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Part 1: Motivations and
statement of results



Mesh compression

Geometr coordinates of
% the vertices

Combinatoric;sA Incidences
faces/edges/vertices

A

We aim at compressing efficiently the combinatorial incidences



Topology of surfaces

* An orientable surface is characterised by:
- its genus g (number of handles)
- its number b of boundaries
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Meshes and maps

A map is a graph embedded on a surface S such that:
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. Components of S\ G are topological disks




Meshes and maps

A map is a graph embedded on a surface S such that:
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 Remark: The incidences face/edge/vertex of a mesh
form a map
:> encoding the incidences reduces to encoding a map



Map enumeration

Strikingly simple counting formulas (for rooted planar maps): g:g
Bipartite cubic Triangulations Irreducible triang.
with 2n vertices with n+2 vertices with n+3 vertices

XIX
@ A
3.20-1(2n)!  2(4n+1)! 4(3n—3)!

(n+2)n! (n+1)!(3n+2)! (n—1)!(2n)!

Recursive + gen. functions

_— [Tutte’62,63]
\ Bijective

[Cori-Vauquelin’81, Schaeffer'97]

Two enumeration methods:



map

Bijections -> encoding

The bijective method for map families yields (asymptotically)
optimal encoding procedures

—

Canonical structure
(orientation, coloring)

tree

— | contour word

o

1101000100010100000

'
4(3n—3)!

(n—1)!(2n)!

« Applies to many planar map families (proving counting formulas)



map

Bijections -> encoding

The bijective method for map families yields (asymptotically)
optimal encoding procedures

—

Canonical structure
(orientation, coloring)

tree

— | contour word

g
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'
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« Applies to many planar map families (proving counting formulas)

e The method can be unified in terms of orientations
=>method in [Poulalhon, Schaeffer'03] generalized in [Bernardi’06]



Planar triangulations with boundaries

- b boundaries of sizes k,,...,k,, kKi=k;+...+k,

- n vertices not on the boundary

* With loops & multi-edges, nice formula [Krikun’07]

n—1
qUtseoskn) 4" (2k +3n —5)

(n—0+1)! (2k+n—1 !
(no bijective proof)
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Planar triangulations with boundaries

- b boundaries of sizes k,,...,k,, kKi=k;+...+k,
- n vertices not on the boundary

e With loops & multi-edges, nice formula [Krikun’07]

ki) _ A" (2K + 30— 5)! f[k- 2k;
C(n=b+ D)2k +n -1 1L

(no bijective proof)

b

3

o Without loops or multi-edges, formula only for b=1
- Using the recursive method [Brown’64]
- bijective proof in [Bernardi, F’10]
() _ 2(2k — 3)! (4n + 2k — 5)!
tn (k — D)k —3)! n!(3n + 2k — 3)!




Our main result
e The topology 7 = (g,b) is fixed

e S7 := the surface of topology 7 = (g, )
o/ f? := the set of triangulations on S with

k vertices on the boundary
. n vertices not on the boundary
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Then we have a (quasi-linear) encoder
such that the length /,, ;. of the coding word
satisfies, as n + k£ — oc:
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Our main result
e The topology 7= (g,b) is fixed

e S7 := the surface of topology 7 = (g, )
o/ f? := the set of triangulations on S with

k vertices on the boundary
. n vertices not on the boundary

Then we have a (quasi-linear) encoder
such that the length /,, ;. of the coding word
satisfies, as n + k£ — oc:

] 4n + 2k
gn,kt ~ IOgQ(’/]f-n(k)D ~ 2k + 10g2 ( >

n

 When b=0 (no boundary, I§=O):
logo(T9)) ~ log,(28/3%) -n ~ 3.245-n

To be compared with "Edgebreaker”: 4 bits/vertex in worst case



Part 2: Bijective encoding
of maps using orientations



Orientations for map families

 Many map families are characterised by the existence of
an orientation with prescribed outdegrees
[Schnyder'89, Propp, Ossona de Mendez-de Fraysseix’01, Felsner’03,...]:

Trianqulations Quadrangulations Eulerian
Outdegree = 3 Outdegree = 2 Out(v)=deg(v)/2
_ 2(4n-3)! - _ 2(3n-3)! -~ | 2:3%(2n)!
’7:1’ — n!(3n-—2)! ‘Qn’ ~ n!(2n-—2)! ‘é"n’ ___nl(n+42)!




Orientations for map families

 Many map families are characterised by the existence of
an orientation with prescribed outdegrees
[Schnyder'89, Propp, Ossona de Mendez-de Fraysseix’01, Felsner’03,...]:

Trianqulations Quadrangulations Eulerian
Outdegree = 3 Outdegree = 2 Out(v)=deg(v)/2
_ 2(4n-3)! ~ | 2(3n-3)! ~ | 2-3%(2n)!
’Il, — n!/(3n—2)! ’Qn’ — n!(2n—2)! ‘é"n’ — n!(n+2)!

The bijective method [Poulalhon-Schaeffer'03, Bernardi’'06] :
e Each map has a unique such orientation with no ccw circuit

e This orientation yields a "canonical” spanning tree
e The spanning tree (+decorations) is in a specific countable family



Orientation -> canonical spanning tree
[Poulalhon-Schaeffer'03, Bernardi’'06]:
« Let O be an orientation with a marked corner (the root) s.t:

- every vertex has a path to the root (accessibility)

- there is no counterclockwise circuit (minimality)

2




Orientation -> canonical spanning tree
[Poulalhon-Schaeffer'03, Bernardi’'06]:

« Let O be an orientation with a marked corner (the root) s.t:
- every vertex has a path to the root (accessibility)
- there is no counterclockwise circuit (minimality)

v ) !

<
Not good

<

Then O has a unique spanning tree T such that:
- T Is oriented to the root
- Every edge e of O\T is clockwise on the unique cycle of T+e

This “canonical” spanning tree is computed by a d.f.s. traversal




Encoding using the canonical spanning tree

Crucial obervation: no loss of information when cutting at their
middle the edges that are not in the canonical spanning tree

L y
A =
<
Minimal accessible — _Fully decorated”

orientation spanning tree



Encoding using the canonical spanning tree

Crucial obervation: no loss of information when cutting at their
middle the edges that are not in the canonical spanning tree

l g
A —>
<
Minimal accessible —~ “Fully .dectorated”
orientation Spanning tree

The fully decorated spanning tree encodes the planar orientation



Illustratlon on triangulations gg =0, b=0)

[De Fraysseix-Pollack-Pach, Schnyder’90]: S|mple rlangulatlons
are characterised by the existence of a "3-orientation”, that is,
- outer vertices have outdegree 1

- inner vertices have outdegree 3
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 [De Fraysseix-Pollack-Pach, Schnyder’90]: simple triangulations
are characterised by the existence of a "3-orientation”, that is,
- outer vertices have outdegree 1
- inner vertices have outdegree 3
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[Schnyder'90]: 3-orientations are accessible (cf Schnyder woods)
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lllustration on triangulations ﬂ9=0’ b=0)

 [De Fraysseix-Pollack-Pach, Schnyder’90]: simple triangulations
are characterised by the existence of a "3-orientation”, that is,
- outer vertices have outdegree 1
- inner vertices have outdegree 3

<

- [Schnyder'90]: 3-orientations are accessible (cf Schnyder woods)

\

« [Ossona de Mendez'94, Propp, Felsner]: any triangulation has a unique
3-orientation with no counterclockwise circuit (mjnimal orientation)

—

Flip ccw
circuit




Encoding a triangulation (g=0, b=0)

[Poulalhon-Schaeffer'03] :

(a)

Compute the minimal
3-orientation

[Brehm'03]




Encoding a triangulation (g=0, b=0)

[Poulalhon-Schaeffer'03] :

(b)

Compute the
canonical
spanning tree




Encoding a triangulation (g=0, b=0)

[Poulalhon-Schaeffer'03] :

spanning tree

( C ) Fully decorated

Cut at their middles
the edges not in )
the spanning tree S




Encoding a triangulation (g=0, b=0)

[Poulalhon-Schaeffer'03] :

(d)

The tails of cut edges
can be forgotten .'/E ‘

Reduced decorated spanning tree
(Two arrows per vertex)

(since faces
have degree 3)
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Encoding a triangulation (g=0, b=0)

[Poulalhon-Schaeffer'03] :
Reduced decorated spanning tree

(Two arrows per vertex)

e Can be encoded
by a contour word
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Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(a)




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(b)

Add a star in each boundary-face

=M€




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

Compute a 3-orientation of M¢




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(d)

Contract the boundary-faces

—> Contracted 3-orientation
(possibly not minimal)




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(e)

Make the orientation
minimal in linear time
cf [Brandes, Wagner'00]




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(f)

Fully decorated
spanning tree




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(g) /) Fully decorated
A tree with boundaries




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(h) Reduced decorated
o tree with boundaries




Dealing with boundaries (g=0, b>0)

[Castelli,F,Lewiner’10]

(h) Reduced decorated
o tree with boundaries

Can be encoded by
contour word

(taking boundary faces
into account)

—> Optimal encoding
But not a “perfect”
bijection (gives no

~:.\counting formula)




Dealing with higher genus (g>0)

Reduces to the planar case using results of graphs on surfaces:

- there Is a non-contractible cycle meeting the triangulation
in at most 4 (2n+2k) vertices, cf [Mc Diarmid’08]

- the shortest non-contractible cycle can be computed in
time Ogy(n log(n)) [Kutz06, Cabello-Chambers'07]

QD O

cut along cycle triangulate each tip



Other results, extensions

« The same approach works also for bipartite quadrangulations

/A

3-orientation 2-orientation

* Recent extension in [Bernardi F’10] in terms of the girth
girth of a graph = length of shortest cycle

Bijective counting of planar d-angulations of girth d=3,4,5,...
relies on structures/orientations generalising Schnyder woods
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d=5: d-angulation with d spanning trees, each edge in d-2 trees




