On the number of intervals in the Tamari lattices

Éric Fusy (LIX)

Joint work with M. Bousquet-Mélou (LaBRI) and
L.F. Préville-Ratelle (UQAM)

Binary search trees

A binary search tree (BST) is a data structure to store (comparable) items

Items are in increasing order "from left to right" in the BST Insertion, deletion, search of an item are done in time O(h)

Balancing a BST

Rotation operations can be used to decrease the height

Balancing a BST

Rotation operations can be used to decrease the height

 \Rightarrow efficient data structures (AVL): maintain height in $O(\log(n))$

The adjacency graph for rotation-relations

The Tamari lattice

The Tamari lattice \mathcal{T}_n is the partial order on binary trees with n nodes where the covering reation corresponds to right rotation

Enumeration of intervals in the Tamari lattice

An interval in \mathcal{T}_n is a pair (t, t') such that $t \leq t'$

Enumeration of intervals in the Tamari lattice

An interval in \mathcal{T}_n is a pair (t, t') such that $t \leq t'$

Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ intervals in \mathcal{T}_n

Enumeration of intervals in the Tamari lattice

An interval in \mathcal{T}_n is a pair (t, t') such that $t \leq t'$

Theorem [Chapoton'06]: there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$ intervals in \mathcal{T}_n

Talk overview:

- 3 proofs of Chapoton's result
- generalization to so-called "m-Tamari" lattices

Rk: if $t \leq t'$ in \mathcal{T}_n , then t is below t'

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Q: How to test if a pair

is an interval in \mathcal{T}_n ?

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Q: How to test if a pair

is an interval in \mathcal{T}_n ?

Length-vector L_D of D:

Rk: if $t \le t'$ in \mathcal{T}_n , then t is below t' the converse is not true!

Q: How to test if a pair

is an interval in \mathcal{T}_n ?

Length-vector L_D of D:

Lem: $D \leq D'$ in \mathcal{T}_n iff $L_D \leq L_{D'}$

• Reduction of a Dyck path:

• Reduction of a Dyck path:

(removes 1st component in length-vector)

• Reduction of a Dyck path:

(removes 1st component in length-vector)

$$D(t) = 1 + tD(t)^2$$

• Reduction of a Dyck path:

(removes 1st component in length-vector)

$$D(t) = 1 + tD(t)^2$$

• Reduction of an interval in \mathcal{T}_n :

• Reduction of a Dyck path:

(removes 1st component in length-vector)

$$D(t) = 1 + tD(t)^2$$

• Reduction of an interval in \mathcal{T}_n :

• Reduction of a Dyck path:

(removes 1st component in length-vector)

$$D(t) = 1 + tD(t)^2$$

• Reduction of an interval in \mathcal{T}_n :

Let $a_{n,i} = \#($ intervals in \mathcal{T}_n with i bottom contacts)

Let
$$F(t,x) := \sum_{n,i} a_{n,i} t^n x^i$$
. Then $F(t,1) = 1 + t \cdot F_x(t,1) F(t,1)$

Reduction of a Dyck path:

(removes 1st component in length-vector)

$$D(t) = 1 + tD(t)^2$$

• Reduction of an interval in \mathcal{T}_n :

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{T}_n \text{ with } i \text{ bottom contacts})$

Let
$$F(t,x) := \sum_{n,i} a_{n,i} t^n x^i$$
. Then $F(t,1) = 1 + t \cdot F_x(t,1) F(t,1)$

More generally:

$$F(t,x) = x + t \cdot \text{subs}(x^i = x + \dots + x^i, F(t,x)) \cdot F(t,x)$$

Reduction of a Dyck path:

(removes 1st component in length-vector)

$$D(t) = 1 + tD(t)^2$$

• Reduction of an interval in \mathcal{T}_n :

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{T}_n \text{ with } i \text{ bottom contacts})$

Let
$$F(t,x) := \sum_{n,i} a_{n,i} t^n x^i$$
. Then $F(t,1) = 1 + t \cdot F_x(t,1) F(t,1)$

More generally:

$$F(t,x) = x + t \cdot \text{subs}(x^i = x + \dots + x^i, F(t,x)) \cdot F(t,x)$$

$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x - 1}$$

Hence the number of intervals in \mathcal{T}_n is $[t^n]F(t,1)$, with

$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$

We present 3 methods for finding $[t^n]F(t,1)$ from the equation above:

- bijective
- Solve the equation using the quadratic method
- Solve the equation by guessing/checking

Triangulations

Schnyder woods

Schnyder woods

The Schnyder wood is called minimal if it has no clockwise circuit **Theo [Schnyder'90, Brehm'03]:**

Any triangulation has a unique minimal Schnyder wood

Schnyder woods

The Schnyder wood is called minimal if it has no clockwise circuit

Theo [Schnyder'90, Brehm'03]:

Any triangulation has a unique minimal Schnyder wood

The red-blue induced structure

There is no loss of information in deleting the green edges

The red-blue induced structure

There is no loss of information in deleting the green edges

no clockwise circuit (i.e., minimal)

 $\forall v$ interval vertex the blue parent of the red parent is a blue ancester

The red-blue induced structure

There is no loss of information in deleting the green edges

 $\forall v$ interval vertex the blue parent of the red parent is a blue ancester

Decomposing a minimal red-blue structure

cf L.-F. Préville-Ratelle. Idea: apply

to the blue tree

Decomposing a minimal red-blue structure

cf L.-F. Préville-Ratelle. Idea: apply

to the blue tree

Let $a_{n,i} = \#(\text{ triangulations with } n+3 \text{ vertices, } \deg(v_1) = i+1)$ Let $F(t,x) := \sum_{n,i} a_{n,i} t^n x^i$.

Then
$$\left| F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1} \right|$$

Decomposing a minimal red-blue structure

cf L.-F. Préville-Ratelle. Idea: apply

Let
$$a_{n,i} = \#($$
 triangulations with $n+3$ vertices, $\deg(v_1) = i+1$)
Let $F(t,x) := \sum_{n,i} a_{n,i} t^n x^i$.

Then $F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$

 \Rightarrow #(intervals in \mathcal{T}_n) = #(triangulations n internal vertices) (also direct bijection in [Bernardi,Bonichon'09])

Moreover, minimal Schnyder woods give a bijection to count triangulations

Moreover, minimal Schnyder woods give a bijection to count triangulations

Moreover, minimal Schnyder woods give a bijection to count triangulations

Moreover, minimal Schnyder woods give a bijection to count triangulations

 \Rightarrow there are $\left|\frac{2}{n(n+1)}\binom{4n+1}{n-1}\right|$ triangulations with n internal vertices

Moreover, minimal Schnyder woods give a bijection to count triangulations

 \Rightarrow there are $\frac{2}{n(n+1)}\binom{4n+1}{n-1}$

 $\frac{2}{n(n+1)} \binom{4n+1}{n-1}$ triangulations with n internal vertices & intervals in \mathcal{T}_n

Method to solve directly
$$F(t,x) = x + tx F(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

Method to solve directly
$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

(E)
$$\Leftrightarrow$$
 $A^2 = B$ where (with the notations $F \equiv F(t, x)$, $f \equiv F(t, 1)$):

$$\begin{cases} A = 2txF - x + 1 - txf \\ B = x^2 - 2x + 2tx^2f + 1 - 2txf + t^2x^2f^2 - 4tx^3 + 4tx^2 \end{cases}$$

Method to solve directly
$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

(E) \Leftrightarrow $A^2 = B$ where (with the notations $F \equiv F(t,x)$, $f \equiv F(t,1)$):

$$\begin{cases} A = 2txF - x + 1 - txf \\ B = x^2 - 2x + 2tx^2f + 1 - 2txf + t^2x^2f^2 - 4tx^3 + 4tx^2 \end{cases}$$

There exists a series X(t) such that B=0 when x=X(t)

Method to solve directly
$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

(E)
$$\Leftrightarrow$$
 $A^2 = B$ where (with the notations $F \equiv F(t, x)$, $f \equiv F(t, 1)$):

$$\begin{cases} A = 2txF - x + 1 - txf \\ B = x^2 - 2x + 2tx^2f + 1 - 2txf + t^2x^2f^2 - 4tx^3 + 4tx^2 \end{cases}$$

There exists a series X(t) such that B=0 when x=X(t)We have $\partial_x B = 2 \cdot \partial_x A \cdot A = 0$ when x = X(t)

Method to solve directly
$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

(E)
$$\Leftrightarrow$$
 $A^2 = B$ where (with the notations $F \equiv F(t, x)$, $f \equiv F(t, 1)$):

$$\begin{cases} A = 2txF - x + 1 - txf \\ B = x^2 - 2x + 2tx^2f + 1 - 2txf + t^2x^2f^2 - 4tx^3 + 4tx^2 \end{cases}$$

There exists a series X(t) such that B=0 when x=X(t)

We have $\partial_x B = 2 \cdot \partial_x A \cdot A = 0$ when x = X(t)

Hence x = X(t) is a double-root of B, so $\operatorname{Discrim}_x(B) = 0$

Method to solve directly
$$\left| F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1} \right|$$
 (E)

(E)
$$\Leftrightarrow$$
 $A^2 = B$ where (with the notations $F \equiv F(t, x)$, $f \equiv F(t, 1)$):

$$\begin{cases} A = 2txF - x + 1 - txf \\ B = x^2 - 2x + 2tx^2f + 1 - 2txf + t^2x^2f^2 - 4tx^3 + 4tx^2 \end{cases}$$

There exists a series X(t) such that B=0 when x=X(t)

We have $\partial_x B = 2 \cdot \partial_x A \cdot A = 0$ when x = X(t)

Hence x = X(t) is a double-root of B, so $\operatorname{Discrim}_x(B) = 0$

$$\Rightarrow -1 + 16t + f + 3tf^2 + 8t^2f^2 - 20ft + f^4t^3 + 3f^3t^2 = 0$$

Method to solve directly
$$F(t,x) = x + txF(t,x) \frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

(E)
$$\Leftrightarrow$$
 $A^2 = B$ where (with the notations $F \equiv F(t, x)$, $f \equiv F(t, 1)$):

$$\begin{cases} A = 2txF - x + 1 - txf \\ B = x^2 - 2x + 2tx^2f + 1 - 2txf + t^2x^2f^2 - 4tx^3 + 4tx^2 \end{cases}$$

There exists a series X(t) such that B=0 when x=X(t)

We have $\partial_x B = 2 \cdot \partial_x A \cdot A = 0$ when x = X(t)

Hence x = X(t) is a double-root of B, so $\operatorname{Discrim}_x(B) = 0$

$$\Rightarrow -1 + 16t + f + 3tf^2 + 8t^2f^2 - 20ft + f^4t^3 + 3f^3t^2 = 0$$

$$\Rightarrow [t^n]f = \frac{2}{n(n+1)} {4n+1 \choose n-1}$$
 (with gfun)

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

(E)
$$\Leftrightarrow txF^2 + (-x+1-txf)F + x^2 - x = 0$$
, where $\left\{ \begin{array}{l} F \equiv F(t,x) \\ f \equiv F(t,1) \end{array} \right.$

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

(E)
$$\Leftrightarrow txF^2 + (-x+1-txf)F + x^2 - x = 0$$
, where $\begin{cases} F \equiv F(t,x) \\ f \equiv F(t,1) \end{cases}$

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

$$t = z(1-z)^3$$
, $f = \frac{1-2z}{(1-z)^3}$

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

(E)
$$\Leftrightarrow txF^2 + (-x+1-txf)F + x^2 - x = 0$$
, where $\begin{cases} F \equiv F(t,x) \\ f \equiv F(t,1) \end{cases}$

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

$$t = z(1-z)^3$$
, $f = \frac{1-2z}{(1-z)^3}$

2) Injecting these expressions into (E), we obtain

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

(E)
$$\Leftrightarrow txF^2 + (-x+1-txf)F + x^2 - x = 0$$
, where $\begin{cases} F \equiv F(t,x) \\ f \equiv F(t,1) \end{cases}$

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

$$t = z(1-z)^3$$
, $f = \frac{1-2z}{(1-z)^3}$

2) Injecting these expressions into (E), we obtain

3) Then we guess $F \equiv F(t,x)$ (algourves:parametrization)

$$t = z(1-z)^3$$
, $x = \frac{1+u}{(1+zu)^2}$, $F = \frac{(1+u)(1-2z-z^2u)}{(1+zu)(1-z)^3}$

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

(E)
$$\Leftrightarrow txF^2 + (-x+1-txf)F + x^2 - x = 0$$
, where $\begin{cases} F \equiv F(t,x) \\ f \equiv F(t,1) \end{cases}$

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

$$t = z(1-z)^3$$
, $f = \frac{1-2z}{(1-z)^3}$

2) Injecting these expressions into (E), we obtain

$$\boxed{ \left(3\,z^2x - zx + z^4x - 3\,z^3x \right) F^2 + \left(x - 1 - 2\,z^2x + zx \right) F - x^2 + x = 0 }$$
 of the form $P(x,F) = 0$ with P a polynomial with coefficients in $\mathbb{Q}(z)$

3) Then we guess $F \equiv F(t,x)$ (algourves:parametrization)

$$t = z(1-z)^3$$
, $x = \frac{1+u}{(1+zu)^2}$, $F = \frac{(1+u)(1-2z-z^2u)}{(1+zu)(1-z)^3}$

4) Check (E) reduces to check an identity on rational expressions (easy!)

Rk: The equation
$$F(t,x) = x + txF(t,x)\frac{F(t,x) - F(t,1)}{x-1}$$
 (E)

has a unique solution \Rightarrow it is enough to guess F(t,x) satisfying (E)

(E)
$$\Leftrightarrow txF^2 + (-x+1-txf)F + x^2 - x = 0$$
, where $\begin{cases} F \equiv F(t,x) \\ f \equiv F(t,1) \end{cases}$

1) At first we guess f (gfun:seriestoalgeq, algcurves:parametrization):

$$t = z(1-z)^3$$
, $f = \frac{1-2z}{(1-z)^3}$

2) Injecting these expressions into (E), we obtain

3) Then we guess $F \equiv F(t,x)$ (algourves:parametrization)

$$t = z(1-z)^3$$
, $x = \frac{1+u}{(1+zu)^2}$, $F = \frac{(1+u)(1-2z-z^2u)}{(1+zu)(1-z)^3}$

4) Check (E) reduces to check an identity on rational expressions (easy!)

$$\Rightarrow$$
 $[t^n]f = \frac{2}{n(n+1)} {4n+1 \choose n-1}$ (with Lagrange inversion formula)

Generalization to "m-Tamari lattices", for any $m \geq 1$

Generalization to "m-Tamari lattices", for any $m \geq 1$

$$m ext{-}\mathsf{Tamari\ lattice}\ \mathcal{T}_n^{(m)}$$
: n upsteps

Conjecture [Bergeron]:
$$\mathcal{T}_n^{(m)}$$
 has $\frac{m+1}{n(mn+1)}\binom{(m+1)^2n+m}{n-1}$ intervals

Generalization to "m-Tamari lattices", for any $m \geq 1$

$$m ext{-}\mathsf{Tamari\ lattice}\ \mathcal{T}_n^{(m)}$$
:

Conjecture [Bergeron]:
$$\mathcal{T}_n^{(m)}$$
 has $\frac{m+1}{n(mn+1)}\binom{(m+1)^2n+m}{n-1}$ intervals Now proved in [Bousquet-Mélou, F, Préville-Ratelle'11]

A slight reformulation

 $\mathcal{T}_n^{(m)} \simeq ext{sublattice of paths above}$

The functional equation for $m \ge 1$

• Reduction of one path:

$$D(t) = 1 + tD(t)^3$$

The functional equation for $m \ge 1$

• Reduction of one path:

 $D(t) = 1 + tD(t)^3$

• Reduction of an interval:

The functional equation for $m \ge 1$

• Reduction of one path:

 $D(t) = 1 + tD(t)^3$

Reduction of an interval:

• Functional equation:

Let $a_{n,i} = \#(\text{ intervals in } \mathcal{T}_n^{(m)} \text{ with } i \text{ bottom contacts})$

Let
$$F(t,x) := \sum_{n,i} a_{n,i} t^n x^i$$

$$F(t,x) = x + tx\Delta^{m}(F(t,x))$$

where
$$\Delta:G(t,x)\to H(t,x):=F(t,x)\frac{G(t,x)-G(t,1)}{x-1}$$

Equation:
$$F(t,x) = x + tx\Delta^m(F(t,x))$$

where
$$\Delta:G(t,x)\to H(t,x):=F(t,x)\frac{G(t,x)-G(t,1)}{x-1}$$

The only method we could use is "guessing/checking"

Equation:
$$F(t,x) = x + tx\Delta^m(F(t,x))$$

where
$$\Delta:G(t,x)\to H(t,x):=F(t,x)\frac{G(t,x)-G(t,1)}{x-1}$$

The only method we could use is "guessing/checking"

We guess (using gfun:seriestoalgeq,algcurves:parametrization):

change of variable:
$$t=z(1-z)^{m^2+2m}$$
, $x=\frac{1+u}{(1+zu)^{m+1}}$,

$$F$$
 is rational in (z, u) :

$$F \text{ is rational in } (z,u) \colon \boxed{F = \frac{(1+u)(1+zu)}{u(1-z)^{m+2}} \cdot \left(\frac{(1+u)}{(1+zu)^{m+1}} - 1\right)}.$$

Equation:
$$F(t,x) = x + tx\Delta^m(F(t,x))$$

where
$$\Delta:G(t,x)\to H(t,x):=F(t,x)\frac{G(t,x)-G(t,1)}{x-1}$$

The only method we could use is "guessing/checking"

We guess (using gfun:seriestoalgeq,algcurves:parametrization):

change of variable:
$$t=z(1-z)^{m^2+2m}$$
, $x=\frac{1+u}{(1+zu)^{m+1}}$,

F is rational in (z,u): $\left| F = \frac{(1+u)(1+zu)}{u(1-z)^{m+2}} \cdot \left(\frac{(1+u)}{(1+zu)^{m+1}} - 1 \right) \right|$.

Checking \Leftrightarrow checking rational identity $R_m(z,u)=0$ for any $m\geq 1$

Equation:
$$F(t,x) = x + tx\Delta^m(F(t,x))$$

where
$$\Delta:G(t,x)\to H(t,x):=F(t,x)\frac{G(t,x)-G(t,1)}{x-1}$$

The only method we could use is "guessing/checking"

We guess (using gfun:seriestoalgeq,algcurves:parametrization):

change of variable:
$$t=z(1-z)^{m^2+2m}$$
, $x=\frac{1+u}{(1+zu)^{m+1}}$,

F is rational in (z,u): $F = \frac{(1+u)(1+zu)}{u(1-z)^{m+2}} \cdot \left(\frac{(1+u)}{(1+zu)^{m+1}} - 1\right).$

Checking \Leftrightarrow checking rational identity $R_m(z,u)=0$ for any $m\geq 1$

⇔ checking a certain binomial identity (cf A=B)
after
simpl.

Equation:
$$F(t,x) = x + tx\Delta^m(F(t,x))$$

where
$$\Delta:G(t,x)\to H(t,x):=F(t,x)\frac{G(t,x)-G(t,1)}{x-1}$$

The only method we could use is "guessing/checking"

We guess (using gfun:seriestoalgeq,algcurves:parametrization):

change of variable:
$$t=z(1-z)^{m^2+2m}$$
, $x=\frac{1+u}{(1+zu)^{m+1}}$,

$$F$$
 is rational in (z,u) :

$$F \text{ is rational in } (z,u) \colon \boxed{F = \frac{(1+u)(1+zu)}{u(1-z)^{m+2}} \cdot \left(\frac{(1+u)}{(1+zu)^{m+1}} - 1\right)}.$$

Checking \Leftrightarrow checking rational identity $R_m(z,u)=0$ for any $m\geq 1$

⇔ checking a certain binomial identity (cf A=B) after simpl.

Lagrange inv. formula
$$\Rightarrow$$

Lagrange inv. formula
$$\Rightarrow \left| [t^n]F(t,1) = \frac{m+1}{n(mn+1)} \binom{(m+1)^2n+m}{n-1} \right|$$

Other results

n=7 Can express trivariate generating function:

$$F(t,x,y) = \sum_{n,i,j} a_{n,i,j} t^n x^i y^j$$

Surprising symmetry in x and y

change var.:
$$t = z(1-z)^{m^2+2m}$$
, $x = \frac{1+u}{(1+zu)^{m+1}}$, $y = \frac{1+v}{(1+zv)^{m+1}}$.

$$yF = \frac{(1+u)(1+zu)(1+v)(1+zv)}{(u-v)(1-zuv)(1-z)^{m+2}} \cdot \left(\frac{(1+u)}{(1+zu)^{m+1}} - \frac{(1+v)}{(1+zv)^{m+1}}\right)$$

Other results

Can express trivariate generating function:

$$F(t,x,y) = \sum_{n,i,j} a_{n,i,j} t^n x^i y^j$$

Surprising symmetry in \boldsymbol{x} and \boldsymbol{y}

change var.:
$$t = z(1-z)^{m^2+2m}$$
, $x = \frac{1+u}{(1+zu)^{m+1}}$, $y = \frac{1+v}{(1+zv)^{m+1}}$.

$$yF = \frac{(1+u)(1+zu)(1+v)(1+zv)}{(u-v)(1-zuv)(1-z)^{m+2}} \cdot \left(\frac{(1+u)}{(1+zu)^{m+1}} - \frac{(1+v)}{(1+zv)^{m+1}}\right)$$

Labelled problem:

5,1

7,3

Conjecture [Bergeron'10]:

$$a_n^{(m)} = (m+1)^n (mn+1)^{n-2}$$

now proved in [Bousquet-Mélou, Chapuy, Préville-Ratelle'11] (also guessing/checking, but on non-algebraic expressions)