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Binary search trees

A binary search tree (BST) is a data structure to store (comparable) items

ltems are in increasing order “from left to right” in the BST

Insertion, deletion, search of an item are done in time O(h)



Balancing a BST
Rotation operations can be used to decrease the height
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Balancing a BST
Rotation operations can be used to decrease the height
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= efficient data structures (AVL): maintain height in O(log(n))



The adjacency graph for rotation-relations

cf the associahedron



The Tamari lattice
The Tamari lattice 7,, is the partial order on binary trees with n nodes
where the covering reation corresponds to right rotation
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Enumeration of intervals in the Tamari lattice
An interval in 7T, is a pair (t,t’) such that t < ¢’
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An interval in 7T, is a pair (t,t’) such that t < ¢’
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n T n—l) intervals in 7T,

Theorem [Chapoton’'06]: there are

Talk overview:
e 3 proofs of Chapoton's result

e generalization to so-called "m-Tamari” lattices



Reformulation of the Tamari lattice for Dyck paths
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Reformulation of the Tamari lattice for Dyck paths

Rk: if t <t inT,, then t is below ¢’

the converse is not true !

Q: How to test if a pair Is an interval in 7,, 7

Length-vector Lp of D:

Lem: D < D’ in 7;,} Iff LD < LD/
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e Reduction of a Dyck path:

size N A size n—1
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Recursive method for intervals in the Tamari lattice
e Reduction of a Dyck path:

size N A size n—1

(removes 1st component in length-vector)

e Reduction of an interval in 7,,:

b Asizen—1 4

Let a, ; = #( intervals in 7, with ¢ bottom contacts)
Let F(t,xz) =3, ;anit"’. Then F(t,1) =141t F,(t,1)F(t,1)
More generally:
F(t,x)=x+t-subs(z*=ax+---+2", F(t,z)) - F(t,x)
F(t,z) — F(t,1)
r— 1

F(t,x) =z + teF(t,x)




Hence the number of intervals in 7, is [t"]F'(¢, 1), with

F(t,z) — F(t,1)
x— 1

F(t,x) =z +teF(t,x)

We present 3 methods for finding [t"|F'(t,1) from the equation above:
e bijective
e Solve the equation using the quadratic method

e Solve the equation by guessing/checking



Triangulations

n = 6 internal vertices
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The Schnyder wood is called minimal if it has no clockwise circuit
Theo [Schnyder’'90, Brehm’03]:

Any triangulation has a unique minimal Schnyder wood



Schnyder woods
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The Schnyder wood is called minimal if it has no clockwise circuit
Theo [Schnyder’'90, Brehm’03]:

Any triangulation has a unique minimal Schnyder wood
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U2 U1 U1

UO UO
There is no loss of information in deleting the green edges

v Vv interval vertex
the blue parent of
the red parent is
a blue ancester

no clockwise circuit &
(i.e., minimal)



Decomposing a minimal red-blue structure
; to the blue tree

cf L.-F. Préville-Ratelle. Idea: apply W+ w
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Decomposing a minimal red-blue structure
; to the blue tree

cf L.-F. Préville-Ratelle. Idea: apply W+ w

Let a,, ; = #( triangulations with n + 3 vertices, deg(vy) =7+ 1)
Let F'(t,2z) =), ; A ™"

F(t,x) — F(t,1)
r—1

Then |F(t,x)=x+txF(t,x)

= #(intervals in 7T, ) = #( triangulations n internal vertices)

(also direct bijection in [Bernardi,Bonichon’'09])
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Bijective counting of triangulations
Moreover, minimal Schnyder woods give a bijection to count triangulations

= there are triangulations with n internal vertices

& intervals in 7,




The quadratic method [Tutte, Brown'60s, Bousquet-Mélou,Jehanne’06]

Method to solve directly

F(t,z) =x +teF(t, x)

F(t,x) — F(t,1)

r— 1

(E)
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Method to solve directly | F(t,z) = x + txF(t, x)

F(t,x) — F(t,1)

r— 1

(E)

(E) & |A%? = B| where (with the notations F' = F(t,x), f = F(t,1)):

A = 2tzF—z+1—txf
B

r2 —2x +2tx*f+1—2txf +t2x%f? — Adta’ + 4ta?
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Method to solve directly | F(t,z) = x + txF(t, x)
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The quadratic method [Tutte, Brown'60s, Bousquet-Mélou,Jehanne’06]

Method to solve directly | F(t,z) = x + txF(t, x)

(E) <

\ 5

F(t,x) — F(t,1)
x— 1

(E)

A2 =18

where (with the notations F' = F(t,z), f = F(t,1)):

= 2l —x+1—-taxf
= 22 —2x+2tx*f+1—2txf +t?x%f? —Adta’ + 4ta?

There exists a series X (t) such that B = 0 when z = X (¢)
We have 0,B=2-0,A-A =0 when x = X(t)
Hence x = X (¢) is a double-root of B, so Discrim,(B) = 0

=

—14+16t+ F+3tf2+8t2f2 20 ft+ fH43+3 13> =0

=

] -

n(n2—|—1) (477——'_11) (Wlth gfun)
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F(t,x) — F(t,1)
p— (E)

has a unique solution =- it is enough to guess F'(t, x) satisfying (E)
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Rk: The equation | F(t,x) =z + teF'(t, x)

F(t,x) — F(t,1)

r— 1

(E)

has a unique solution =- it is enough to guess F'(t, x) satisfying (E)

(E) & teF?+ (—x+1—txf)F +x* —x =0, where {

F =
f=F(t1)

F(t,x)

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

t=2(1-2)° f=

1 — 22

(1= 2)°




Guessing /checking

F(t,x)— F(t,1
Rk: The equation | F(t,x) =z + teF'(t, x) (t, %) (t, 1)

E
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2) Injecting these expressions into (E), we obtain

(3z2x—zx+z4x—323x)F2+(:L'—l—2z2x+zx)F—:r;2+x:O

of the form P(x, F') = 0 with P a polynomial with coefficients in Q(2)
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F(t,x)— F(t,1
Rk: The equation | F(t,x) =z + teF'(t, x) (t, %) (t, 1)

E
p— (E)
has a unique solution =- it is enough to guess F'(t, x) satisfying (E)

(E) & taF?+ (—x+1—taf)F+a* —x =0, where { ?5515((;7133)

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

1 -2z
t=2(1-2)° f= 12

2) Injecting these expressions into (E), we obtain

(3z2x—zx+z4x—323x)F2+(:L'—l—2z2x+zx)F—x2+x:O

of the form P(x, F') = 0 with P a polynomial with coefficients in Q(2)

3) Then we guess I' = F(t,x) (algcurves:parametrization)

B 3 14w _(1+u)(1—22—z2u)
t=zl=2) e=m o ' oo - o

4) Check (E) reduces to check an identity on rational expressions (easy!)

= | [t"|f = n(n2—|—1) (47?_7:1) (with Lagrange inversion formula)
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m-Dyck path:
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Generalization to “m-Tamari lattices”, for any m > 1

m-Dyck path:

e*
e
4‘ ¢‘
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m-Tamari lattice 7}6(”7’) :

L 4
L 4
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L 4
L 4
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L d
L d
L 4
‘ﬁ
L d

‘f
‘4
(d

n upsteps

m + 1 (m+1)*n+m
n(mn + 1) n —1
Now proved in [Bousquet-Mélou, F, Préville-Ratelle'11]

Conjecture [Bergeron]: 7™ has ) intervals



A slight reformulation

TA™) ~ sublattice of paths above




The functional equation for m > 1
e Reduction of one path: D(t) = 1+ tD(t)?
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e Reduction of one path: D(t) = 1+ tD(t)?

e Reduction of an interval:

A TR

e Functional equation:
Let a, ; = #( intervals in 7},(m) with 7 bottom contacts)

Let F'(t,2) := ), ; A it T
F(t,x) =x +teA™(F(t,x))

where A : G(t,x) = H(t,xz) := F(tvm)G(t’xg:f(t’l)
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where A : G(t,z) — H(t,z) := F(t,x) G(t,z)—G(t,1)

r—1

The only method we could use is “guessing/checking”



Solving the functional equation

Equation:

F(t,x) =z +tcA™(F(t,x))

where A : G(t, ) — H(t,z) := F(t,z)EL0 =61

r—1

The only method we could use is “guessing/checking”

We guess (using gfun:seriestoalgeq,algcurves:parametrization):

change of variable: ¢t = z(1 — 2)

F is rational in (z,u): |F =

m2—|—2m, = 1 T U |
(1 4+ zu)m+1

(I+u)(1+2u) ( (1+u)
u(l — z)m+2 (1 4+ zu)m+!

_1),
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Solving the functional equation
Equation: | F(t,z) = x + tzA™(F(t,x))
where A : G(t, ) — H(t,z) := F(t,z)EL0 =61

r—1

The only method we could use is “guessing/checking”
We guess (using gfun:seriestoalgeq,algcurves:parametrization):

m2—|—2m, T = 14+ u |
(1 4+ zu)m+1

change of variable: ¢t = z(1 — 2)

F is rational in (z,u): |F =

u(l — z)m+2 1 4 zu)m+l

EEIEED ST NN

Checking < checking rational identity R,,(z,u) = 0 for any m > 1

< checking a certain binomial identity (cf A=B)
after
simpl.

Lagrange inv. formula = [[t"|F(t,1) =

n(mn —+ n—1

m + 1 (m+1)*n+m
i

)




Other results

n==17 Can express trivariate generating function:

F(ta L, y) — Zn,i,j an’i’jtnajiyj
o A/ Surprising symmetry in 2 and y
1 =09
m2+2m . 1 + u y = 1 —+ v
| (1 + zu)m+1’ (1+ zo)m+t

change var.: t = z(1 — 2)

yF =

(1—|—u)(1—|—zu)(1—|—fu)(1—|—zv).< (1+u) (1+v) >
(

(u —v)(1 — zuv)(1 — 2z)™+2 14 zu)mtl (1 + zv)m+]




Other results

n==17 Can express trivariate generating function:

F(t,xz,y) = Zn” A i "2 Y

‘\‘\‘\ 7/‘ Surprising symmetry in x and y

1 =19
24 9m B 14+ u B 1 4+wv
change var.: t = z(1 — 2)™ ™9™, x = 15 )i = =
_ A+ u)d+zu)d+0)(d +20) (1+u)  (1+v)
gl = (v —v)(1 — zuw) (1 — z)m+2 <(1—|—zu)m+1 (1—|—zv)m+1>

Labelled problem:
ball

6

Conjecture [Bergeron'10]:

an = (m+1)"(mn+1)"?

now proved in [Bousquet-Mélou, Chapuy, Préville-Ratelle'11]
(also guessing/checking, but on non-algebraic expressions)



