = 0
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Guessing/checking

F (t, x) = x + txF (t, x)
F (t, x)− F (t, 1)

x− 1
Rk: The equation (E)

has a unique solution ⇒ it is enough to guess F (t, x) satisfying (E)

(E) ⇔ txF 2 + (−x + 1− txf)F + x2 − x = 0, where

{
F ≡ F (t, x)
f ≡ F (t, 1)
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)
F 2 +

(
x− 1− 2 z2x + zx

)
F − x2 + x = 0

of the form P (x, F ) = 0 with P a polynomial with coefficients in Q(z)

3) Then we guess F ≡ F (t, x) (algcurves:parametrization)

t = z(1− z)3, x =
1 + u

(1 + zu)2
, F =

(1 + u)(1− 2z − z2u)

(1 + zu)(1− z)3

4) Check (E) reduces to check an identity on rational expressions (easy!)

⇒ [tn]f = 2
n(n+1)

(
4n+1
n−1

)
(with Lagrange inversion formula)
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Generalization to “m-Tamari lattices”, for any m ≥ 1

≺m-Tamari lattice T (m)
n :

m-Dyck path: slope = 1/m
#(downsteps)= m · #(upsteps)

Conjecture [Bergeron]: T (m)
n has

m + 1

n(mn + 1)

(
(m + 1)2n + m

n− 1

)
intervals

n upsteps

Now proved in [Bousquet-Mélou, F, Préville-Ratelle’11]



A slight reformulation

≺

m

≺

T (m)
n ' sublattice of paths above in Tnm
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x−1
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(1 + zu)m+1
,

We guess (using gfun:seriestoalgeq,algcurves:parametrization):

F is rational in (z, u): F =
(1 + u)(1 + zu)

u(1− z)m+2
·
(

(1 + u)

(1 + zu)m+1
− 1

)
.

Checking ⇔ checking rational identity Rm(z, u) = 0 for any m ≥ 1

⇔ checking a certain binomial identity (cf A=B)
after
simpl.

Lagrange inv. formula ⇒ [tn]F (t, 1) =
m + 1

n(mn + 1)

(
(m + 1)2n + m

n− 1

)



Other results

Can express trivariate generating function:

F (t, x, y) =
∑

n,i,j an,i,jt
nxiyj

change var.: t = z(1− z)m
2+2m, x =

1 + u

(1 + zu)m+1
, y =

1 + v

(1 + zv)m+1
.

j = 3 n = 7

i = 5

yF =
(1 + u)(1 + zu)(1 + v)(1 + zv)

(u− v)(1− zuv)(1− z)m+2
·
(

(1 + u)

(1 + zu)m+1
− (1 + v)

(1 + zv)m+1

)

Surprising symmetry in x and y
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Labelled problem:

1

2 3
4

5
6

7

Conjecture [Bergeron’10]:

now proved in [Bousquet-Mélou, Chapuy, Préville-Ratelle’11]
(also guessing/checking, but on non-algebraic expressions)

a
(m)
n = (m + 1)n(mn + 1)n−2


