Random generation

Eric Fusy
January 2, 2011

1 Preliminaries

In the coming 5 lectures we consider methods for the random generation of ob-
jects from a given combinatorial class C = U,>oC;, indexed by a size parameter
n. Examples of classes are permutations (according to the number n of elements
permuted), trees (according to the number n of nodes), walks (according to the
length n), etc... In general, if not explicitly mentioned, we want uniform gener-
ation at a fixed size n, that is, the user chooses the size n and the algorithm has
to return an object in C,, uniformly at random !, that is, under the distribution

1
#Cn

We assume all along the course that we have at our disposal a perfect gener-
ator of bits by, b, bs, ... that are independent and unbiased: P(b=0) =P (b =
1) = 1/2. (In practice there are efficient deterministic procedures that return
a binary string having statistical properties close to perfect randomness, see
the detailed study in Knuth [6]). We can interpret the sequence of random
bits as a real value x taken uniformly at random in [0, 1], which we denote by
x < rnd(0,1). From this it is easy to draw a random integer in an interval
[1..n]:

P(y) = for each v € C,,.

rnd[l..n] : return(|rnd(0,1) *n] + 1),

and to draw a Bernoulli law of parameter p € (0,1) which is to return “true”
with probability p and “false” with probability 1 — p:

Bern(p) : return rnd(0,1) < p.

If not explicitly mentioned, we adopt an arithmetic complexity model (in
contrast to a bit complexity), assuming cost O(1) for operations such as rnd[1..n],
Bern(p), access to a pointed element, ... Note that, with a bit complexity model,
operations such as rnd(1..n) would require (the order of) log,(n) bits; indeed
log,(n) bits are already necessary to write down the development of n in base 2.

n all these notes we abbreviate “uniformly at random” as “uniformly at random”.

2 Elementary methods

We start with basic methods for the random generation of classes that are easy
to count: permutations, complete binary trees, and classes of directed walks
such as Dyck paths.

2.1 Permutations

A simple algorithm for the random generation in &,, (permutations on n ele-
ments) relies on the following decomposition result, which is easily proved by
induction on n and reflects the successive insertions of elements in the cycle-
decomposition of the (inverse) permutation:

Lemma 2.1 Fvery o € G, can be uniquely written as
o= (x1,1)0(x9,2) 0 -0 (xp,n), with1<z; <i (1)
where (i, 7) denotes the transposition of size n that exchanges i and j.

This yields the following random generator:

GENG,,: tab < array [1..n];
for int ¢ from 1 to n do
tabli] < i;
x <+ rnd[1..4];
exchange entries at positions x and ¢ in tab;
od;
return tab

Theorem 2.2 The algorithm GENG,, is a uniform random generator on S,, of
complexity O(n).

Proof The integers x; + rnd[l..i] chosen along the generation correspond pre-
cisely to the integers in the decomposition (1) of o. Since each n-tuple of integers
x; is chosen with probability 1-1/2-1/3----- 1/n = 1/n!, we conclude that each
o € &, is chosen with probability 1/n!, so the generator is uniform. The com-
plexity of generation is O(n), since in the ith step, we just generate an integer
and swap two elements in an array, which takes time O(1). O

2.2 Complete binary trees

A complete binary tree is a tree with vertices of arity 0, called the leaves, and
vertices of arity 2, called the nodes. We denote by A = Up>0A, the class of
complete binary trees counted according to the number n of nodes. It is well
known that #.A,, is the nth Catalan number (2n)!/(n!(n + 1)!). The random
generator for A, we describe here is due to Remy and relies on a nice bijection
relating trees of size n with trees of size n — 1. To describe the bijection it is
convenient to imagine the tree as hanging from a root, with an edge connecting

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: On two examples Remy’s bijection from complete binary trees with
n — 1 nodes and a marked side of edge to complete binary trees with n nodes
and a marked leaf.

the root to the “topmost” vertex of the tree, as shown in Figure 1. Note that
a tree t € A, has n + 1 leaves and, counting the additional edge, it has 2n + 1
edges.

The bijection works as follows. Starting from a tree with n nodes and a
marked leaf f, we may delete f and its parent edge; this way the parent vertex
p of f gets in the middle of an edge e; we then erase p but not e. The operation
is shown in Figure 1. To be able to come back, one just needs to mark the side
of e toward which the marked leaf f was pending.

So we get, for n > 1, a bijection from F,:={(¢, ¢) with t € A,, and £ a leaf of t}
to Cpq := {(¢', ') with t’ € A,_; and s’ a side of edge of '}, or more concisely

A, x [Ln+ 1]~ A1 x [1.4n — 2] for n > 1, (2)

since a tree in A4,, has n+1 leaves and a tree in A,,_1 has 2n —1 edges (each one
having two sides). This bijection yields an elegant method for proving that #.4,,
is the Catalan number, and it provides an efficient recursive random generator:

GENA,: if n =0 return the unique tree in Ap;
t GEN.Anfl;
choose a side of edge e of t uniformly at random;
attach at the middle of e (and toward the chosen side of e)
an edge ended by a leaf;
return the obtained tree

Theorem 2.3 The algorithm GENA,, is a uniform random generator on A, of
complezity O(n).

Proof We prove uniformity by induction. At n = 0 this is evident. Assume it is
uniform at n—1 for n > 0. The second and third line draw uniformly from C,,_1:
indeed each pair (t',s") € C,,—1 is chosen with probability 1/(#C,,—1 * (4n — 2)).
The fourth line then applies Remy’s bijection (2), so we obtain a pair (¢,¢) € F,
uniformly at random. Forgetting the marked leaf ¢, the tree ¢ that is returned is

also uniform in A,, (there it is crucial that each tree in A4,, has the same number
of leaves).

The linear complexity is also evident. At each stage the tree obtained so far
is stored with pointers (each node having pointers to its two children) and a
global array stores the edges (identified to the pointers from a node to a child,
including also the root-edge, pointing from the root to the topmost vertex of
the tree). Thus choosing a (side of) edge uniformly at random takes time O(1)
and the tree modifications, which are very local, take also time O(1). Thus the
overall complexity over the n steps is O(n). O

2.3 Walks

We present here algorithms for the random generation on certain families of
directed walks in Z?. In this section we restrict our attention to walks starting
at the origin and with only two kinds of steps: (4+1,41) and (+1,—1). In other
words such a walk goes from left to right, and in each step the abscissa increases
by 1 and the ordinate either increases or decreases by 1. We call such a walk
a binary walk, since it identifies with a binary word of the same length (write
an a for an up-step and a b for a down-step). Here is a list of families of such
walks (in each case there are some constraints on the walks):

e Nonnegative walks are binary walks where the ordinate remains nonneg-
ative.

e Dyck walks (also called Dyck paths) are binary walks that are nonnegative
and end at ordinate 0.

e Balanced walks are binary walks ending at ordinate 0.
e Quasi-balanced walks are binary walks ending at ordinate —1.

Note that the length of a Dyck walk or of a balanced walk is even, while the
length of a quasi-balanced walk is odd. For n > 0, denote by P,, the set of
nonnegative walks with n steps, by Ds, the set of Dyck walks with 2n steps,
by Ba, the set of balanced walks with 2n steps, and by Qs,, 11 the set of quasi-
balanced walks with 2n + 1 steps.

These classes are related by several correspondences 2:

Bay, =~ 2% Qopn_1 {removing the first step},
Qont1 =~ (2n+1)%x Dy, {the cyclic lemma},
Pon =~ Baoy, {to be proved later}.

Hence doing the uniform random generation in only one of these classes
is sufficient. Since Ds,, ~ A,, (Dyck walks encode complete binary trees), the
generator GEN.A,, makes it possible to generate uniformly in all the above classes

2For two combinatorial families C := U,,Cy, and D := U,, D,, we write C ~ D if |Cn| = |Dn|
for each n > 0.

Do, Ban,y Qont1, Paorn. However, we find interesting to present various random
generators that directly generate a walk. We restrict our attention to the family
B = U, Bs, of balanced walks, and present three random generation methods:
by permutation, by rejection, and by targetting method.

2.3.1 Generation by permutation

It is convenient to see elements of Bs, as binary words with n a’s and n b’s.
Note that there is a simple surjective mapping from Gz, to Ba,: associate with
o € By, the word ®(0) = w = wy,wa,...,ws, where w; = a if o(i) < i and
w; = b if o(¢) > ¢. For instance the permutation 2 6 7 3 4 8 1 5 is mapped to
abbaabab. Since ® is surjective and each w € B, has n!? preimages under ®,
the uniform distribution on &, is projected by ® to the uniform distribution
on Bsy,. Therefore the following algorithm is a uniform random generator on
B, of complexity O(n) (in an arithmetic model):

GENBy,,: 0 < GENGy,; return ¢(o)

2.3.2 Generation by rejection

The previous algorithm has arithmetic complexity O(n), but in fact the number
of random bits required is of order nlog,(n), because this is what is required
to draw a permutation of 2n elements. However, the entropy (defined as the
log, of the cardinality) of Bs, is only linear, so it is a pity to project from Sy,
which is much larger than Bs,,; and hopefully one can generate in Bsy,, with only
O(n) random bits (without passing by permutations). In this section, relying
on simple rejection principles, we describe a random generation algorithm on
Ba,, that needs O(n) random bits in average (to my knowledge it is an open
problem to achieve O(n) random bits in the worst case).

First, notice that for any set of binary words & C {a,b}?", the algorithm
that repeats generating a string of 2n random bits until the resulting binary
word is in £ is a uniform random generator on £. We could apply this idea to
& := By, but this would not be efficient. Indeed we would have to wait almost
till the end of the string to know whether the resulting word has no chance to
be in By, or till the end when the word is actually in Bs,, which occurs with
probability ©(1/4/n). Hence the overall expected complexity of this generator
would be ©(n?®/?).

The nice idea described in [8] is to show a bijection between Bs,, and Pa,
(nonnegative words of length 2n) and do the rejection algorithm on Pa,, instead
of Bo,. The advantage is that the generation can be aborted very early in Pa,,
at the first time the walk visits negative ordinates.

Lemma 2.4 There is a bijection between Ba, and Po, for n > 0. The com-
plexity of the bijection in both directions is O(n).

Proof Define B := U,>0B2, and P := U,>0P2, as the combinatorial families
of (respectively) balanced walks and positive walks of even length. For k > 0,

Figure 2: (a) Decomposition of a balanced walk in B®*) into 2k + 1 Dyck paths;
(b) Decomposition of a positive walk in P*) into 2k + 1 Dyck paths.

let B*) be the subfamily of walks in B with k down steps from ordinate 0 to
ordinate —1; and let P®*) be the subfamily of walks in P with endpoint at
ordinate 2k. Note that P9 = B(O) = D, (We show here more generally that
Pk ~ 22k 4 D21 and BKR) ~ 22k 4 D2k+1 where Z denotes a distinguished
step in the walk.) For k > 0 a walk W in B*) has (by definition) & down
steps from ordinate 0 to ordinate —1, denoted di,...,d;. Since W ends at
ordinate 0, it also has k& up steps from ordinate —1 to ordinate 0, denoted
U1, ..., ug, which alternate with the down steps d; (see Figure 2(a)). And the
2k marked steps dy,uq,...,dg,u; split W into 2k 4+ 1 walks Dy, ..., Dy such
that the walks Dy, Ds, ..., Do are Dyck paths and the walks D1,..., Doi_1 are
mirrors of Dyck paths, see Figure 2(a). Hence B*) ~ 22k x D241 We similarly
decompose a walk W in P*). For i € [0..2k — 1] let s; be the last step from
ordinate ¢ to ordinate ¢+1. Then the steps s, ..., sax—1 split W into 2k+1 walks
that are Dyck paths, see Figure 2 (b). Hence Pk) ~ 22k 4« D2+ To conclude
we have BF) ~ 22k 4 p2k+1 ~ P for | > 0, hence B = UpB*) ~ U, PK*) = P.

Let us discuss on the complexity of the bijection B ~ P given formally
above. To go from W € P to W’ € B, one has to find the last-passage steps
S0, ---,S2x—1. For this it is easier to read the path from right to left and record
the down steps s; of first arrival to ordinate i for ¢ from 2k — 1 to 0. This takes
time O(n) (also in bit complexity). Then, for 0 < ¢ < k — 1, one applies an
horizontal mirror to the walk between sg; and sg,;41, and one flips the step sg;,
which again takes time O(n). O

Thanks to the bijection ® from Ps, to B, generating uniformly in Bs,
reduces to generating uniformly in Ps,,, which is efficiently done by rejection:

GENPs,: CurrentHeight < 0; tab + array[l..2n];
for int ¢ =1 to 2n do
if Bern(1/2) then tab[i] «+ ‘a’; + + CurrentHeight;
else tab[i] « ‘b'; — — CurrentHeight; end if;
if (CurrentHeight < 0) break; end if
od;

return tab
Then the generator for By, is

GENBy,: return ®(GENPy,

Theorem 2.5 The algorithm GENBs, is a uniform random sampler for B, of
expected complezity O(n). The number of random bits required is also O(n) in
average.

Proof Since GENPy, is a uniform generator for Ps,, and a bijection ® between
two sets preserves the uniform distribution, GENBs,, is also a uniform sampler
on By,. The total number of random bits corresponds to the total number of
steps generated by one call to GENPs,; we show that this quantity is O(n).
Each trial in GENPa,, either fails at step 2¢ + 1 (i.e., visits for the first time
negative ordinates after step 2i + 1) with 0 < ¢ < n, or succeeds. In the first
case, the path formed by the 27 first steps is a Dyck path and the 2i + 1th step
is a down step. In the second case, the path generated has length 2n. Thus the
expected cost (in bits) of one trial is

E(one trial) Z j;ff (2¢ + 1) + P(success) * 2n

Note that® #Dy; = ©(4'i73/2), so the first term (by summation) is ©(y/n).
Concerning the second term, we have

#PZn #BQn
P(success) = I = o 0(1/vn),
Hence the second term is y/n, hence E(one trial) is ©(y/n). Finally we use the
general formula for rejection generators

E(one trial)

Eiopal = i€ M)
total = °p (success)

(proof of the formula: E¢ota = E(one trial) + P (failure) * Eiota = E(one trial)+
(1 — P(success)) * Etota1). Hence Eiora = O(yv/n)/0(1/y/n) = O(n). The
expected complexity of GENPy, is also a big O of the total number of steps
generated, so it is O(n); and GENBs, adds to it the cost of the bijection @,
which is O(n), so the expected complexity of GENBy, is O(n). O

3We use the notation u, = O(vy) to mean that the ratios un /vn and vy, /un, are bounded.

2.3.3 Targetting method

We describe a third method to generate walks from Ba,, ~ &(a™b™). Actually we
describe more generally a method to generate from the set W, ; of walks with ¢
northeast-steps and j southeast-steps, hence W; ; ~ S&(a't’) and #W; ;= (":])
The name of the method is due to the fact that we fix the endpoint (i + 7,7 — j)
as the endpoint to arrive: the target of the walk. Clearly, for w € W; ; taken
uniformly at random, we have

_ Wiy i

#HWi j i+j’

P(w starts with 'a’)

which yields the following random generation algorithm:

GENW, ;: if (i =j = 0), return empty word;
if Bern(i/(i + j)) return ‘a’ + GENW,;_ ;
else return 'Y’ + GENW; ;1 end if

that is directly shown to be uniform on W, ; by recurrence on i + j. Then a
generator for By, is simply obtained as the particular case GENW),, ,,.

The method can also be applied to positive walks ending at (i + j, i — j) for
1 > 7, i.e., walks made of ¢ north-east steps and j south-east steps and stay at
nonnegative ordinate all the way. Denote by P; ; this set, which is isomorphic
to the subset of &(a’t’) made of the words whose prefixes have at least as many
a’s as b’s. An extension of the cyclic lemma (which in the case i = j gives the
enumeration of Dyck paths by Catalan numbers) yields

H_i—j—l—l(i—i—j—i—l)
Y1\ i1)

We can also apply the targetting method, but this time we have to start from
the end of the path, i.e., choose the steps of the path from right to left. This
way the target point remains the origin and the positivity constraint (according
to the horizontal line passing by the origin) is maintained. Similarly as before,
for w € P; ; taken uniformly at random, we have

#Pia; 0 =g i+l

P(w ends with 'a’ ,
(Vi) = T iitg

which yields the following recursive uniform random generator on P; ;:

GENP; j: if (i = j = 0), return empty word,;
if Bern(ﬁ%) return GENP;_y ; +' d
else return GENP; j_1 +' V' end if

2.4 Counting Young tableaux

We present here a very nice proof, due to Greene, Nijenhuis, and Wilf and is
presented in [7, Ch.14] for counting Young tableaux on a given shape (the so-
called hook-length formula) that makes use of a random generation algorithm.

A= = ! 214 X
3 8 hy, =7
519
L 6]
a) Ferrer diagram b) Young tableau ¢) Hook—length

Figure 3: (a) The Ferrer diagram A corresponding to the integer partition 9 =
34+3+2+1, (b) a Young tableau on A, (c) the hook-area and hook-length of
an entry of a Ferrer diagram.

How could a random generator on a set E give a formula for #E 7 Well, if
we can show (without counting) that the probability of each element of F to
be drawn is a certain explicit quantity p that is the same for all elements of F,
then we have #F = 1/p.

Let us first define Young tableaux on a given Ferrer diagram and state the
hook-length formula. A partition of an integer n is a sequence Ay > ... > A, of
integers that add up to n. One represents such a partition by a Ferrer diagram,
i.e., a diagram with one row of \; squares for each ordinate ¢, see Figure 3(a).
It is convenient here to consider ordinates as increasing from top to bottom and
abscissas as increasing from left to right, thus the topleft entry of the Ferrer
diagram is at coordinates (1,1). The size n of A is the number of entries of A
(visually an entry is a box of the diagram). Then a Young tableau on A is a
filling of the entries of A by the integers [1..n] such that the entries are increasing
in each row and in each column, as shown in Figure 3(b). The set of Young
tableaux on the Ferrer diagram A is denoted Y ().

Exercise Prove that for the set of Young tableaux on the two-rows diagram
(4,7) is in bijection with the set P; ; of positive paths with ¢ up steps and j
down steps.

Given a Ferrer diagram A and an entry x € A, the hook-area of x, denoted
H,, is the set of entries of A that are either x, or to the right of = on the same
row, or below x on the same column. The hook-length h(x) of x is the number
of entries in Hy, see Figure 3(c).

In the rest of the section we are going to prove the following theorem:

Theorem 2.6 (hook-length formula) Let A be a Ferrer diagram, n the size
of \. Then
n!

HwE/\ hJL

The strategy is to define a random generator on Y () and show (by induction
on n) that each tableau in Y'(X) is drawn with probability [[, h,/n! (which yields
the hook-length formula as a direct corollary).

#Y (A) =

In general, a Young tableau on A of size n is constructed as follows:

e choose an external corner ¢ of A (i.e., an entry with no entry below or to
the right), and place the integer n in the entry c,

e if n —1 > 0, continue the procedure with X' = X\c.

Note that the choice at each step is not unique (there might be several cor-
ners). To specify a random generator on Y'(\), one can specify how one chooses
randomly at each step one of the corners. It turns out that the following game-
like process will give the uniform distribution on Y'(A) (in contrast, choosing a
corner uniformly at random would not give the uniform distribution on Y'(X)):

CHOOSECORNER: e Start from an entry = € A taken uniformly at random,
e At each step until = is a corner, let x jump uniformly
at random onto one of the entries of the area H,\z,
i.e., each entry in H,\z is chosen with probability 1/(h, — 1).

and let GENY () be the random generator on Y () that at each step (for ¢ from
n to 1) chooses a corner by the process CHOOSECORNER.

Lemma 2.7 Let A be a Ferrer diagram and ¢ a corner of A. Define A(c) :=
{entries above c} U {entries left of ¢} Then the probability that ¢ is chosen by
CHOOSECORNER satisfies

1 h,
P(c):ﬁ H -

z€A(c)

Before proving the lemma, we claim that it directly implies (by induction on the
size n of A) that GENY (\) draws each tableau on A with probability [], h./n!
(which in turn yields the hook-length formula). Indeed, this is true for n = 1; let
now A be a tableau of size n > 1 and let T' € Y'(A). Call ¢ the corner occupied
by n, X := A\{c}, and T" := T\{c}. Then

PO(T) = P(e) - PO(T),

We know (by induction) that PO)(T) = Y hgg/\/)/(n —1)! and want to
prove that PO(T) = [, ., hg(c)‘)/n!, so we just need to prove that P(c) equals
the ratio R := 1/n - [[,c\ hg‘)/er)\, r). But for o ¢ A(e), A = h;)‘/),
whereas for = € A(c), k™ (z) = M) () + 1,50 R:=1/n- [Lica ha/(ha —1).

Proof of the lemma. Call scenario ending at ¢ a sequence S = (zo,. ..,z = ¢) of
entries of A such that x; € H,, ,\z;_1 for i € [1..k], and denote by S the set of
scenarios ending at c¢. Note that S € § corresponds to a path ending at ¢ in the
process CHOOSECORNER. Define P(.S) as the probability that scenario S occurs
in CHOOSECORNER knowing that the first entry chosen in CHOOSECORNER is
xg. Clearly P(S) satisfies

and the probability that the corner c¢ is chosen by CHOOSECORNER is expressed
as P(c) = 23 45 P(S). Call i* the abscissa of ¢ and j* the ordinate of c.
The abscissa-projection (ordinate-projection, resp.) of S is the set of abscissas
except ¢* (ordinates except j*, resp.) occupied by entries in S. For E C [1..i* —1]
and F' C [1..j* — 1] let S(E, F') be the set of scenarios ending at ¢ that have
abscissa-projection E and ordinate-projection F. We claim that

> P =I5

B
SES(E,F) =) JGF (e*.4)

The proof of the claim is by induction on #F + #F. It is true for #E = 0 or
#F = 0. Otherwise we have (since the first step of the scenario either goes to
the right or goes down) S(E, F) = S(E\ig, F)US(E, F\jo), where ig = min(E)
and jo = min(F'). Thus, by induction

1 1 1
> P9 =7 il he, —ilh@*d)_-1*’11 T y]

SeS(E,F) Ntio o) — i€E\io i€E
’ jer JEF\jo
_ (hggr) = 1) + (R o) — H 1
hiio,jo) — 1 EEMH)*lmzﬁfl
JEF

B 1 1
o hagn — Lhie gy =1
JEF

which proves the claim. We can now finish the proof of the lemma:

SO CEE DYDY

S’GS EC[l..i*—1] SES(E,F)
FC[l..5%—1]
1
= 2 = > i
EC[1..i*—1]i€E hig) FC[L..j* —1]j€F *53) T
it =1 i
1 (1 1
T
_ ! 11 ha
T n hy —1°
z€A(c)

where we use from line 2 to line 3 the identity (for M a finite set and f a function

with domain M):
> I r@=TIa+r@).

ECM z€FE reM

This concludes the proof of the lemma and of the hook-length formula. O

11

3 Automatic methods of random generation

We describe here two methods, recursive method and Boltzmann sampling, that
given a recursive specification of a combinatorial class A automatically yield a
uniform random generator on A. The recursive method relies on the counting
coefficients and provides uniform generation at a fixed size n. Boltzmann sam-
plers draw objects with probability distribution P(y € A) = 271 /A(z) (with 2 a
parameter to adjust), hence the size is not fixed but the distribution is uniform
when conditioned on a given size.

3.1 Combinatorial classes and generating functions

Recall that a combinatorial class C = U,,C, is a set indexed by a size parameter
n such that C,, (set of objects of size n) is finite for any n. In order to express
decompositions of combinatorial classes (such as tree-families) in a convenient
and compact way, we use the framework of symbolic combinatorics, as presented
in the first 3 chapters of the book by Flajolet and Sedgewick [3].

In this framework generating functions play a crucial role; the generating

function of a class A is
A(zx) = Z a2l = Zanx",

yeA

where a,, := #.A4,, and where the size of an object v € A is denoted |7|.

Finite classes. The finite classes are: the class 1 made of a unique object of size
0; and the class Z made of a unique object of size 1.

Disjoint union. The disjoint union C = A + B of A and B is such that C,, =
A, U B, for each n, where A,, and B,, are assumed to be disjoint for each size
n (if not, one can take disjoint copies of A and B, assigning a color to each
copy, thus an expression such as A+ A is to be understood as the union of two
disjoint copies of A). The coefficients of C are expressed in terms of those of A
and B as

Cp = Gy + by,.

The generating function of C satisfies C(2) = >, cp2™ = >, anz™+> ., by2" =
A(z) + B(z), so
C(z) = A(z) + B(x).

Product. The product C = A B of A and B is the set C = {(a, 8), a € A, § €
B}, where the size of v = (a,) is || = |a| 4+ |5]. The coefficients of C are
expressed in terms of those of A and B as

Cp = § akbn—k;

k=07

since taking an object in C, consists in choosing an object in A, of a certain
size k, and then the second component (in B) must be of size n — k. The

12

generating function of C satisfies C(z) = > ¢ gl =3 4 seB glel+8l =
Paeaz! ZBeBx‘Blv S0

Seq. The sequence class C = SEQ(A), where A has no object of size 0, is defined
formally as C = U, A", i.e., each v € C is of the form 71, ...,y where the 7;’s
are in A. The size of 7 is the sum of the sizes of the v;’s. The generating
function of C satisfies

C(x) =Y Ak = 1%4(2).
k

Examples: The class of complete binary trees satisfies satisfies A = 14 Z % A2
when counted according to inner nodes and satisfies A = Z + .42 when counted
according to leaves. The class P of rooted plane trees satisfies P = Z % SEQ(P)
when counted according to vertices and satisfies P = SEQ(Z * P) when counted
according to edges.

Let us finally give the set constructions that are slightly more involved re-
garding the rule to compute generating functions.

Set. The set class SETy(A), where A has no object of size 0, is defined as
A¥ /&y, ie., it is the class of unordered k-element multisets of objects in A.
For instance C = SET2(A) is the set of unordered pairs of objects in A. The
generating function of C satisfies

1 A(z)? — A(2? 1 1
C=f X slaby 3 o= AP iy - Lapa L
(a,8)€ A% acA
a#pB
The class C = SET(A) is defined as Ug(A), i.e., there is no constraint on
the number of components in the multisets. Since each v € A appears with a
certain multiplicity m, > 0 in a multiset, the generating function of C satisfies

1
= o] 2l Ly = — _ L ny—an
)= [L+ e 4220y = T o = [T - =7
yeA yeEA n

where a,, = #A,.

Examples: The class of non-embedded binary trees counted according to leaves
satisfies 4 = Z + SET2(A) (if the tree has a root-node, the two subtrees are
unordered). The class of non-embedded trees rooted at a vertex satisfies T =
Z % SET(T) when counted according to vertices.

3.2 Transfer rule for asymptotic estimates

To finish, we give a recipe to find asymptotic estimates of coefficients ¢,, from the
singular behaviour of its (complex-variable) generating function f(z) =3, cp2™.

13

Let p be the radius of convergence of f(z), p~! = lim sup c,{b/n. Assume that
f(2) satisfies

N c o 1 3
9.5, 0)

for some constants ¢, o, 8 (with o ¢ Z_). Then, the following transfer rule [3,

Ch.6] holds*
c

I'(a)
For instance, for binary trees Y. a,z" = A(z) = z 4+ A(z)? yields A(z) =

(1 —+/1—-42)/2, so for n > 0, a,, = —1/2 - coeff,,(v/1 — 4z), which by the

transfer rule yields

Cn ~ p~"n® " log(n)”. (3)

-1 1
n ~ 4" -3/2 _ 74n71 73/2'
o1/t " N

3.3 The recursive method

The first automatic method we describe is called the recursive method and
was introduced by Nijenhuis and Wilf [7]. The method was later formalized
by Flajolet, Van Cutsem and Zimmermann [4], who also give a framework for
automatic average complexity calculation. Given the recursive specification of
a class A (such as {A = Z+ B*,B = Z x A* + Z? x B%}), the recursive method
yields a uniform random generator for A in each fixed size n. The idea is to
provide, for each construction, a random sampling rule that builds a random
sampler for the composed class from the random samplers of the composite
classes. We illustrate the method here only for the constructions + and *. We
use the notation I'C[n] for a uniform random sampler on C,.

3.3.1 Sampling rules

Let A and B be classes for which we already have fixed-size uniform generators
I'Afi] and T'BJi]; and let us construct a uniform random generator I'C'[n] for the
sum C = A+ B and the product C = A x* B, respectively. Call a,, b,, ¢, the nth
coefficient of A, B, and C.

Disjoint union. Consider C = A+ B. Note that an object in C,, taken uniformly
at random is in A,, with probability a, /c,. Hence the following random sampler
for C,:

I'C[n] (C = A+ B): if Bern(a,/cy) return I'A[n] else return I'B[n];

which is uniform on C,, (proof in two cases, if v € C,, is in A,,, it is chosen with
probability (an/cp) - (1/an) = 1/cy; if it is in B, it is chosen with probability
(bn/cn) - (1/bn) = 1/cn).

4There are some technical conditions to check, namely that f(z) is analytically continuable
to a domain of the form {z; |z| < p+eand z—p ¢ Ry}

14

Product. Consider C = A % B. Note that for («,3) € C, taken uniformly at
random in C,, the probability of « to have size k € [0..n] satisfies

abn—i
Pk)=——.
(1) =
Hence the following random sampler for C,,:

I'C[n] (C = AxB): Draw k under the distribution P(k) = agpbn—r/cn;
return < TA[k],T'B[n — k] >

which is uniform on C,, (Proof: for (e,) € C,, with |a| = k, the probability of
drawing (a, 8) equals (agbn—k)/cn - (1/ar) - (1/bp—k) = 1/cy).
The size k of the first component is drawn by the following procedure:

p <+ rnd[l..c,]; k + 0; q < agby;
while(p > ¢q) do k + k+1; q + q+ arb,_x; od

Note that the cost of drawing k is equal to the number of iterative steps, i.e., is
equal to k.

3.3.2 Complexity analysis

Illustration on complete binary trees. The class of complete binary
trees (counted with respect to the number of inner nodes) satisfies the decom-
position

A=1+Zx A%
since it is either empty or has a root-node with a left subtree and a right subtree,
both in A. Call a,, = #A4,,. The recursive method draws the empty tree if n = 0,
else it draws the size k of the left subtree under probability

oy —f—
P(k) _ kUn—k—1 ,
an

the cost of drawing k being equal to k.

Let us now do the (average) cost analysis. For a € A, let A(a) be the cost of
generating a. If a is empty the cost is 0, otherwise call a; the left subtree and
as the right subtree of a. Then

Aa) = la1| + A(a1) + A(a2).

Now introduce the generating function A(z) = Y c 4 A(a)zl?l = 37 A,2" and
A(z) =, anz™ the generating function of A. (Note that \,,/ay, is the expected
cost of generating a tree in size n.) Multiplying by zlol = zleiltleal+1 the
equation above and summing over a € A, one obtains

Az) = Z Ma)zld = Z (Ja1| + Aa1) + Aag))zl@r+lazl+1

acA a1 €A
as€A

= Z[Z |a1|Z|‘11|Z|‘12| +)\(al)z|a1|z|a2| + Z|a1|)\(a2)2|a2|]

a1€A
az€A

= 22A/(2)A(2) + 22A(2) A(2).

15

Hence A(z) = 22A4'(2)/(1 — 22A(z)). Since A(z) = 1+ zA(2)?, we have
A'(2) = A(2)? + 2247 (2) A(2), so that A'(z) = A(2)?/(1 — 22A(z)). Hence

22A(2)3

MO = T2y

Moreover, A(z) = 1+ zA(z)? is solution of an equation of degree 2 (with
coefficients in the field Q(z) of rational expressions in z), yielding the expression

Az) = 1242 V21Z_42. Hence (1 —22zA(2))? = 1 — 4z, so that

22A(2)3 1 1
1—4z 7YV4i91 4y

A(z) =

Hence, by the transfer rule (3),

1

Since a,, ~ 4™/vmn3 (by the transfer rules or the Stirling estimate of n! and
the expression of Catalan numbers), we finally obtain that

A

E, (cost of generation) = ~* ~ ﬁn?’m.

an 2
As exposed in [4], the calculation of the expected cost from the recursive speci-
fication of a class can be automatized.

Faster methods. The problem of scanning k from 0 to n is that, for large
binary trees (as revealed by some simple asymptotic analysis) most of the size
n is concentrated either on the left subtree or on the right subtree. Hence it
is better to test for the values of k in the following order: £k = 0,n —1,1,n —
2,2,n—3,... (instead of K = 0,1,2,...). Using this rule, one obtains a worst-
case complexity of order nlog(n) (more details and references are given in [4]).
Another idea is to point the trees. The pointed class A® of A is defined as
A* = U, A, x [1..n], it corresponds to the set of objects in A with a marked
atom (such as a tree with a marked node). The pointing operator obeys simple
rules regarding the constructions:

(A+B)* = A +B°, (A+B)* = A° B+ AxB".

Injecting these rules in the decomposition A = Z + A? of binary trees (counted
according to leaves this time), one obtains

A=Z+ A« A+ Ax A~ Z+2x Ax A°.

Since in a given size n there are more pointed trees than trees (the coeflicients
differ by a factor n), the distribution of the size of the first component of an
object in A x A*® is biased toward smaller values, which reduces the cost of
drawing the sizes of the subtrees. A careful analysis [4] shows that the expected
cost in size n is of order nlog(n).

16

Cost of pre-computation of the coefficients. Let us finally comment on
the complexity of computing the coefficients ag, aq,...,a, which are required
to draw the sizes of the subtrees at a node. A naive recursive method, us-
ing the expression a,, = Zke[O..n—l] axan_1—k, would require O(n?) operations
(O(n) operations for each coefficient). A faster computation way is given by
the D-finite framework [11]. From the algebraic equation A = 1 + zA2, one
obtains a linear differential equation (with coefficient polynomial in z) satisfied
by A(z), from which one obtains, by coefficient extraction, a linear recurrence
(with coefficients that are fixed polynomials in n) satisfies by the a,’s:

A(2) =14 24A(2) = 2(1 —42)A'(2) + (1 —22)A(2) =0
= (n+a, —2(2n —1)a,_1 =0 for n > 0.

In this case, we recover the recurrence satisfied by the Catalan numbers (already
revealed by Remy’s bijection in Section 2.2). But this method applies more
generally for any algebraic generating function, i.e., satisfying an equation of
the form P(f(z),z) = 0 with P a polynomial. Using such a recurrence, the cost
of computing each coefficient a,, is O(1), so the cost of computing all the n first
coefficients is reduced to O(n).

3.4 Boltzmann samplers

We consider here another model for random sampling in combinatorial classes.
Given a class A = U, A, recall that the generating function A(z) of A is

Ax) :== Z gl = Zanx”.

yEA

A positive value x strictly smaller than the radius of convergence p of A(z) is
said to be an admissible value for A, so A(x) converges as a sum. The Boltzmann
model at x assigns to each v € A the probability

Pl

where A(x) acts as a normalizing constant (so that the sum of the probabilities
equals 1). Note that the distribution is spread over all objects of A, but on each
size the distribution is uniform (i.e., two objects of the same size have the same
probability to be chosen).

The model is analogue to the Boltzmann model of statistical physics that
assigns to each possible state of a system probability e=#F/Z, where E is the
energy of the state, 3 = 1/T is a constant, and Z is the sum of e #F over
all possible states, so Z acts as a normalizing constant. The combinatorial
Boltzmann model corresponds to the statistical physics model upon rewriting
r=e " and E = size.

As described in [2], one can develop an efficient method for random sampling
under the Boltzmann model. An algorithm that draws objects in a class A at

17

random under the Boltzmann model for any fixed admissible value of x is called
a Boltzmann sampler and is denoted T'A(z). Note that the parameter of the
sampler is not the size n as in the recursive method, but is the real parameter
x, which influences the size distribution of the output (we will see later how to
adjust x to maximize the probability of reaching a target-size n).

3.4.1 Sampling rules

As in the recursive method, for each combinatorial construction there is a sam-
pling rule to obtain a Boltzmann sampler for the composed class from Boltz-
mann samplers of the composite classes. So we assume we have Boltzmann
samplers I'A(z) and I'B(z) and want to obtain a Boltzmann sampler for A+ B
and for A x B, respectively.

Sum. Let C = A+ B. Let v € C be chosen under probability P,. Then the
probability that v € A is equal to
2z A(z)

24 C) ~ Clay

This indicates how a Boltzmann sampler for C can be obtained:
I'C(z) (C=A+B): if Bern(A(z)/C(z)) return I'A(x) else return I'B(z);

Note the analogy of this sampling rule with the one in the recursive method
(Bern(ay,/cy,) in the recursive method). This illustrates that Boltzmann sam-
plers are based on generating functions whereas the recursive method is based
on the counting coefficients. Let us check that the probability given by I'C(x)
is the Boltzmann distribution. For v € A, the probability that ~ is chosen by
I'C(x) is

A(x) 21 2

C(z) A(z) A(z)’
Indeed « is chosen iff the Bernoulli choice in I'C(z) directs to generation in
A (this occurs with probability A(x)/C(z)) and then v is chosen when calling
T'A(z) (this occurs with probability |7/ /A(z)). Similarly if v € B, the probabil-
ity that ~y is chosen is B(z)/C(x) 2" /B(x) = 27l /C(z). Thus the distribution
given by I'C(z) is the Boltzmann distribution, so I'C(z) is a Boltzmann sampler
for the sum C = A + B.

Product. Let C = A B. Let v = (, 8) € C be chosen under probability P, so

oy gl glel gl
)= 2@ ~ A@B@ ~ Al Bl)’

hence the probabilities of the two components are independent, and the first
(second) component follows the Boltzmann distribution at 2 in the class A
(in the class B, resp.). Thus a Boltzmann sampler for C is obtained by two
independent calls to Boltzmann samplers in A and B:

18

I'C(z) (C=Ax*B): return < T'A(z),T'B(x) > (independent calls)

Note that, compared to the sampling rule for product in the recursive method
(with a costly step to choose the size of the components) the rule under Boltz-
mann model is much simpler.

Sequence. We finish with the sequence construction, let C = SEQ(A) =1+ A+
A2 + ... (where A has no object of size 0), with generating function C(z) =
1+A(z)+A(z)?+... = 1/(1— A(z)), and assume we have a Boltzmann sampler
T'A(z) for A. Let v € C be chosen at random under the Boltzmann model
at value z. Then the probability that v has k components is A(x)*/C(x) =
(1 —A(z))A(z)* = (1 — p)p* where p = A(z), hence the number of components
follows a geometric law of parameter A(x). So the following Boltzmann sampler

for C:

I'C(z) (C =SEQ(A)): Kk <+ Geom(A(x))
a1 + TA(x),...,ar + TA(z) (independent calls)
return < agq,..., 0 >

3.4.2 Examples
Plane trees. The class P of rooted plane trees is specified by
P = Z % SEQ(P).
Its generating function P(z) satisfies P(x) = 2/(1—P(z)) so P(z)?>—P(z)+x =

0, hence

P(z)=(1—-+1—4x)/2.
From the sampling rule for sequence (used in a recursive way) we obtain a
Boltzmann sampler for P:

I'P(z): k< Geom(P(x))
71 < ['P(x),..., 7 + I'P(z) (independent calls)
return tree with root-vertex of degree k and subtrees 71,..., 7%

The geometric law Geom(p), with p = P(x), is drawn as follows
Geom(p): if Bern(1 — p) return 0; else return 1 + Geom(p)

Note that, when z tends to the radius of convergence 1/4, P(x) tends to
1/2, and the expectation of Geom(P(x)) tends to 1 from below. So we have two
regimes: subcritical, z < p = 1/4, where the expectation of the arity is smaller
than 1 and the expectation of the size of the tree is O,(1). And we have the
critical regime, = 1/4, where the expectation of Geom(P(x)) is 1. In that
case the generated tree is finite with probability 1 but the expectation of the
size of the tree is infinite (because the behaviour a,, = ©(4"n~3/2) yields a tail
of distribution of the sizes of order n=3/2 for the Boltzmann model at = = 1/4,
and so an infinite expectation).

Words without long run. Let W = {a,b}* be the family of binary words
counted with respect to the length, so W = SEQ(2% Z). A run of w € Wis a

19

maximal sequence of identical letters. For instance the word w = aabbaaaabb
has 4 runs, of lengths 2,2 4,2. The decomposition of words in W into runs
reads

W = SEQ(b) * SEQ(Q) * SEQ(a), where Q = SEQsq(a) * SEQsq(b).

The first SEQ(b) is non-empty iff the word starts with b (hence has an initial
run of b’s), the last SEQ(a) is non-empty iff the word ends with a (hence has a
final run of a’s), and the runs in between are grouped into pairs of runs (a run
of a’s followed by a run of b’s).

Let W,,, be the family of words with runs of length at most m. With that
restriction the decomposition into runs becomes

Wm = SEQOm(b)*SEQ(Qm)*SEQOm(a')7 where Qm = SEle(@)*SEle(b)

We are going to translate this decomposition into a Boltzmann sampler for
Wh,. Call Geom;_j(x) a geometric law restricted to the interval [i..j], so

z” o*(1—2)
P(k) = - = — —— f i..5)-
*) 4.4l p(l— i) or k € [i..j]

In particular P(i) = (1 — 2)/(1 — 277*"1), so the following algorithm to draw
an integer under Geom;_;(x):

Geom;_;(z): if Bern((1—x)/(1—2~"T1)) return i; else return Geom; 1. ()
Hence the following Boltzmann sampler for Q,,:

IQum(x): ki < Geomy_,,(x); ko < Geomy_,,(z); return a*1b*2;
Note also that the generating function for Q,, is

22(1 — 2™)?

Qm@)=(x+...+2™)* = TSE

From the decomposition into runs and the Boltzmann sampler for Q,, we
finally obtain a Boltzmann sampler for W,,:

TW(x): k< Geom(Qm(x)); wy ¢ TQm(x),. .., wg + TQm(x);
d + Geomg, ., (2); € < Geomg_,(z);
return b%w; . .. wia®

3.4.3 Complexity of pure Boltzmann samplers

Boltzmann samplers have the nice feature that, for a decomposable class A (i.e.,
A admits a recursive specification involving {+, %, SEQ} and the basic classes
{1, Z}), the complexity of generation is linear according to the size of the object
generated (this size is not fixed since the Boltzmann distribution assigns positive
weights to all objects of the class).

20

One can state this firmly under the assumption that the evaluations at x
(which are real numbers) of the generating functions intervening in the de-
composition of A are known exactly. This assumption is known as the oracle
assumption (one imagines that an oracle provides the values for us). In prac-
tice, one evaluates the generating functions with a fixed precision, say N digits
(typically N = 20) and in the unlikely case one needs more digits during the
generation of an object®, one computes a few more digits of the generating
functions (adaptative procedures).

Theorem 3.1 Let A be a decomposable class in terms of the constructions
{+, %, SEQ} and the basic classes {1, 2}, and let T A(z) be the Boltzmann sam-
pler obtained from the sampling rules. Then, under the oracle assumption, the
generation of an object v € A by T'A(x) takes time O(|v]).

We prove this theorem on the example of rooted plane trees, class P, whose
Boltzmann sampler I'P(z) is given in Section 3.4.2. Note that the complexity
of generation is due to the cost of drawing the number of children arity(v) of
each node v of the tree. Such an arity is drawn as k <— Geom(P(z)), which has
cost 1+ k (indeed the sampler for geometric law given just after I'P(z) has cost
1 if the result is 0, has cost 2 if the result is 1, etc...). Hence the cost of drawing
T € P, with vertex-set V and edge-set F (so |7| = #(V) by definition), satisfies

Cost(r) = _arity(v) + 1 = #E + #V = 2#V — 1 = O(|7]).

vET

3.4.4 Complexity of Boltzmann samplers targetted at a size-domain

Assuming we want uniform random generation in a decomposable class A at a
fixed size n, we just need to add a rejection-loop to I'A(x):

SAMPLEA,, (z): repeat v € T'A(z) until || = n; return ~

We now discuss how to adjust the parameter x so as to minimize the expected
cost of generation. The expected cost of one attempt is the expected cost of one
call to T'A(z), which by Theorem 3.1 is of the same order as the expected size
of an object in A under P,. The expected size itself is > vzl /A(z) =
xA'(x)/A(x), so we obtain

E. (one attempt) = @(:c

Moreover, the probability of success is

a,x"

A(z)”

P, (success) = P, (size = n) =

5For instance, if one has to decide between A and B for a disjoint union, one draws
U < uniform(0,1) and compares it to the ratio r = A(z)/(A(z) + B(z)). It might happen
with probability of order 10~ that U coincides with r for the first N digits, in which case
one needs to compute more digits of r.

21

Hence using the general formula for rejection sampler (which we already used
in Section 2.3.2):

E tt t
E(total cost) = M,

P (success)

we obtain

A'(x)),

anxnfl

E,(cost of SAMPLEA,,(z)) = @(

which we would like to minimize (for n fixed) over = € (0, p), with p the radius
of convergence of A(x).

Again we take the example of rooted plane trees, where A(z) = (1 —
V1 —42)/2, with p = 1/4. We assume that n is big so we can approximate
a, by its estimate, of the form a, ~ cp~"n=3/2. We write z as z = p(1 —e),
so we would like to minimize the expected cost over e € (0,1). Since A'(z) =

1/4/1 — 4z = 1/+/€, we get

E,(SAMPLEA, (z)) = ®<n—3/2\/é(11 — e)"—1>'

So we which to maximize f(e€) = \/e(1 —)"~ over € € (0,1), i.e., find epsilon
such that f’(e) = 0. The logarithmic derivative satisfies

filo 1 _n-1

fle) 2 1—¢

So the optimal € is such that ¢ = (1 —¢€)/(2(n — 1)). When n is big, € is
thus of order 1/(2n). So a good heuristic for minimizing the cost is to take
z=p(l—¢€)=1/4(1—-1/(2n)). With this choice we find that

1
n=3/2/e(1 — e)n—1

so have quadratic complexity for exact-size sampling. The same method of
minimization works for any class whose generating function has leading singular
term of the form (z — p)* with o €] — 00, 1[\{0}. In the end we would have to
minimize el ~%(1 — €)" "1 over € € (0,1), so the optimal € is of order (1 — «)/n,
and the expected cost with this choice of € is always ©(n?).

Boltzmann sampling seems less efficient than the recursive method, which
has expected complexity nlog(n) for fixed-size generation (using pointing tech-
niques). However recall that the recursive method requires costly precomputa-
tions of coefficients. In addition, Boltzmann sampling has the nice feature of
being well adapted for approximate-size sampling, which means that there is
a relative tolerance A € (0,1) on the size of the output, for instance A = 0.2
means a tolerance of 20% on the size of the output. Calling I,, A the interval
[n(1 — €),n(1 + €)] the rejection sampler is

E,(SAMPLEA, (z)) = G)() = 0(n?),

SAMPLEA,, a: repeat v € TA(z) until |y| € I, a; return v

22

Using the same z as for exact-size sampling, one finds that the expected cost
of SAMPLEA,, A is ©(n/A), so the complexity becomes linear ! In many appli-
cations one wants to observe big objects in a certain size-range, say one wants
random objects of sizes of order 106. This will be readily achieved by Boltz-
mann sampling tuned into an approximate-size sampler, whereas the recursive
method will be limited to sizes of the order of 10* due to the costly coefficient
calculations.

4 Random generation using Markov chains

We describe here a very flexible method for random generation based on Markov
chains. As opposed to the previously presented methods, there is no need here
to count or decompose the class A = U,A, in which we generate. If we want
to generate objects in A, under a certain probability distribution 7 (e.g. the
uniform distribution), Markov chain methods see) := A,, as the set of vertices
of a graph on which we perform a random walk (with initial state zo € Q and
length L) according to certain transition probabilities. For well chosen transition
probabilities the final state of this random walk has distributions converging to
mas L — co. A “backward” version, called coupling from the past, even makes
it possible to sample exactly from 7.

4.1 Markov chains
4.1.1 Definition

A square matrix M is called stochastic if the entries are nonnegative and the
entries in each row add up to 1. A Markov chain on a finite set) is a random
process Xg, X1, Xo,... such that the distribution of X;;; knowing the past
depends only on Xj,

P(Xyy1=4/ Xy =1i)=M(,j), foreachteN,

where M = (M(i,j))(j)eq> is a substochastic matrix. The Markov chain is
called symmetric if M is symmetric, i.e., MT = M.

Denote by p; € [0,1]% the distribution at time ¢, p;(i) := P(X; = 4). Since
pi41(3) = Dieq pa (1) M(i, j) we have

M1 = pig - M, (4)

hence 1y = po- M* (t stands here for power, not for transpose, for which we use
big T exponents).

Typically a Markov chain is (modulo the choice of the initial state distribu-
tion) identified to the stochastic matrix M, so we can use loose formulations
like “let M be a Markov chain”. Note that a Markov chain can be seen as a
random walk on a weighted oriented graph, where the weight of v — v gives
the probability that the walk will be at v at time ¢ + 1 knowing that it is at v
at time ¢, see Figure 4.

23

1/20@ @Q 2/3

12 0 1/2 /2
M=11/3 2/3 0 1/\\ /4
1/2 1/4 1/4
1/4

Figure 4: A Markov chain (its stochastic matrix M) can be seen as a random
walk on a weighted oriented graph.

4.1.2 Ergodic Markov chains and the Perron-Froebenius theorem

An eigenvector of a square matrix M is a non-zero vector x (line vector) such
that z - M = Az for some A € C. A value A € C for which there exists at least
one eigenvector is called an eigenvalue. The kernel of (M — M) is called the
eigenspace for A (it contains the eigenvectors for A and the zero vector). Note
that 1 is always eigenvalue of a stochastic matrix M. Indeed, if we denote by
1 the vector (1,...,1), then M - 17 = 17 since the entries in each row add up
to 1, so 1 is eigenvalue of M7 (hence, also eigenvalue of M). One shows also
easily, based on sum-inequality for the L1 norm, that all eigenvalues of M have
absolute value at most 1 (whether they are complex or real eigenvalues).

One can say more about eigenvalues of certain Markov chains (stochastic
matrices) M. Call G the directed graph (with the representation of M as in
Figure 4) formed by the edges of positive weight. Then M is called ergodic if
the following two conditions are satisfied:

o Irreducibility: for each pair i,7 € Q2 there is a directed path from i to j
in G,

o Aperiodicity: the lengths of circuits in G have pged equal to 1 (a sufficient
condition for this is the presence of a loop in G).

Theorem 4.1 (Perron-Froebenius theorem) If M is irreducible then:
e The eigenspace for eigenvalue 1 has dimension 1.

e There is a unique probability distribution 7, called the stationary distribu-
tion of M, such that w- M = w. In addition w(i) > 0 for each i € .

o If X9, X1, Xo,...is an instance of M, call N®)(t) the number of visits to
x €Qin [0..t]. Then N@(t)/t converges almost surely to m(x).

If M is irreducible and aperiodic, then the additional properties hold:

o The other eigenvalues of M have absolute value strictly less than 1.

24

e Let \y be the second largest absolute value of an eigenvalue of M (after 1,
hence Ao < 1), po an arbitrary initial distribution, and py the distribution
at time t. Then ©

e = 7l| = O(A2).

With M an ergodic Markov on a state space 2 we associate the following
random generation algorithm on €2, called Markov chain Monte Carlo (shortly
MCMC) procedure:

MCMC(zp, L): perform a random walk for L steps starting at xg € Q;
return the final state.

Then the Perron-Froebenius theorem ensures that the distribution of the
output converges exponentially fast as L — oo to the stationnaty distribution
m of M.

Remark. Note that 1 is eigenvalue of M for A =1 if M is symmetric, since
(1-M)T = M7 .17 = M - 17 = 17" In other words the uniform distribution is
preserved by a symmetric Markov chain. Hence, if M is ergodic and symmetric,
then the stationnary distribution is the uniform one, so the MCMC random
generator has output distribution converging exponentially fast to the uniform
distribution.

4.2 Examples

Directed paths. As in Section 2.3.3, let © := W; ; be the set of directed paths
with ¢ upright steps and j downright steps, and let n = i + j be the lengths of
these paths, so there is a unique point of abscissa k for each k € [0..n], called the
point at position k. Define the Markov chain M on Q with following transition
probabilities: given w €), choose a position k& € [0..n] uniformly at random
and a direction s € {f,]} uniformly at random (each pair (k, s) € [0..n] x {1,]}
is chosen with probability 1/(2(n + 1))). Then “flip” the path at position k in
direction s if possible, that is:

e If the step arriving at position k and the step leaving position k are (\, /)
and if s =1, then replace these steps by (7, \).

e If the step arriving at position k and the step leaving position k are (7, \)
and if s =], then replace these steps by (\,).

e Otherwise do nothing.

The obtained (matrix of the) Markov chain M is such that

e For w,w’ two different paths in Q, M(w,w’) = m if w and W’ differ at

a single point, and otherwise M (w,w’) = 0.

6We take as norm of v = (v1,...,v) the value ||[v|]| = (Jv1| + ... + |vk])/2. With that
norm two vectors associated to probability distributions are at distance at most 1, and are at
distance 1 iff they have disjoint support.

25

o Forwe O, M(w,w) =1-3%" ., M(w,w'), since the sum of the entries
of M in each line must be 1.

Hence this Markov chain is symmetric. It is also clearly irreducible (from each
state one can go to the topmost path in €2, the one starting with ¢ upright steps
and finishing with j downright steps) and aperiodic (since there are loops). By
symmetry, the stationary distribution is uniform, so the MCMC algorithm with
L steps outputs a random path in 2 whose distribution converges exponentially
fast as L — oo to the uniform distribution on 2. Note however that the rate
of convergence —which is determined by the second largest absolute value of
eigenvalue A2 < 1— depends on (4, j) since each (i, j) yields a different Markov
chain and thus a new value Ay. The complexity analysis in terms of n =7+ j
will be done in Section 4.3.

Planar graphs. A graph is planar if it can be embedded in the plane with
no edge-crossings. For instance the complete graph K4 on 4 vertices is planar
(the embedding is the tetrahedron) but not the complete graph K5 on 5 vertices
(however any edge-deletion or edge-contraction in K3 yields a planar graph, so
K5 is a minimal non-planar graph in this sense). Let 2 = P, be the set of planar
graphs with vertex-set V' = {1,2,...,n} (i.e., the vertices have distinct labels
in {1,...,n}). Consider the following Markov chain on 2, a slight adaptation
of the one described by Denise, Vasconcellos, and Welsh in [1]:

e Choose an action a € {add, delete} with probabilities (1/2,1/2).

e Given w €), choose a pair (z,j) of distinct vertices uniformly at random
(i.e., each pair chosen with probability 1/(})).

o If @ = “delete”, remove the edge (¢,j) (if ¢ and j are connected). If
a = “add”, add the edge (i,j) provided the graph w + (4,j) remains
planar.

The obtained (matrix of the) Markov chain M is such that

e For w,w’ two different graphs in Q, M(w,w’) = ﬁ if w and ' differ

by an edge, and otherwise M (w,w’) = 0.

e Forwe Q, M(w,w) =1-— Zw,;éw M (w,w’), since the sum of the entries
of M in each line must be 1.

Hence this Markov chain is symmetric. It is also irreducible since the graph
wo €) with no edge is reachable from any graph in 2 by successive edge-
deletions. And it is aperiodic since there are loops (one stays at the same graph
with probability at least 1/2 at each step).

4.3 Complexity analysis from coupling methods

Fast mizing Markov chains. In general Markov chains are used to sample from
a combinatorial class A = U, A,, under a certain distribution 7 at a fixed size n

26

(typically 7 is uniform or is a Boltzmann weight in terms of an energy function).
One thus looks for an ergodic (and symmetric if one wants the stationnary
distribution to be uniform) Markov chain on the set Q := A,, such that the
stationary distribution is w. The parameter n is called the size of the problem,
not to be mistaken with the cardinality of €2, which is most of the time at least
exponential in n. In general there is a Markov chain M, in each size n, but M,
is defined in a unified way over all sizes, so we can loosely talk of “the” Makov
chain M of the problem (M is here to be understood as the unified way, over
all sizes, in which the transition probabilities are defined).

One wants a Markov chain such that the number of steps necessary to ap-
proach the uniform distribution by a distance less than € is moderate in terms
of n and €, whatever the starting point is. This is formalized as follows. For
x € §, denote by §(*) the distribution on Q putting all the weight on = and let
uff’ be the distribution at time ¢ with §(*) as initial distribution. For z € Q
and € > 0, define

T (e) = sup(t, || — 7| > €),

and define the mizing time
7(€) = maxzea(T™)(e)),

hence for ¢t > 7(e) the distribution p is at distance at most e from 7 whatever
the initial distribution is. Note that 7(e) also depends on the size n of the
problem (since there is a Markov chain in each size n). We say that the Markov
chain is rapidly mixing if 7(¢) is polynomial in n and log(e).

Remember that, from the Perron-Froebenius theorem, ||u; — || = O(A2[n]?),
where Az [n] is the second largest absolute value of eigenvalue of the Markov chain
at size n. Hence, ||y — || < ¢ Az[n]? for a certain ¢ > 0, so that for € > 0,

log(c) — log(e)
log(Az[n])

In other words a sufficient condition for the Markov chain to be rapidly mixing
is that 1 — Ag[n] is polynomial in n. Unfortunately this condition is very difficult
to check, since the matrix of the Markov chain at size n has mostly dimension
(at least) exponential in terms of n, for instance in our two examples || =
O(n!y"n~7/2) for planar graph [5] (with v ~ a certain computable constant)
and Q| = (7) for directed paths with n steps and i upright steps.

implies ||u: — 7] <e.

Coupling. Instead of analysing A\a[n] one uses coupling arguments to show
that a Markov chain is rapidly mixing “. Given two probability distributions s
on a space-set € and v on a space-set ', a coupling of u and v is a random
variable Z = (X,Y) on Q x Q' with marginal distributions x on € and v on ',
that is

P(X =2) =p(x) foreachz € Q, P(Y =y)=v(y) for each y € Q.

"This section closely follows slides of a talk by Stefan Felsner available on his webpage, at
http://www.math.tu-berlin.de/ felsner/Slides/markov-gk.pdf

27

Lemma 4.2 If Z = (X,Y) is a coupling of two distributions u and v on the
same space). then
=V <P(X #Y).

Proof Recall that |[u—v||:= 1> o |u(z) — v(z)], which easily implies that
[l = vl = Maxaca(u(A) - v(A)),

where the max is attained for the set A := {x; u(z) > v(z)}. Let Ma,y) =
P(Z = (z,y)). First note that (2, 2) < min(u(z), v(2)) since pu(2) = >, Mz, y) >
A(z, z) and similarly for v(z). Hence

P(X =2Y #2)=> Azy) = p(z) = Az 2) > p(z) — min(u(2),v(2)),
y#z

which by summation over z € () gives

P(X£Y)> Y u(z) - v() = maxaca(u(A) — v(A4)) = [lu -]|

ziv<p
U

Given a Markov chain M on a set €, a coupling of M is a process (sequence
of random variables indexed by ¢t € Z>¢) Z; = (X,Y};) on Q x Q such that X,
and Y; are each an instance of M. In particular at each time ¢, Z; is a coupling
of the distributions pu; = pg * M* and v; = v * M*t, where pg is the distribution
of Xy and 1y is the distribution of Yy. The idea of the coupling method for
analysing the rate of convergence of M is to take X; and Y; correlated so as to
have a quick coalescence (X; and Y;, seen as random walks on a graph, should
join quickly and then stay together), which gives by the next lemma an upper
bound on the mixing time:

Lemma 4.3 (Dobling’38) Let T be a positive integer and e > 0, and let Z; =
(X4, Y:) be a coupling on a Markov chain M. If for any initial states (xo,yo) €
Q02 and t > T one has

P(Xt 7é }/t) < €,

then 7(e) < T.

Proof Let t > T and (z,y) € Q2 be the initial state. By the coupling lemma,

Lemma 4.2, we have ||{”) — i{)|| < €. Note that > e ()Y is the distribu-
tion at time t starting from the stationary distribution, hence (by stationarity
of) this distribution is equal to w. We have for each x € Q and ¢t > T

et = 7l = Nl = S 7) - w2l = D7) - (uf” =)
ye ye
< > awlle” -l < e
yeN
hence 7@ (e) < T for each z € ©, so 7(e) < T 0

28

Figure 5: The number of choices of (position, direction) that increase the dis-
tance between two paths (plus symbols) is at most the number of choices that
decrease the distance (minus symbols).

Complezity analysis for sampling directed paths using the coupling method.
We illustrate the coupling method for the set €2 := W, ; of directed paths with
1 upright steps and j downright steps, and define n := i 4+ j as the size of the
problem. We run two instances Xy, Y; of the Markov chain M on € (defined
in Section 4.2) starting at initial states xo,yo where at each step we choose the
same random position k € [0..n] and s € {1,]} for X; and for Y;. Given two
paths X,Y in Q2 define the distance dist(X,Y) as the area delimited by X
and Y (i.e., a point is in the area iff it is strictly inside a vertical segment with
extremities on X UY).

Lemma 4.4 Whatever the initial states (zo,yo) are, the expectation of the dis-
tance between X; and Y; is weakly decreasing with t.

Proof The proof is a simple geometric exercise, look at Figure 5. The + sym-
bols stand for pairs (position, direction) that increase the distance, the — sym-
bols stand for pairs (position, direction) that decrease the distance. As illus-
trated, the number of —’s is at least the number of +’s (with equality if the paths
share an initial portion, share a final portion, and do not cross each other). O

Lemma 4.5 Define
T, :=min(t: X; =Y;) with (z,y) as initial states,

called the coupling time of X; andY; (under initial states (x,y)). Then whatever
(2,y) € O, E(T,) < 2(n+1)N?, wheren =i+ j, N =ix*j.

Proof In each step (see Figure 5), at least one choice among the 2(n + 1)
possibilities for (position, direction) changes the distance (by +1 or by —1). In
addition when there is a change, decrement occurs with probability at least 1/2.
Hence, denoting by k the distance between x and y, we have

E(T.) < 2(n+ 1)H (k)

29

where H (k) is the expected time for reaching 0 in the random walk W on [0..N]
that starts at value k£ and has following transition probabilities:

e If W is at value k € [1..N — 1] the next step is +1 with probability 1/2
and —1 with probability 1/2,

e If W is at value N, the next step is —1.

Hence H (k) satisfies the recurrence
1
H(0)=0,H(N)=1+H(N-1),H(k) = i(H(k:—l)—i-H(k—&—l)) for k € [1.N—1].

Let T'= H(N). Then by an easy induction, H(N —j) =T — 2121(21“ -1)=
T — j2. Since H(0) = 0, we have T'= N2, so H(N — j) = N? — j2. In particular
H(k) < N? for any k € [0..N], which concludes the proof. O

Proposition 4.6 For ¢ > 0, the mizing time of the Markov chain on W; ;
satisfies
7(€) < 4(—logy(e) + 1)(n + 1)N2.

Proof Whatever the initial states are the coupling time 7, has expectation
at most m := 2(n + 1)N2. Hence by a standard inequality, P(T, > 2m) <
1/2. Since there is no dependence on the initial states, coupling occurs with
probability at least 1/2 over each time interval of length 2m. Hence for r > 0
P(T. > 2rm) < 27", which means that, for ¢t > 2rm, P(X; #Y;) < 27". Taking
r = —log,(€) + 1 yields P(X; # Y;) < € whatever the initial states (x,y), which
by Dé&bling’s lemma, Lemma 4.3, implies that 7(e) < 2rm . O

We conclude that 7(¢) = O(n®log(e)) (since N < n?), so the Markov chain
is mixing fast. We have just proved an upper bound. A more precise analysis
of Wilson [12] ensures that 7(e) = ©(n3log(n)log(e)) for Ba, = B(n,n).

4.4 Functional formulation of Markov chains

In view of describing the coupling from the past method (in Section 4.5), we
give here a functional formulation of a Markov chain M on a set 2. Assume we
have a (possibly infinite) family F of functions from € to 2, and that functions
in F are chosen under a probability distribution such that, for each (z,y) € Q2

P(f: f(z) =y) = M(z,y).
Then the process (with Xy chosen under an initial distribution pug):

t < 0; x < Xo;

repeat
tet+1;
choose a random function f in F;
z + f(x);

until(time for stopping)

30

is a realization of M. Note that the MCMC procedure starting from xg €
and carried for L steps is exactly this process with Xo = x¢ and L as time for
stopping.

Denoting by f; the function chosen at time ¢ (the f; are independent), note
that the value at time ¢ is

Xi = frofiio... fi(Xo). (5)

Very often a Markov chain M is implicitly formulated (or can be reformu-
lated) in a functional way. For instance , with the Markov chain on the set
Q = W, ; of directed paths with ¢ upright and j downright steps, each pair
(k,s) € [0..n] x {1,]} (pair made of a position and a direction) induces a func-
tion fj s, whose effect on a path 2 € Q is to flip = at position k in direction s
if possible. Similarly, for the Markov chain on the set Q2 = P,, of planar graphs
with n vertices, each pair (a, (i,7)) € add, delete x SET2([1..n]) induces a func-
tion f(q,ii)) that acts € ; if a = “delete”, then f(4, ;) (x) is x with no
edge between i and j, if a = “add”, then f(4,; j))(x) is = plus the edge {i,j}
provided this graph remains planar (otherwise f, ¢ j)y(z) = z). In these two
Markov chains the probability distribution on the set of functions the uniform
one.

We also mention that most of the time the whole alea can be concentrated
on drawing a real number u uniformly in [0,1]. For instance u will determine
the pair (k, s) for directed paths (e.g. being in u < 1/2 determines the direction,
and |u * (n + 1)] mod (n + 1) determines the position) and the (action, pair
of vertices) for planar graphs. Formally this means that there is a bivariate
function ® : Q x [0,1] — Q such that drawing f € F at random and returning
f(z) is equivalent to drawing u € [0,1] uniformly at random and returning
®(z,u). This bivariate formulation will be used in Section 4.5.2 for monotone
coupling from the past.

4.5 Coupling from the past

We now present a method due to Propp and Wilson [9, 10], called coupling from
the past (shortly CFTP), which makes it possible to sample exactly from the
stationary 7 distribution of an ergodic Markov chain M.

4.5.1 Statement of the algorithm

The CFTP algorithm makes use of the functional formulation of M, i.e., we
assume to have a family F or random functions from € to € such that for each
(x,y) € Q2

P(f: f(z)=y) = M(z,y).

The random sampling algorithm, shortly called CFTP, is the following:

31

Figure 6: Ilustration of CFTP on a 4-element set Q = {a,b,c,d}. At each
time ¢ from —1 to —oo, a random function f; is chosen (a line from z at time
t to y at time ¢ + 1 indicates that fi(x) = y). The algorithm stops when
f-10...0f_4is constant, which means that the trajectories starting at time —t
have all coalesced to a single trajectory at time 0. The output of CEF'TP is the
common value at time 0.

CFTP: F + Idg;

repeat
choose f € F at random,;
F<+ Fof;

until F' is a constant function on €;
return the constant (the common value of F(z) over all z € Q)

An illustration of CFTP is shown in Figure 6. The process can be seen as
running the Markov chain “from the past” (say from time —M with M as large
as we want) simultaneously over all possible initial states, and take M large
enough so that all trajectories have coalesced (joined) at time 0. This means
that, denoting f; the random function chosen at time 4 (for ¢ from —1 downto
—00), the returned value is

fo1ofgofgo0..., (6)

to be compared with (5) (MCMC algorithm that runs the Markov chain for-
ward).

Note that CFTP works with a stopping time 7, which is the smallest ¢ > 0
such that f_10...0 f_; is a constant, call it ¢. Since here the functions are
composed from left to right in their arrival order, the composition stabilizes after
7, which means that for any ¢ > 7 the function f_jo...0 f_; is still equal to the
constant c¢. This fundamental property does not hold with a forward Markov
chain (composing the function from right to left in their arrival order). Actually
a forward version of the algorithm (with F' < fo F instead of F' < F'o f) would
not yield a random sampler with distribution exactly m, as does CFTP (next
theorem):

32

Theorem 4.7 Let M be an ergodic Markov chain realized by a family F of
random functions. If it is possible to obtain a constant function by composing
functions from F of positive probability, then CFTP terminates in finite time
with probability 1.

The distribution of the element returned is exactly the stationary distribution
mof M.

Proof First assertion. Let € be the product of the probabilities of the k& func-
tions in F whose product give a constant function. And for i < j < 0 let
F! = fj_10...0 f;. Note that if j — i > k, then the probability that F} is not
constant is at most 1 — e. For » > 0 we have
0 _ p—(r=1k —(r—2)k 0
FZ ,=F_ OFf(rfl)k: o...oF7,.

Since a constant function composed with other functions is still constant, the
probability that F© , is not constant is at most (1 —€)". So the probability pu
that the algorithm loops for ever satisfies po, < (1 — ¢€)" for any r > 0, which
means that p,, = 0.

Second assertion. Let Z be the result of CFTP (Z is a random variable
on Q). Let X be a random variable on Q with distribution 7, and for T > 0
let Xp = FOh(X) = fo10...0 f_p(X). By stationarity, the distribution
of X7 is . Moreover X7 = Z whenever FET is a constant function, which
occurs with probability tending to 1 as T" — oco. Hence X7 converges to Z
as a random variable. Since for each z € Q, P(Xy = z) = 7(z) and since
P(Xr =12) > P(Z = z) as T — oo, we conclude that P(Z = z) = n(x), i.e.,
that Z exactly follows the stationary distribution®. O

To conclude on the general presentation of CFTP, notice that a family F of
random functions realizing an ergodic Markov chain M does not always satisfy
the required property that a constant function can be obtained by composing
functions from F. For instance the Markov chain on the space-set = {a,b}
with transition probabilities

(172 1/2
M= (12 1/2)
is ergodic, and can be realized by the family 7 = {Idq, (4}, Where 7(4)
denotes the transposition of @ and b. Since both functions in F are bijections,
any composition of them is also a bijection, hence can not be constant.
However an ergodic Markov chain M can always be realized by a particular
family F of random functions, where choosing f at random in F consists in

81f one would run the algorithm forward (replacing F <— Fo f by F < foF in CFTP) then
the convergence of X7 to Z would not hold, since after stopping time the constant function
does not stabilize in a composition from right to left. It is easy to show that the forward
version does not sample at distribution 7 in general (for instance an element z € Q with at
most one premiage under each f € F would not be reachable at stopping time).

33

running one independent instance of M from each x € Q and taking f(x) as
the state attained after x; and one easily checks that a constant function can be
obtained by composing functions from this family (Hint: by aperiodicity there
exists e > 0 such that for each x € Q2 and each ¢ > e there is a circuit of length
¢ starting at x in the oriented graph associated with M).

4.5.2 Monotone CFTP

In general testing if a function f with domain 2 is constant has complexity ||
(if no further informations on f are available), which is prohibitive in most cases
(in our examples of Section 4.2 |€2| is at least exponential in the size n of the
problem).

Fortunately there are classes of functions where the test has small complexity.
If a set Q is endowed with a partial order with unique minimum 0 and unique
maximum 1, a function f from Q to Q is increasing if < y implies f(z) <
f(y), is decreasing if x < y implies f(x) > f(y), and is monotone if it is
either increasing or decreasing. Clearly a monotone function f is constant iff
£(0) = f(1) (indeed if for instance f increases, then f(0) < f(z) < f(1) for any
z € Q, so f(z) is equal to the common value of f(0) and f(1)). Hence for a
monotone function f, the complexity of the test whether f is constant requires
only 2 evaluations instead of || evaluations !

This gives rise to a very efficient version of CFTP for an ergodic Markov
chain realised by a family F of random functions that are all monotone. We
further require that the whole alea of F is concentrated on a real number u
chosen uniformly at random in [0, 1] (denoted as u + rnd(0, 1)), i.e., there is a
bivariate function @ : Q x [0, 1] — € such that choosing f € F at random and
evaluating f at € Q is the same as choosing u € [0, 1] uniformly at random
and evaluating @ at (z,u).

Monotone CFPT: T «+ 1;

repeat
x<—();y<—i;T<—2*T;
for t from —T to —(T/2 + 1) do u; < rnd(0, 1); od;
for ¢ from —T to —1 do

x4 Dz, up); y+ Py, ue);

od;

until (z = y);

return x

Theorem 4.8 Under the necessary conditions for its implementation (partial
order, monotonicity, and bivariate formulation of the functions in F), monotone
CFTP is an implementation of CFTP that requires at most 8T, function evalu-
ations, where T, 1is the stopping time of CFTP (absolute value of the first time
< 0t in the past where the composition of the functions at times t,t +1,...,—1
is constant) °.

9This ensures that monotone CFTP is optimal up to factor 8, in the sense that even a

34

Proof Call f; the random function chosen at time ¢ < 0, i.e., fi(.) = @(., uy),
and define as usual F? = f_j0...0 f;. The classical CFTP algorithm tests for
each t < 0 in decreasing order if F}? is a constant and stops as soon as it is the
case, i.e., at time 7T,. Here the algorithm tests for each ¢ of the form —2* (with
k > 1 in increasing order) whether F is a constant and stops as soon as it is
the case, call T* the absolute value at this time. Since there is a stabilization
of the constant function (see the remark before Theorem 4.7) the functions F}
are the same constant for any ¢t < —T, in particular for ¢t = =T, so monotone
CFTP is equivalent to CFTP.

By definition T is of the form 2k and T, > 2F=1. The number of evaluta-
tions needed is 2% (2+ 4+ ... +2%) = 2% (28! —2) < 4% 2F < 8T,,. (Note that
the usual implementation of CFTP would be less efficient, since the number of
evaluations would be 1+ 2+ ...+ T, = T (T + 1)/2).) O

The CFTP algorithm is efficient and applicable mostly under the monotone
implementation, which is possible in many cases. In our two examples (directed
paths and planar graphs), we first have to endow Q with a partial order and
see if the functions in F (with the functional formulation of the Markov chain).
For the family of directed paths with ¢ upright steps and j downright steps, a
natural partial order is the “below/above” order, i.e., p < p’ if in each position
k € {0..n} the ordinate of p at position k is at most the ordinate of p’ at
position k. This partial order has a unique maximum 1 (the path starting with
i upright steps and ending with j downright steps) and a unique minimum 0
(the path starting with j downright steps and ending with j upright steps).
Clearly the functions in F are increasing with respect to this order, i.e., for
(k,s) € {0.n} x {1,]} and p < p" in Q, we have f, (p) < fir,s) (D)

For the example of planar graphs on the vertex-set V' = [1..n], there is also
a natural partial order: g < ¢ if each edge of g is also in g’. However the
Markov chain (functional formulation) we have defined on this family is not
monotone. Think of the following graphs on 5 vertices: g the empty graph,
and ¢’ = K5\{1,2} (complete graph minus the edge {1,2}. Then, if the action
“add” and the pair (1,2) are chosen, g becomes the graph with {1, 2} as unique
edge, and ¢’ remains the same since Ky is not planar. Hence g and ¢’ are not
comparable anymore after this one step of the Markov chain.

4.5.3 Complexity analysis of CFTP

Let us analyse the average-case complexity of monotone CFTP for the case of
directed paths. For the sake of analysis we assume to have drawn independently
for any time ¢ € Z a random function f; from F; and we denote as usual F} =
fj—10...0f;. The complexity of monotone CFTP is at most 87, by Theorem 4.8,
where T is the backward stopping time for CFTP, i.e., the smallest ¢ > 0 such
that ng is a constant. An important observation is that T, is distributed
as the forward stopping time, defined as the smallest i > 0 such that Fi is

clairvoyant user guessing exactly the stopping time T would need a loop of Tk evaluations in
order to calculate the result of CFTP.

35

constant. Equivalently the forward stopping time is the smallest ¢ > 0 such that
F3(0) = F{(1), i.e., the time when trajectories from 0 and from 1 meet, which
we have called the coupling time T, under starting states (0,1) in Lemma 4.5.
In the proof of that lemma we have also analysed this coupling time and shown
that its expectation is at most 2(i +j + 1) * (i * j)? (a better bound of n®log(n)
has been found by Wilson [12]). Combined with Theorem 4.8 this yields:

Proposition 4.9 Monotone CFTP for directed paths with © upright steps and
§ downright steps has average complexity at most 16(n +1)N?, where n =i+ j
and N =1 % j.

The complexity (even with the better bound of Wilson, which gives the right
order) is worse than with the elementary methods seen in Section 2, but the
Markov chain approach is far more flexible and can be applied efficiently on
many models of tilings [12] and any kind of set that can be endowed with a
partial order [9]: the 6-vertex model from statistical physics, independent sets,
eulerian orientations on a given graph, etc... In general the complexity of CFTP
is of quite the same order (up to logarithmic factors) as the “mixing time” of
the MCMC algorithm, which is defined as the number of steps required to be at
distance at most 1/e from the stationary distribution. It proves better in such
cases to use CFTP since, for quite the same price as MCMC, one gets a sample
that exactly follows the stationary distribution.

In an updated version we will show that in some cases CFTP can be imple-
mented efficiently even without using the monotone version (we will describe an
algorithm for uniform random sampling of directed spanning trees on a given
directed graph).

References

[1] A. Denise, M. Vasconcellos, and D. J. A. Welsh. The random planar graph.
Congr. Numer., 113:61-79, 1996. Festschrift for C. St. J. A. Nash-Williams.

[2] P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer. Boltzmann samplers
for the random generation of combinatorial structures. Combin. Probab.
Comput., 13(4-5):577-625, 2004. Special issue on Analysis of Algorithms.

[3] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge Univer-
sity Press, 2009.

[4] P. Flajolet, P. Zimmerman, and B. Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theoret. Comput. Sci.,
132(1-2):1-35, 1994.

[5] O. Giménez and M. Noy. Asymptotic enumeration and limit laws of planar
graphs. J. Amer. Math. Soc., 22:309-329, 2009.

[6] Donald E. Knuth. The Art of Computer Programming, volume 2: Semi-
numerical Algorithms. Addison-Wesley, 1969.

36

[7]

8]

Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic
Press, second edition, 1978.

D. Poulalhon and G. Schaeffer. Chapter of Lothaire: Applied Combinatorics
on Words (Encyclopedia of Mathematics and its Applications). Cambridge
University Press, New York, NY, USA, 2005.

J. G. Propp and D. B. Wilson. Exact sampling with coupled markov chains
and applications to statistical mechanics. Random Structures Algorithms,
9(1-2):223-252, 1996.

J. G. Propp and D. B. Wilson. How to get a perfectly random sample from
a generic markov chain and generate a random spanning tree of a directed
graph. J. Algorithms, 27:170-217, 1998.

Richard P. Stanley. Differentiably finite power series. Furopean Journal of
Combinatorics, 1:175-188, 1980.

D. B. Wilson. Mixing times of lozenge tiling and card shuffling markov
chains. Ann. Appl. Probab., 1(14):274-325, 2004.

37

