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Combinatoire des cartes planaires par méta-bijection

Résumé. Nous présentons dans ce document un cadre bijectif pour les cartes planaires
(graphes plongés sur la sphere a déformation continue pres). Notre méthode repose sur une
‘méta-bijection’ entre certaines cartes (planaires) orientées et certaines structures d’arbres
appelées mobiles (bourgeonnants). Plusieurs familles de cartes planaires peuvent se car-
actériser par l’existence d’une certaine orientation ‘canonique’ et peuvent ainsi se ramener a
une spécialisation de notre méta-bijection. Nous illustrons la méthode en mettant I'accent
sur des familles de cartes (cartes simples biparties, quadrangulations et triangulations a
bords) ou les coefficients ont une forme simple factorisée, comme dans la formule des slicings
de Tutte pour les cartes biparties. Nous discutons ensuite des extensions et perspectives
dans le chapitre de conclusion.

Mots-clés : cartes planaires, cartes a bords, combinatoire énumérative, bijections, limite
d’échelle

A master bijection method for planar maps

Abstract. In this document we present a general bijective framework for planar maps
(connected graphs embedded on the sphere up to continuous deformation). Our method
relies on a so-called ‘master bijection’ between certain oriented (planar) maps and certain
tree-structures called (blossoming) mobiles; several families of maps can be shown to be
characterized by certain ‘canonical’ orientations, making them amenable to a specialization
of the master bijection. We demonstrate the method with an emphasis on some families of
maps (simple bipartite maps, quadrangulations and triangulations with boundaries) where a
simple factorized multivariate formula occur for the coefficients, as in Tutte’s slicings formula
for bipartite maps. Extensions and perspectives are then discussed in the concluding chapter.

Keywords: planar maps, maps with boundaries, enumerative combinatorics, bijections,
scaling limit
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CHAPTER 1

Introduction

1.1. Definitions of maps and some properties

FIGURE 1.1. Left: a map. Middle: the same map, under a different (homeo-
morphic) representation. Right: A different map (with the same underlying
graph), a loop has been moved to a different face, which has changed the
combinatorial incidences.

1.1.1. Definitions. This whole document will be devoted to the combinatorial study
(via bijective constructions) of objects called planar maps, which we will shortly call maps *.
A map is defined as a crossing-free drawing of a connected graph G (possibly with loops
and multiple edges) on the oriented sphere ¥, considered up to continuous deformation
(equivalently, up to orientation-preserving homeomorphism), see Figure 1.1. A map has
vertices and edges (those of the underlying graph), but also faces, which are the connected
components of X\ G (since G is planar, all faces are homeomorphic to open topological disks).
A corner of a map is the angular sector between two consecutive half-edges around a vertex.
The degree of a vertex v (resp. a face f) is the number of corners incident to v (resp. to f).
Even if the definition of maps is given in geometric terms, maps are completely specified by
the combinatorial incidences, for instance by listing for each vertex v and for each face f the
cyclic list of incident corners in clockwise order around v (resp. around f).

We will consider in this document maps that are marked in several ways. A plane map
is a map with a distinguished face. Equivalently (seeing the map as projected onto the
plane from the distinguished face) a plane map is a crossing-free drawing (considered up to
continuous deformation) of a graph in the plane, see Figure 1.2. The distinguished face is
called the outer face, its degree is called the outer degree, and the other faces are called inner
faces; vertices and edges are called outer or inner whether they are incident to the outer
face or not.

1Maps can be defined on surfaces of higher genus, orientable or not. We refer to the book [71] for
a detailed foundation, to [68, Chap.1] for a rigorous and accessible introduction, to [35] for a detailed
combinatorial study via bijective constructions, and to [44, Chap.4] for a proof of the classification theorem
for surfaces using maps.
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=
projection

FIGURE 1.2. Left: a plane map, which is obtained from the map M of Fig-
ure 1.1 by marking the face f shown darker. Middle: the plane embedding,
obtained by projecting M onto the plane from a point inside f. Right: an
equivalent plane representation of the plane map.

A vertex-pointed map is a map with a distinguished vertex (often called the pointed
vertex); and a rooted map is a map with a distinguished corner (following the convention
of Olivier Bernardi [11]). The vertex incident to the root is called the root vertez, the face
incident to the root is called the root face (to be taken as the outer face in plane embeddings),
and the edge just after the root in clockwise order around the root vertex is called the root
edge.

1.1.2. Duality. We recall here the notion of duality for maps (the notion works for
any surface, orientable or nor, we will use it only in genus 0). For M a map, the dual map
M* is the map obtained from M as follows (see Figure 1.3):

(1) insert a vertex vy in each face f of M,

(2) for each edge e of M, with f;, fo the incident face on each side of e (possibly
f1 = f2), draw a new dual edge e* connecting vy, and vy, and crossing e in-between,

(3) erase the vertices and edges of M.

It is easy to check that duality is involutive, the corners of M correspond to the corners of
M*, the vertices of M correspond to the faces of M* and vice versa, and the edges of M
correspond to the edges of M*. Note also that the dual M* of a rooted map M is naturally
a rooted map (the marked corner of M* corresponds to the marked corner of M), and the
dual of a plane map is naturally a vertex-pointed map and vice versa.

We will also use duality in the context of oriented map. An oriented map is a map M
where every edge is assigned a direction. In the dual map M*, the dual orientation is the
orientation where for each edge e € M the dual edge e* of M™ is oriented so as to cross e
from its right side to its left side, see Figure 1.3 for an example 2.

1.1.3. The Euler relation. The Euler relation is a classical invariant relation for
maps. It states that for any (planar) map M, the respective numbers v, e, f of vertices,
edges, and faces satisfy the relation

(1) v—e+ f=2.

A nice way to visualize this relation is via duality. If M = (V, E, F) is a map with p
vertices and ¢ faces, let M* be the dual map. Endow M with a spanning tree T' = (V, E’),
so that |E'| = p — 1. Then, as illustrated in Figure 1.4, the set of edges dual to edges in
E\FE' forms a spanning tree of M* (it is acyclic by connectivity of T, and it is connected by

2Note that duality for oriented maps is not involutive: the dual of M* equals M with the orientation
reversed; as noted in [14] duality for oriented maps can be made involutive by taking the mirror of M* (we
will not use this convention here).
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(a) (b) ()

FIcurE 1.3. (a) A map M, endowed with an orientation. (b) Construction
of the dual (oriented) map. (c) The dual map M*, endowed with the dual
orientation.

FIGURE 1.4. The map of Figure 1.3 envowed with a spanning tree, super-
imposed with the dual map endowed with the dual spanning tree (edges are
bold if they are in the spanning tree of the map they belong to, and dashed
otherwise).

acyclicity of T'), hence |[E\E'| = ¢ — 1. We conclude that n=(p—1)+(q—1)=p+q—2,
which gives (1) for g = 0.

An application of the Euler relation is to provide a bound for the edge-density of planar
graphs in terms of the number of vertices and the girth (the girth of a graph is defined as
the length of a shortest cycle within the graph; by convention a forest has infinite girth). Let
d > 3, and let G be a connected planar graph of girth d, with V the set of vertices and F
the set of edges in G. Consider a planar embedding of G, with F' the set of faces. It is easy
to see that one can extract a cycle from the contour of each face of G, and since the girth
is d, all faces have degree at least d, hence 2|E| > d|F|. Together with |V | — |E| + |F| = 2,
this gives

d
(2) B < 7= (V] =2).

This bound gives a necessary condition for a graph to be planar and thus provides a tool
(when it applies) to show that a graph is non-planar. For instance the complete graph Kj
on 5 vertices has girth 3, and (g) = 10 edges, whereas the bound (2) gives at most 9 edges;
hence K5 is not planar. Another example is K33 the complete bipartite graph on 3 + 3
vertices. It has 6 vertices, girth 4 (by bipartiteness), and 9 edges, whereas the bound (2)
gives at most 8 edges; hence K3 3 is not planar.
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1.2. Planar map enumeration

1.2.1. Methods for counting planar maps. The enumeration and combinatorial
study of planar maps has been initiated by Tutte in the 60’s. In a series of articles [87,
88, 89], Tutte proved strikingly simple enumeration formulas for several families of (planar)
rooted maps, where the root is useful both to avoid symmetry issues and to give a starting

point for a recursive decomposition.

= o—e + 4 +

\ N

FIGURE 1.5. Left: a rooted loopless triangulation with a boundary of
length 6. Right: decomposition of a (generic) rooted loopless triangulation
with a boundary (the root edge is shown bolder).

For maps, finding a decomposition often requires to enlarge the family in order for the
decomposition pieces to belong to the family. For instance, if one wants to decompose a
rooted loopless triangulation, a natural strategy is to delete the root-edge but the obtained
object is not a triangulation anymore (it has outer degree 4). One can consider the larger
family of rooted loopless triangulations with a (non self-intersecting) boundary of length
k > 2 (with the root incident to the boundary face). Then two cases might occur (see
Figure 1.5): either deleting the root-edge yields a pinch point in the boundary, in which
case the decomposition yields two (rooted) components, or the boundary is still non self-
intersecting (of length k + 1) after the root edge deletion. Writing a, j for the number
of rooted loopless triangulations of boundary-length k£ + 2 and with n 4+ k vertices, and
F(z,u) =1+ Zn’k an_,kz”ulc for the corresponding generating function (where the term 1
accounts for the map reduced to a non-loop edge), the decomposition gives [73]:

F(z,u) — F(2,0)

F(z,u) =14+ uF(z,u)* + 2

Note that, in this equation, f(z) := F(z,0) is the series we are looking for (indeed, a rooted
loopless triangulation with a boundary of length 2 can be identified with a rooted loopless
triangulation, upon squeezing the boundary into an edge), and the additional variable u
acts as an auxiliary ‘catalytic’ variable that helps to write a functional equation (reflecting
the fact that we had to enlarge the family and keep track of a secondary parameter, the
boundary length). In the beginnings of map enumeration, such equations were solved by a
guess-and-check strategy. For instance, in the case of loopless triangulations with a boundary,
the equation above makes it possible to compute the coefficients and conjecture the simple
formula

5 (2k + 1)! 271 (2K + 3n)!

3) Gk = TR 2k + 2n 1 2)0

which lifts to an expression of F(z,u) as a ‘Lagrangean’ rational parametrization in terms
of two independent auxiliary variables. The conjectured expression of F'(z,u) can then be
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checked to satisfy the functional equation, which (by uniqueness of the solution) gives a
proof that the guessed expression was correct.

Since then, systematic methods have been introduced to solve such equations with a
catalytic variable, starting with Tutte’s quadratic method (see for instance [55, 2.9]). The
method has been recently generalized [19] to arbitrary (polynomial) equations with a cat-
alytic variable, see also the book [49] for a more analytic approach applied to the enumeration
of maps of arbitrary genus.

Another well-known approach for map enumeration, introduced in [32], is by computing
certain Gaussian matrix integrals in arbitrary dimension N, which (by the Wick formula)
essentially gives the generating function of maps with prescribed face-degrees, arbitrary
genus, and weight N for each vertex (which gives an indirect control on the genus g, using
the Euler formula in arbitrary genus: v — e + f = 2 — 2g). It can easily be seen that the
terms of dominating contribution in N are given by planar maps, which gives a way to extract
expressions for the generating functions, and recover formulas found using Tutte’s method.
This method has proved very flexible, making it also possible to count maps equipped with
statistical physics models [59, 17, 23], see also [45] for a detailed review.

Both methods mentioned above made it possible to find surprisingly simple counting for-
mulas (such as (3)) for several families of maps, however via technical calculations that do
not give a transparent proof of why such simple formulas occur. More direct bijective proofs
have been later achieved, starting in the 80’s with constructions by Cori and Vauquelin [42]
and Arques [7, 8], and subsequently further developed in the PhD thesis of Gilles Scha-
effer [82]. Typically, a bijective correspondence is established between a certain family of
maps (such as loopless triangulations, simple quadrangulations,...) and a certain family of
decorated trees, which can be classically enumerated from a contour word encoding, or via
the Lagrange inversion formula applied to the associated generating function.

Besides giving a more direct proof of the counting formulas, finding a bijective proof has
also the advantage of providing very efficient random generation algorithms for maps [83],
and more recently it has proved to be a crucial ingredient in order to study the distance
properties of random maps [38, 25, 30] (in particular the fact that the typical distance
between two random vertices is of order n'/*), culminating with the recent results [63, 67]
that the scaling limit of the random quadrangulation with n faces (and other families of
maps [16, 1]) is the so-called Brownian map, introduced in [53].

The bijective method has been successfully applied to several families of maps [81, 26,
77, 78],[T1,T2,A6,A7], some of which making it possible to count factorizations in the
symmetric group [20, 46] and to solve statistical physics models on random lattices [21, 27],
see also the thesis of Jérémie Bouttier [22]. However, there was also often a ‘guessing’
component (to find out the correct family of decorated trees) guided by already known
enumeration formulas. It has appeared, starting from the Poulalhon-Schaeffer bijection for
simple triangulations [78], that the decorated tree is often naturally derived from the map
once it is equipped with a suitable ‘canonical’ orientation, suggesting that finding a bijective
construction comes down to finding the right canonical orientations that characterize the
maps in the family considered.

In this document we will develop a general bijective method for planar maps, based
on a so-called master bijection, which itself builds on a bijection (which we will review in
Section 1.3.2) for tree-rooted maps due to Olivier Bernardi [11] and its subsequent reformu-
lation with Guillaume Chapuy [14]. The master bijection itself is a correspondence between
a certain family O of oriented maps (or the extension to the weighted bi-oriented setting, to
be defined in the next chapter) and certain tree-structures called mobiles (or more generally,
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weighted bi-mobiles) that have been first introduced by Bouttier, Di Francesco and Guitter
under a labelled formulation [26]. The main point is that, as mentioned above, for several
families of planar maps (specified for instance by a restriction on the face, or by a condition
of connectivity or girth), the maps from the family can be characterized by the existence of
a certain canonical orientation (or weighted bi-orientation), and thus the map family can be
identified with a certain subfamily of O on which the master bijection can be specialized.

We choose to demonstrate the method with an emphasis on providing bijective proofs
of ‘nice’ factorized (i.e., summation-free) counting formulas for families of planar maps; we
list 4 such formulas in the next section, to be proved in the following chapters.

1.2.2. The case of factorized multivariate formulas. We start recalling Tutte’s
slicing formula [88]. For ¢4, ..., £, positive integers, denote by A[{1,...,¢,] the set of maps
whose r faces are numbered as fi,..., f, such that deg(f;) = ¢; for 1 < i < r, and where
each face has a marked corner, see Figure 1.6(a) for an example; note that such maps are
bipartite iff all the ¢; are even. Note also that r is the number of faces, e = Y. £;/2 is the
number of edges, and v = e—r+2 is the number of vertices. Then Tutte’s slicing formula can
be formulated as follows:

THEOREM 1 (Tutte [88]). For aq,...,a, positive integers,
o (e—DI 2a; — 1
(4) ARar, .., 2a,]| = Z-Ulm 1)

with e =), a; the number of edges and v = e — r + 2 the number of vertices.

FIGURE 1.6. (a) A bipartite map in A[6, 4, 2, 4], (b) a simple bipartite map
in §[6,4,6,8], (c) a quadrangulation (with 3 boundaries) in Q[3;4, 2, 6], (d)
a triangulation (with 3 boundaries) in 7[3;2,1, 3].

Tutte’s original proof involved a technical guess-and-check solution of a recurrence satis-
fied by these coefficients. We will recall in Chapter 2 how this formula can alternatively (and
more directly) be proved from a bijection of Bouttier, Di Francesco and Guitter [26], which
itself can be obtained as a specialization of our master bijection, as we will see in Chapter 2
(see also [14, Sec.8]). Then, in Chapter 3 we are going to show a similarly looking formula,
this time for simple bipartite maps (no multiple edges). For ¢y, ..., £, positive integers, de-
note by S[¢1,...,¢,] the subset of maps in A[¢1,...,£,] that are simple (no multiple edges),
see Figure 1.6(b) for an example.
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THEOREM 2. For aq,...,a, positive integers,

€+7’ 20,1—1
(5) SRar, ., 2a,] = LT3 Hzal(ai_{z),

with e =), a; the number of edges.

Then, in Chapter 4 we will explain how to prove two nice factorized formulas for bipartite
quadrangulations and for triangulations with boundaries of prescribed lengths (the formula
for triangulations has been discovered by Krikun [60], the one for bipartite quadrangulations
is new to our knowledge). Define a quadrangulation with boundaries (resp. a triangulation
with boundaries) as a map with all faces of degree 4 (resp. of degree 3) except for aset of r > 1
marked faces called boundary-faces, such that the contours of boundary-faces are cycles that
are not self-intersecting and pairwise vertex-disjoint. Vertices not incident to a boundary-
face are called internal. For m > 0 and ¢4,...,¢, positive integers, define Q(m;¥y,...,¥¢,)
(resp. T(m;lq,...,4,)) as the set of quadrangulations (resp. triangulations) with m internal
vertices, and where the r boundary-faces are numbered as fi,..., f, such that for i € [1..r]
(with the notation [a..b] for the set of integers from a to b, including a and b), deg(f;) = ¢; and
fi has a distinguished corner; see Figure 1.6(c)-(d) for examples. Krikun [60] has found the
following beautiful formula (similarly as Tutte’s proof of the slicing formula, his proof relies
on a guessing/checking approach, with the checking part requiring technical calculations),

where we recall the notation n!! = HZL(:%_D/QJ (n — 2i):

THEOREM 3 (Krikun [60]). For m > 0 and as, ..., a, positive integers,
Fle-2) v (2a
©) Timsan. ol = S e (),

where b 1= Z;:l a; s the total boundary length, k == r +m — 2, and e = 2b + 3k 1is the
number of edges.

We will give a bijective proof of this formula in Chapter 4, using the master bijection
strategy adapted to the context of maps with boundaries. We will actually apply first the
strategy to bipartite quadrangulations with boundaries (being bipartite is equivalent to the
fact that ¢4, ..., ¢, are all even), for which we will prove a similarly looking factorized formula
(which is new to our knowledge):

THEOREM 4. For m >0 and ay,...,a, positive integers,

3k6—1 - 30,2
(7) |Q[m; 2aq,. .., 2a,]| = 3b—|—k;'H2 ( >

where b:=>""_, a; is the half-total boundary length, k :=r+m — 2, and e = 3b+ 2k is the
number of edges.

To prove these counting formulas ((4) to (7)) from our bijective constructions, we will
decompose the corresponding tree-structures (typically a decomposition at the root), and
translate the decomposition into an expression for the associated generating function F'(t),
typically F'(t) will be given as the power of a certain generating function g(t), itself specified
by an equation of the form g(t) = ¢(g(t)). We will then extract an expression for the
coefficient, using the Lagrange inversion formula, which we recall here (we use the notation
[t"]A(t) to denote the nth coefficient of a generating function A(t)):
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THEOREM 5 (Lagrange inversion formula [85] Theo.5.4.2). Let R be a ring > containing
Q, and let ¢(y) = >_,,>0 any™ be a generating function with coefficients in R. Let g(t) be the
generating function (with coefficients in R) specified by the equation

g(t) =t (g(1)).
Then, for any k> 1 andn > 1,

0 o) = St

1.3. Encoding tree-rooted maps and application to map encoding

1.3.1. Encoding by a shuffle of two parenthesis words. A tree-rooted map is a
pair (M, T), where M is a rooted map and T is a spanning tree of M (i.e., a subgraph of M
that forms a tree and covers all the vertices of M). It turns out that tree-rooted maps are
easier to count than rooted maps (the spanning tree helps to design an encoding procedure).

start end
ME

(a) : (b)

w = bbaabaabbaababba

FIGURE 1.7. (a) A tree-rooted map. (b) Encoding by a shuffle of two
parenthesis words. (c) The associated canonical orientation.

We review here a well known bijection [72, 90] with shuffles of two parenthesis words.
For p,q > 0, let (M, T) be a tree-rooted map where M has p + 1 vertices and g + 1 faces,
equivalently T has p edges, called internal edges, and M\T has ¢ edges, called external
edges. We encode (M,T) by a word on the alphabet {a,a,b,b} as follows: walking in
counterclockwise order around T (i.e., with T on our left), we write out a letter a (resp. a)
when traversing an internal edge for the first (resp. second) time, and we write out a letter
b (resp. b) when crossing an external edge for the first (resp. second) time, see Figure 1.7(b)
for an example. The obtained word w is easily checked to be a shuffle of a parenthesis word
w, € &(aPaP) and a parenthesis word w, € &(b?b9); indeed by planarity of T the matched
pairs (a,a) of w, correspond to the p internal edges, and by planarity of M the matched
pairs (b, b) in wy, correspond to the ¢ external edges (w, is the contour word for T and wy, is
the contour word for the dual spanning tree, as shown in Figure 1.4). Moreover, the mapping
is clearly invertible. Denoting by ¢, , the number of tree-rooted maps with p 4 1 vertices
and g + 1 faces (hence n = p + ¢ edges, by the Euler relation), the above encoding gives,

with C), = 14, the kth Catalan number,

2p +2q (2p +29)!
9 thy = c,C, = .
®) e < 2p ) P pl(p+ 1)gl(g + 1)

3Typically R can be Q or C, but we will in most cases use the formula with R the set of multivariate
power series over a field, such as R = Q[xzo, ..., zp].
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Hence, if we denote by t, = Z;':o tpn—p the number of tree-rooted maps with n edges, we

obtain, using the Vandermonde identity:

_Z Plp )N 2n)> I(n—p+1)! n+wz(n+l> (Zfi):éi%(%f)»

hence

(10) ty = CpChist.

1.3.2. Encoding by a pair of rooted plane trees. The above formula (10) for
t, suggests the possibility of encoding tree-rooted maps with n edges by a pair of rooted
plane trees that have respectively n edges and n + 1 edges (which does not clearly appear
from the encoding presented in the previous section). This has been recently achieved by
Olivier Bernardi, who designed a beautiful alternative encoding procedure for tree-rooted
maps [11]. As we will see, this encoding, which crucially relies on certain orientations, also
provides powerful tools for the encoding of (non tree-rooted) maps.

Let 7, be the set of tree-rooted maps with n edges. The first step in [11] is a bijection
between 7,, and certain oriented rooted maps. Let M be a map endowed with an orientation
X (i.e., the assignment of a direction to every edge). For f a face of M, X is said to be
minimal with respect to f if there is no counterclockwise (shortly ccw) cycle in the plane
embedding of M with f as the outer (infinite) face; similarly X is called mazimal with respect
to f if there is no clockwise (shortly cw) cycle in the plane embedding with f as the outer
face (the terminology of “minimal” and “maximal” will be justified later on when stating
Proposition 8). If M is a plane map, minimality or maximality will always be considered
with respect to the outer face). And for v a vertex of M, X is said to be accessible from
v if for every vertex v/ € M there is a directed path from v to v’. Denote by RS (resp.
RE) the set of rooted maps with n edges and endowed with an orientation that is maximal
(resp. minimal) with respect to the root face and accessible from the root vertex; and
define R® :=|J,, RS and R® := |J,, RY. A nice property shown in [14] and illustrated in
Figure 1.8(a)-(b) is that duality maps (bijectively) RS to RS.

(a) (c)

FIGURE 1.8. (a) An oriented rooted map M € RS (n = 8). (b) The map M
superimposed with the dual oriented rooted map M* € R%. (c) Both maps
M, M* superimposed with the associated mobile Ty (adding the outgoing
half-edges of M, shown in black, T5 forms a blossoming mobile of excess 1).

For (M,T) € T,, the canonical orientation for (M,T) is the orientation of M such that:

e the edges of T are oriented away from the root (i.e., from the extremity of smaller
depth to the extremity of larger depth in T'),
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e for every edge e € M\T, let C, be the cycle formed by e and the (unique) path of
edges of T' connecting the two extremities of e; then e is directed so as to have the
interior of C, on its left.

It is easy to check that M endowed with the canonical orientation is in RS. In addition
the mapping is invertible: for M a rooted oriented map in RS there is a certain traversal
procedure (originally introduced in [78] for the case of 3-orientations of simple triangulations,
and generalized in [11]) that finds a spanning tree T oriented away from the root and with
the property that T is the unique spanning tree of M that has the considered orientation as
canonical orientation. The above mapping is thus a bijection between 7, and Rg

(@) (b) ?; (

F1GURE 1.9. (a) The explosion rule to be performed at every vertex of a
rooted oriented map in RY. (b) Application to the oriented rooted map of
Figure 1.8(c). (c¢) The associated mobile is obtained by drawing the dual of
the edges that are incident to the light faces.

C) ‘ root

The second step in [11] is a procedure to encode any oriented rooted map M € RO
by a pair of rooted plane trees with n edges and n + 1 edges, respectively (here the root
is represented as an ingoing half-edge, which matters in the construction). Perform at
each vertex of M the operation shown in Figure 1.9(a), i.e., a vertex v of indegree k, with
e1,...,e the ingoing edges (one of which is the root half-edge if v is the root vertex) in
counterclockwise order around v, is blown into a k-gon so that each vertex v; (for i € [1..k]),
of the k-gon receives the ingoing edge e; together with the interval of outgoing edges between
e; and e;11, see Figure 1.9(b) for an example. The new k-gonal face is called a light face.
After performing this operation at each vertex of M, the graph 77 formed by the n oriented
edges, rooted at the root half-edge, can be shown to be a tree [11] (what is easy to show is
that there are n + 1 vertices after performing the blowing operations, since each vertex has
indegree 1, and the contribution to the indegrees is given by the n edges and by the root
half-edge, hence a total contribution of n + 1).

The encoding is completed by a second rooted plane tree (which indicates how the
vertices of T} have to be identified in order to recover M) that has n + 2 vertices. Insert a
vertex in each face of M, considered as a round white vertex, and insert a vertex in each
light face (after the blowing operations), called a light vertex. Then for each edge of a light
face, draw a dual edge connecting the light vertex in the incident light face and the white
vertex in the incident face of M. Let To be the embedded subgraph formed by the light
vertices, the white vertices, and the new dual edges. Then it can be shown that 75 is a tree
(which is naturally rooted at the corner ‘at the root’, see Figure 1.9) called the mobile of M
(again what is easy to see is that 75 has n + 1 edges and, if M has p + 1 vertices and ¢ + 1
faces, then T has p+1 light vertices and ¢+ 1 white vertices, hence has n+ 2 vertices by the
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Euler relation). The mapping from M to (T}, T») can be shown to be a bijection between RS
and C,, X C,,4+1; the oriented map is recovered by “winding” the tree T3 in counterclockwise
order around 75. This encoding thus gives a direct bijective proof of (10). It also gives an
alternative proof of (9); indeed the encoding ensures that ¢, , counts pairs (77, 7%) of rooted
plane trees such that 77 has n = p + ¢ edges, and T has p + 1 vertices at even depth and
q + 1 vertices at odd depth. It is well known that the number of possibilities for 75 is given

by the Narayana number N, , = —— (";‘1) ("‘q”l), so that we recover
(2n)!

n+1
plp+ Dlg!(qg+ 1)V

In the original formulation [11] of the bijection, the second Catalan structure (describ-
ing how the vertices of T7 have to be identified) was given as a noncrossing partition, the
reformulation with 75 as a mobile has been given in [14], where the procedure is extended
to higher genus. We will focus in this document only on the planar case, and show how
some variations on the encoding procedure in [11, 14] make it possible to develop a general
bijective strategy for planar maps.

tpg=CnNpg = withn =p+q.

1.3.3. Application to map encoding. In order to apply the procedure of the previous
section to map encoding, we will use the second step, namely the bijection between Rg (or
RE if we use duality) and pairs of rooted plane trees. The main idea is that, given a certain
family F = (J,, F» of rooted maps, it is often possible to endow maps from F with a certain
“canonical orientation” in RS and thereby establish a bijection between F and a certain
subfamily of R®; then hopefully the bijective encoding by pairs of trees specializes nicely
onto the subfamily.

Before demonstrating the methodology on an example (we will discuss the case of Euler-
ian maps), let us slightly reformulate the encoding of a rooted oriented map M € RS, turning
the corresponding pair (T3, T3) of rooted plane trees into a single tree-structure called a blos-
soming mobile. Precisely, a blossoming mobile is defined as an unrooted bipartite plane tree
(bipartite means that there are black vertices and white vertices and each edge connects
a black vertex to a white vertex) where the black vertices might carry additional dangling
half-edges called buds, see Figure 1.10(c) for an example. The ezcess of a blossoming mobile
is the number of edges minus the number of buds.

Let M be a rooted oriented map in RY. Note that the corresponding mobile Ty can be
directly computed (see Figure 1.10(b)) from M using the following local rule (we consider the
ingoing half-edge at the root as a complete directed edge when applying this rule): “insert
a white vertex wy in each face f € M and then, for each edge e € M with f the face on its
left, draw a new edge from w; to the end-vertex of e”.

Next, the fact that 77 is “winding” in counterclockwise order around 75 ensures that
there is no loss of information if we just record the arity of each vertex of T, which amounts
to recording the number of outgoing edges in each corner of T5. A way of doing this is to cut
each edge of M in its middle (which disconnects the outgoing part from the ingoing part)
and then delete all ingoing half-edges (including the root), see Figure 1.10(c) for an example.
This yields a blossoming mobile T' with n + 1 edges (one edge for each edge of M, plus one
edge for the root of M) and n buds (one bud for each edge of M), hence a blossoming mobile
of excess 1. Conversely, one can recover M from T as follows (see Figure 1.10(d)): (i) calling
down-corner a corner of T just after an edge (not a bud) in counterclockwise order around
a black vertex, we insert an ingoing half-edge called a bid in each of the n + 1 down-corners
of T, (ii) we match the buds with the bids according to a counterclockwise walk around
T where buds (resp. bids) are considered as opening (resp. closing) parentheses, (iii) we
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(a) (b) (c)

FIGURE 1.10. (a) The oriented map M € RS (n = 8) obtained in Fig-
ure 1.7. (b) The mobile T5 for M, computed directly on M. (c) Deleting
the ingoing half-edges of M yields a blossoming mobile T of excess 1. (d) The
map M is recovered from T as follows: insert an ingoing half-edge (called
a bid) in each corner just after an edge in ccw order around a black vertex,
and match the buds with the bids according to a ccw walk around T' where
buds (resp. bids) are considered as opening (resp. closing) parentheses; the
unique unmatched bid is taken as the root.

create the n directed edges of M out of the n matched pairs bud/bid, and the unique bid
left unmatched is declared as the root of M. To summarize we obtain:

CLAIM 6 (from [14]). The above procedure gives a bijection between RS and blossoming
mobiles of excess 1 with n+ 1 edges.

REMARK 7. Let M € RS, T the associated blossoming mobile of excess 1, and M* € RS
the dual of M. Then, as illustrated in Figure 1.8(c), T is obtained from M* (whose vertices
are white) by following the local rule: “insert a black vertex by in each face f of M*, and
then for each edge e = (u,v) € M*, with f, the face on the right and f; the face on the
left, insert a new edge connecting by, to v (including if e is the root half-edge) and insert a
bud in by, pointing toward u (excluding e being the root half-edge). The master bijection we
will present in Chapter 2 can be seen as an adaptation of this mapping to a more general
setting. Let us also mention that the simple local rules to obtain the edges of T from the
orientation are reminiscent of the local rules given in [26] in order to associate a (labelled)
mobile to a vertex-pointed bipartite map endowed with its geodesic labelling (we will see this
more precisely when reviewing the BDG bijection in Section 2.3).

Let us now discuss how this bijection makes it possible to encode Eulerian maps (i.e.,
maps with all vertices of even degree), and in doing this we also introduce the general
terminology of so-called a-orientations [50]. Define the indegree of a vertex v in an oriented
map M as the number of edges of M whose end-vertex is v. For M = (V, E) a map and
a:V — N, an a-orientation of M is an orientation of M such that every vertex v € V has
indegree a(v) (if M is a rooted map, the root, which is depicted as an ingoing half-edge, is
neither counted in the indegree nor in the degree of the root vertex).

It is known that several families of maps are characterized by the existence of certain
a-orientations, for instance [50]:

e any Eulerian map (map with all vertices of even degree) admits an Eulerian orien-
tation, i.e., an a-orientation for a(v) = deg(v)/2,

e a plane triangulation (plane map with all faces of degree 3) is simple (no loops
nor multiple edges) iff it admits an a-orientation such that «(v) = 3 for all inner
vertices and a(v) =1 for all three outer vertices,
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e a plane quadrangulation (plane map with all faces of degree 4) is simple iff it admits
an c-orientation such that a(v) = 2 for all inner vertices and «(v) = 1 for all four
outer vertices.

The following general result for a-orientations is well-known:

LEMMA 8 ([50, 80, 75]). If M is a plane (or rooted) map and has an «-orientation,

then M has a unique minimal o-orientation and a unique mazimal a-orientation *.

To prove that any Eulerian map has an Eulerian orientation as mentioned above, one can
for instance derive the existence from the existence of an Eulerian tour, which also ensures
that the Eulerian orientation is accessible from any vertex (i.e., is strongly connected). An
alternative method of proof is to use the following general existence lemma (which can be
proved by induction on the number of edges [50, page 3]):

LEMMA 9. Let M = (V,E) be a map and let o : V — N. For any S C V, define
a(S) =) ,cg(v) and let Es denote the set of edges with both ends in S. Then M admits
an a-orientation iff for all S CV, a(S) > |Es|, with equality for S = V. In addition, for
vy € V, either none or all a-orientations are accessible from vy, and the later occurs iff for

all S CV\{wo}, a(S) > |Es|.

This makes it easy to prove the existence of an Eulerian orientation for any Eulerian map,
and accessibility from any vertex. Indeed with the notations of Lemma 9, for Eulerian ori-
entations we have a(S) = ) g deg(v)/2, whereas |Es| = >, g degg(v)/2, where degg(v)
denotes the degree of v when taking only the edges of Fg into account; hence «(S) > |Es|,
with equality iff S = V.

(a) (b) (c) (d)

FIGURE 1.11. (a) A rooted Eulerian map M endowed with its unique Euler-
ian orientation in R®. (b) M superimposed with its mobile. (c¢) The as-
sociated blossoming mobile, which is admissible quasi-balanced. (d) The
induced balanced blossoming mobile.

Hence the family £ of rooted Eulerian maps can be identified with the subfamily & of
rooted oriented maps in R© such that every vertex has same oudegree as indegree; and thus
(by Claim 6), £ is in bijection with the corresponding subfamily of blossoming mobiles of
excess 1, which is to be characterized. A blossoming mobile is called balanced if every black
vertex has as many buds as white neighbours; hence such a mobile clearly has excess 0. A
blossoming mobile T' of excess 1 is called quasi-balanced if it is obtained from a balanced
mobile 77 by adding a distinguished pending edge at a corner of a black vertex, connected

4More precisely the set of a-orientations of M forms a so-called distributive lattice where an orientation
O is smaller than O’ if O’ can be obtained from O by successively reversing cw cycles into ccw cycles; the
smallest (resp. largest) element of the lattice is the unique element with no ccw cycle (resp. no cw cycle).
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to an additional white vertex of degree 1; T’ is called the reduction of T. And a quasi-
balanced blossoming mobile T is called admissible if, in the corresponding rooted oriented
map M € R, the root ingoing half-edge corresponds to the pending edge of the mobile. It
can be proved (based on the strong connectivity property) that in a rooted oriented map in
£ every outer edge is counterclockwise (i.e., has the outer face on its right), which implies
quite easily that Eis mapped to the family of admissible quasi-balanced blossoming mobiles,
see Figure 1.11 for an example.

Balanced mobiles (and quasi-balanced mobiles) are characterized only by local condi-
tions, hence are easy to manage combinatorially, which is not the case when adding the
admissibility condition, which is non-local. A way to bypass this difficulty is to observe that
if two rooted Eulerian maps differ from each other by changing the marked corner in the
outer face, then the two corresponding blossoming mobiles have the same reduction, so that,
by taking the ‘quotient’ of the above correspondence, one obtains °:

CramM 10. Plane Eulerian maps are in bijection with balanced blossoming mobiles.

Formulated in this way, the bijection deals with simpler tree-structures, where the condi-
tions (to be balanced) are the same at all vertices. Our master bijection ® to be presented in
the next chapter essentially adapts (and extends to the more general setting of weighted bi-
orientations) the bijection of Claim 6 (in the dual setting, as in Remark 7) so as to formulate
correspondences for plane (or vertex-pointed) oriented maps (rather than for rooted oriented
maps, where the associated tree-structure can be more delicate to characterize, as we have
seen for Eulerian maps). We will see that the bijection of Claim 10 (in the dual setting) can
be recovered as a specialization of ® and is equivalent to the Bouttier-Di Francesco-Guitter
for vertex-pointed bipartite maps [26] (balanced blossoming mobiles correspond to so-called
labelled mobiles in [26] and admissible quasi-balanced blossoming mobiles correspond to
labelled mobiles rooted at a vertex of smallest label, a non-local condition known to be
delicate to handle combinatorially, already for labelled mobiles corresponding to quadran-
gulations [42]).

1.4. Related work and overview of the document

It appears that (to our knowledge) every bijection between a map family and a family
of “decorated” tree-structures introduced in the literature, with the breakthrough in Gilles
Schaeffer’s PhD thesis [82], somehow relies on endowing the map with a certain canonical
orientation to get the encoding tree-structure from the maps, in particular the first bijec-
tions [81, 26] (for unconstrained bipartite maps) rely on the geodesic labelling/orientation
(on the map or its dual), the bijections in [82] for loopless triangulations and non-separable
maps rely on the minimal 2-orientations for simple quadrangulations, and the bijection
in [78] for simple triangulations relies on the minimal 3-orientations (that for triangulations
characterize the property of not having loops nor multiple edges).

This document aims at demonstrating that many of the bijections known so far (and new
bijections) can be put under one roof, as specializations of a “master bijection” that is closely
related to the second step of the bijection in [11, 14]. Note that, instead of using the second
step of the bijection, one can alternatively use the first step, i.e., encode an orientation in R®
using the associated canonical spanning tree (instead of using the associated mobile). The
canonical spanning tree is computed from the orientation using a traversal procedure that has
first been introduced in [78] for simple triangulations (endowed with a so-called 3-orientation

5Note also that the correspondence keeps track of the degree-distribution of the vertices, which corre-
sponds to the degree-distribution of black vertices in the associated balanced blossoming mobiles.
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in R9), and generalized in [11] to any orientation in R©. Similarly as with mobiles, an
encoding tree-structure called a blossoming tree is typically obtained by deleting the ingoing
half-edge of each edge not belonging to the canonical spanning tree. Characterizing the
associated blossoming trees might take some work depending on the map family considered.
Some examples (loopless triangulations, simple quadrangulations,...) are discussed in [84]
and in [T2], and the recent article [3] makes this method more systematic, in particular
it makes it possible to treat in a nice way the case of maps with a boundary (such as d-
angulations of girth d with a boundary), by generalizing the canonical spanning tree approach
to orientations that are minimal with respect to a fixed face and accessible with respect to
a fixed vertex (not necessarily incident to the fixed face, as for rooted maps), which is
convenient to characterize the encoding blossoming tree by local conditions only. However,
there are still several examples of map families, in particular those of Chapter 3 (except the
case of simple quadrangulations) and of Chapter 4 in this document, where the bijective
approach based on mobiles succeeds whereas it is not known if the bijective enumeration can
be performed using the canonical spanning tree approach (we believe that an advantage of
mobiles is that they are deduced from the orientation in a very simple local way, whereas
computing the canonical spanning tree necessitates a traversal procedure).

Another combinatorial method for map enumeration, based on so-called slices (certain
portions of maps) and their decomposition (relying on the geodesic labelling), has been
recently introduced [31] and proves very powerful: it makes it possible to count in a unified
way maps with a control on the face-degree distribution and on the girth. With this method
one can obtain the results of Chapter 3 (and their generalizations mentioned in Section 5.1
and Section 5.2.1 of Chapter 5), but at the moment this approach has not been adapted to
deal with maps with boundaries (results of Chapter 4 on triangulations and quadrangulations
with multiple boundaries), nor extended to hypermaps (results mentioned in Section 5.1.6).

Articles from which this document is extracted. This document relies on 4 articles
with Olivier Bernardi (two of which are published), listed below with the same reference as
in the publication list given at the end of the document:

[A21]. “A bijection for triangulations, quadrangulations, pentagulations, etc.”,
J. Combin. Theory Ser. A, 119(1), pp. 218-244, 2012.

[A24]. “Unified bijections for maps with prescribed degrees and girth”, J. Com-
bin. Theory Ser. A, 119(6), pp. 1352-1387, 2012.

[S1]. “Unified bijections for planar hypermaps with general cycle-length con-
straints”, arXiv:1403.5371, 2014.

[S5]. “Bijections for maps with boundaries: Krikun’s formula for triangulations,
and a quadrangulation analogue”, arXiv:1510.05194, 2015.

We have introduced the master bijection (Chapter 2) in [A21], where the proof of
the bijectivity of the mapping is done by a reduction to the bijection in [11, 14]. We have
extended the master bijection to hypermaps in [S1], where we have provided a self-contained
proof and a new presentation of the inverse mapping via cacti graphs. In this document we
only mention briefly (in Chapter 5) the extension to hypermaps, but we retain from [S1]
the presentation of the inverse mapping using cacti-graphs, and the self-contained proof
of bijectivity. Reference [A24] applies the master bijection strategy to count maps with
control on the face-degrees and the girth parameter. Chapter 3 gives the main ingredients
of [A24] applied to the case of simple bipartite maps (girth at least 4). The extension
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of these arguments to the general case is then explained (without details) in Chapter 5.
Reference [S5] is the content of Chapter 4: it adapts the master bijection to the context of
maps with boundaries, and applies the strategy to two classes: bipartite quadrangulations
with boundaries, and triangulations with boundaries.

In the concluding chapter, we give extensions and other results related to the results in
the preceding chapters, in particular regarding the extension to higher girth of the results
of Chapter 3 for bipartite maps, non-necessarily bipartite maps (in [A24]), and hypermaps
(in [S1]). Regarding maps with boundaries, we discuss the obstacles to an extension of the
results of Chapter 4 to higher girth, and we indicate some cases where the strategy should
work. Then we explain how a labelled reformulation of the master bijection makes it possible
to estimate/bound the distances, and we sketch how this could make it possible to prove
convergence to the Brownian map for families of maps amenable to the master bijection (in
particular maps with conditions on the girth and face-degrees). An additional section at the
end of the document (before the publication list and the bibliography) describes without
details some other results obtained in previous years, regarding the 2-point and 3-point
function of planar maps (with J. Bouttier and E. Guitter), counting unicellular maps in any
given genus (with G. Chapuy and V. Feray), the combinatorics of Baxter families (with D.
Poulalhon, G. Schaeffer, S. Felsner, M. Noy, D. Orden, N. Bonichon, M. Bousquet-Mélou,
S. Burrill, J. Courtiel, S. Melczer, and M. Mishna), and the enumeration of intervals in the
m-Tamari lattice (with M. Bousquet-Mélou and L.-F. Préville-Ratelle).



CHAPTER 2

The master bijection

In this chapter we present the master bijection, which for each § € Z gives a bijective
correspondence between a certain family Os of oriented maps and the family of blossoming
mobiles (shortly called mobiles from now on) of excess J; as we will see the correspondence
for rooted oriented maps given in Claim 6 corresponds to the case § = 1. We also extend the
construction (for any 4) to the more general setting of weighted bi-orientations, which will
prove useful in the next chapters to encode bijectively several families of maps by specializing
the master bijection.

T A )

(a) (b) (c) (d)

FIGure 2.1. (a) An orientation in Oz, (b) an orientation in O_3, (c¢) an
orientation in Oy (to be seen as embedded on the sphere, with a marked
vertex), (d) a mobile of excess 2.

2.1. From oriented maps to mobiles

Let us first define the families of oriented maps (by a slight abuse of terminology, we will
often use the term “orientation” for an oriented map) that will be involved in the master
bijection; there is one family Oy for each § € Z, (examples for § € {—4,5,0} are given in the
top-row of Figure 2.3). For § > 0, let Os be the family of plane orientations of outer degree
d, that are minimal (no counterclockwise cycle) and are accessible with respect to each of
the outer vertices. Note that, for O € Oy, each outer edge e = (u,v) of O has an inner face
on its right (assuming not, since the orientation is accessible with respect to v, there exists
an oriented path P from v to u, and the cycle formed by P and e is counterclockwise, a
contradiction). Let Ps be the subfamily of @5 where all outer vertices have indegree 1, in
which case the outer cycle must be a simple clockwise cycle. Note also that, for O € Py,
any incidence of an inner edge e with an outer vertex v is such that e is going out of v.
Define O_; as the family of plane orientations that are obtained from orientations in Ps by
returning the outer cycle (from cw to ccw). Finally, define Oy as the family of vertex-pointed
orientations that are accessible with respect to the pointed vertex vg, such that v is a source,
and there is no directed cycle C such that the part of the sphere on the right of C' contains

21
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v (equivalently, the orientation is minimal with respect to any of the faces incident to the
pointed vertex). Denote by O the union of the families Os over § € Z.

(a) (b)

FIGURE 2.2. (a) The local rule performed at each edge in the master bijec-
tion. (b) The effect of the local rule on a face.

We now define a mapping ® from O to mobiles based on simple local operations (herafter
we will shortly talk about mobiles for blossoming mobiles). For § € Z and O € Oy, where the
vertices of O are considered as white, let ®(O) be the embedded graph with buds obtained
as follows, see Figure 2.3 for examples (where respectively § < 0, § > 0 and 6 = 0):

(1) Insert a black vertex vy in each face f of O.

(2) For each edge e = (u,v) of O, with fy (resp. f,) the face on the left (resp. right)
of e, insert a new edge from vy, to v and insert a bud at vy, pointing toward (but
not reaching) u, see Figure 2.2(a).

(3) Delete all the edges of O (for any § € Z). Then, if § > 0, the black vertex in the
outer face of O carries only buds: delete this black vertex and its buds. If § < 0
the black vertex b in the outer face of O has no bud and is the unique neighbour
of each of the outer vertices v; for i € [1..|d]]: delete b,v1,...,v)5 and the || edges
{b,v;} for i € [1..]4]]. If 6 = 0 delete the pointed vertex of O.

Note that the effect of the local rules at faces is as follows: turning in cw order around each
face f of O, for each clockwise edge (u,v) (i.e., with f on its right), insert a new edge from
vy to v, and for each counterclockwise edge (u,v) (i.e., with f on its left), insert a bud at vy
directed toward u (but not reaching to u), see Figure 2.2(b).

THEOREM 11. For § € Z, the mapping ® is a bijection from Og to mobiles of excess 6.

We will prove Theorem 11 in Section 2.5. Let us for now justify the correspondence for
the excess parameter. Note that each edge e of O € Oy gives rise to an edge of T = ®(0),
in the face f,. on the right of e, except if § < 0 and e is an outer edge; and e gives rise to a
bud of T in the face f; on the left of e, except if 4 > 0 and e is an outer edge. Hence, the
excess of T is 4.

REMARK 12. Note that a rooted oriented map M € RS can be identified with an oriented
map in O1, by extending the root half-edge into a (clockwise) loop starting from the root-
vertex and forming the outer contour. Under this identification, the bijection of Claim 6,
reformulated in a dual setting in Remark 7, is equivalent to the master bijection ® in the
case § = 1.

The local rules to obtain the mobile from the orientation are very simple, so that one can
keep track of several paremeters of the oriented maps, making ® amenable to specializations.
For O € O5 and T = ®(0O) the associated mobile, each inner face f (resp. each face if 6 = 0)
of O corresponds to a black vertex b of the same degree in T'; in addition the number of
cw edges (resp. ccw edges) around f corresponds to the number of white neighbours (resp.
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FI1GURE 2.3. The master bijection on 3 examples: left with negative excess
—4, middle with positive excess +5, right with zero excess (in zero excess
the map is to be seen as embedded on the sphere, with no outer face).

incident buds) of b; in particular f has a cw contour iff b has no bud. Moreover, each vertex
(resp. non-marked vertex if § = 0, inner vertex if § < 0) of O corresponds to a white vertex
w in T, such that the indegree of v in O equals to degree of w in T. And each edge of O
(resp. inner edge if § < 0) corresponds to an edge in T'.

2.2. From mobiles to oriented maps

We now give the inverse bijection ¥ of ® in two equivalent formulations: one using
closure operations on the mobile (as in Figure 1.10(d)) and then duality, and one where the
mobile is first turned into a so-called cactus on which the closure operations are performed.

Formulation by closures and then duality. Let § € Z, and let T' be a mobile of excess
d. Call down-corner of T a corner that follows an edge (not a bud) in counterclockwise
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G 0)

FIGURE 2.4. The inverse ¥ of the master bijection, performed on the 3
examples of Figure 2.3: formulation using duality.

order around a black vertex of T. Let T” be obtained from T by inserting a dangling ingoing
half-edge, called a bid, in each down-corner. Let w be the cyclic word on the alphabet {a,a}
obtained from a (cyclic) walk in counterclockwise order around 7", where each encountered
bud is encoded by a letter a, and each encountered bid is encoded by a letter a. This cyclic
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word yields a (partial) matching of the a’s with the a’s; precisely each letter a is matched
with the unique letter a (if it exists) such that the word starting just after a and ending
just before a is a parenthesis word. There are exactly |d| letters left unmatched, which are
all a’s for § > 0, and are all a’s for § < 0. Accordingly the buds are matched with the bids
and for § > 0 (resp. 6 < 0) there are |§] bids (resp. buds) left unmatched, which are called
exposed. Let O be the oriented map (with a distinguished vertex for  # 0, resp. with a
distinguished face for § = 0) obtained as follows:

(1) create a directed edge out of each matched pair bud/bid,

(2) for 6 > 0 (resp. d < 0), connect the |§| unmatched bids (resp. buds) to a new
vertex vs, “at infinity”, taken as the pointed vertex,

(3) erase the edges and the white vertices of T'.

Define O = U(T) as the oriented map (plane map for ¢ # 0, vertex-pointed map for § = 0)
that is the dual of O’, see Figure 2.4 for examples.

Formulation via cacti. Alternatively, we can associate to T' a cactus-graph T (plane map
whose inner faces are simple polygons connected together at vertices in a tree-like way)
by growing around each black vertex b a polygon of same degree as b so as to satisfy the
local rule of Figure 2.2(b), as in Figure 2.5 below (see also the second row of Figure 2.6 for

FI1GURE 2.5. Growing a polygon around a black vertex of a mobile.

examples). Note that each bud of T yields a new vertex in the grown polygon (depicted
as a small white vertex in the figures), called a floating vertexr. Note also that every white
vertex of degree 7 of T' is incident to ¢ polygons in TA”, while the floating vertices are incident
to exactly one polygon.

Let T be a mobile and let T be the cactus-graph for 7. An edge of T is called cu-
outer (resp. ccw-outer) if it has the outer face on its left (resp. on its right). Similarly as
before, a cyclic word on {a,a} is obtained from a counterclockwise walk around T where
each traversed ccw-edge is encoded by a letter a and each traversed cw-edge is encoded by
a letter a. Again we consider the matching of the a’s with the a’s given by the cyclic word,
which leaves |0] letters a (resp. @) unmatched for § > 0 (resp. § < 0). Accordingly the
ccw-outer edges are matched with the cw-outer edges. We obtain from T an oriented map
O by merging each matched pair ccw-edge/cw-edge into a directed edge. For § # 0, O is a
plane oriented map of outer degree |§], the outer contour being made of |§| cw-outer (resp.
cew-outer) edges for § > 0 (resp. § < 0); for § = 0 all the outer edges of T are glued, we
distinguish the unique vertex of O that is a source (i.e., has no ingoing edge), so that O is a
vertex-pointed oriented map. We define O = U(T).

The two formulations of U are easily shown to be equivalent; indeed, creating an edge
out of a matched pair bud/bid from T is equivalent via duality to creating an edge out of a

matched pair ccw-edge/cw-edge from T.
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FI1GURE 2.6. The inverse ¥ of the master bijection, performed on the 3
examples of Figure 2.3: formulation via cacti.

2.3. Application to bipartite maps

We now explain how to apply the master bijection strategy to vertex-pointed bipartite
maps, and thereby recover the bijection from [26]. For M a vertex-pointed bipartite map,
define a balanced orientation of M as an orientation of M such that around each face there
are as many clockwise as counterclockwise edges. And define an admissible labelling of M as
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an assignment of labels in Z to every vertex v of M such that the pointed vertex has label
0 and the labels of any two adjacent vertices differ by 1 in absolute value. An admissible
labelling induces a balanced orientation upon orienting each edge from the smaller to the
larger label extremity, and it is easy to see that the mapping is a bijection. An example
of admissible labelling is the distance-labelling with respect to the pointed vertex vy, where
each vertex is labelled by its distance from vg.

CrAamM 13. For M a vertez-pointed bipartite map with pointed vertex vy, the distance-
labelling is the unique admissible labelling of M such that each vertex v # vg has a neighbour
of smaller label. Hence, the induced balanced orientation, called the geodesic orientation
of M, is the unique balanced orientation of M that is accessible with respect to vy. This
orientation has vy as a source and is clearly acyclic, hence is in Q.

PROOF. Let ¢(v) be an admissible labelling having the stated properties, and let d(v)
be the distance-labelling with respect to vy. Since each vertex v # vy has a neighbour of
label £(v) — 1, there is a label-decreasing path from v to vy (the label decreasing by 1 along
each edge) and finishing at label 0. Hence this path has length ¢(v), so that £(v) > d(v).
Now consider a geodesic path from v to vg. Since the labels decrease by at most 1 along
each edge of the path and the ending label is 0, we have £(v) < d(v). Hence £(v) = d(v). O

Define a balanced mobile as a mobile that has as many edges as buds at each black
vertex; clearly such a mobile has excess 0. The master bijection ® specializes to a bijection
between balanced orientations in Oy and balanced mobiles. In addition, Claim 13 ensures
that vertex-pointed bipartite maps can be identified (via the geodesic orientation) with
balanced orientations in Oy. Together with the parameter-correspondence for ¢ we obtain:

PROPOSITION 14. Vertez-pointed bipartite maps are in bijection (via the master bijec-
tion) with balanced mobiles. For M a vertex-pointed bipartite map and T the associated
balanced mobile, each non-pointed vertex of M corresponds to a white vertex of T, and each
face in M corresponds to a black vertex of same (even) degree in T.

FI1GURE 2.7. The bijection for vertex-pointed bipartite maps: bottom-row
as a specialization of the master bijection, top-row the original formulation
of Bouttier, Di Francesco and Guitter [26].
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REMARK 15. For M a plane Eulerian map and M* the dual vertex-pointed bipartite
map, it is easy to see that the Eulerian orientations of M correspond by duality to the
balanced orientations of M*, and moreover it can be checked that the dual of the maximal
Eulerian orientation of M is the geodesic orientation of M*. This ensures that the bijection
of Proposition 14 is equivalent to the bijection of Claim 10 between plane Fulerian maps and
balanced (blossoming) mobiles.

The bijection is equivalent to the one in [26], where the only difference in the formulation
is that in our mobiles we erase the distance-labels on white vertices (these are implicitly
recorded by the buds), whereas in [26] the mobiles have labels at white vertices (recording the
distance-labels) and have no buds, see Figure 2.7 for an example.

Yy

F1GURE 2.8. The recursive decomposition of a rooted mobile: it is either
reduced to a single vertex, or else the leftmost (black) child b has degree 2i
for some ¢ > 1 (i = 3 in the example), so that there is a total of ¢ hanging
rooted submobiles (counted by R), and a factor (zii_l) = (2;:11) to account
for the number of ways to place the 7 buds at b.

As we review now, the bijection makes it possible to recover Tutte’s slicing formula
(Theorem 1). Call here rooted mobile a balanced mobile with a marked corner at a white
vertex (for convenience we consider the tree reduced to a single white vertex as a rooted
mobile). Denote by R = R(t;x1,x2,...) the series of rooted mobiles where ¢ is conjugate to
the number of white vertices and z; is conjugate to the number of black vertices of degree
2i, for i > 1. As illustrated in Figure 2.8 (see also [26]), a decomposition at the root ensures
that

— (21 pica
R_t+RZ:cZ<Z._1)R ,

i>1

which rewrites as R = t¢(R), with ¢(y) = (1 — > 5, (zii:ll)yi_l)_l. For nonnegative
integers v,n1, ..., ny, the bijection of Proposition 14 ensures that [t*~'z}* .- z}"| R is the
number of vertex-pointed bipartite maps with a marked edge (due to the marked corner in
the mobile), v vertices, n; faces of degree 2 for ¢ € [1..h], and no face of degree larger than

2h. By the Lagrange inversion formula, with e = . in; the number of edges, r = >, n; the
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number of faces, and v =e —r +2 =2+ %" (i — 1)n; the number of vertices, we have
o7 ]Iy (y)
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i>1
B vil[x?l...x"h <Z_1) 7”“
”)
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which gives (4), upon multiplying by - H?Zl n;!(2i)™ to account for unmarking the marked
vertex and marked edge, numbering the faces, and marking a corner in each face.

2.4. Extension to weighted bi-orientations

We explain here how the master bijection ® can easily be extended to the more general
setting of weighted bi-orientations. A bi-orientation of a map M is the choice of a direction
for each half-edge of M. For i = 0,1,2 we call i-way an edge with i ingoing half-edges, as
shown in the figure below:

0-way 1-way 2-way
O——-2o0 O——>0

The indegree of a vertex v is the number of ingoing half-edges at v, and the clockwise-degree
of a face f is the number of outgoing half-edges that have f on their right. This extends
the concept of orientation, since an orientation of a map M can be seen as a special kind of
bi-orientation, in which each edge is 1-way. Moreover, a bi-oriented map B gives rise to an
oriented map O = pu(B), by blowing each 2-way edge into a clockwise face of degree 2, and
inserting a vertex of degree 2 in the middle of each 0-way edge (such a vertex is thus a sink);
to distinguish these new faces and vertices of degree 2 we consider them as marked. We can
now extend the definition of the families Os to bi-orientations; by definition a bi-orientation
O is in Oy if the oriented map p(O) is in the already defined family Oy of orientations.
Define now a bi-mobile as a plane tree with two kinds of vertices, black or white, where
buds might be attached at each black vertex (thus the only difference with mobiles is that
edges are allowed to connect two vertices of the same type). The excess of a bi-mobile T is
defined as eq_o + 2€5_o — b, with e,_, the number of black-white edges, e,_, the number of
white-white edges, and b the number of buds.

Let us now explain how the master bijection ® can be extended to bi-oriented maps. For
O a bi-oriented map in Os, consider the mobile T' = ®(x(0)). This mobile has marked black
(resp. white) vertices of degree 2 associated to the marked faces (resp. marked sinks) of
degree 2 in p(O). The mobile T' can then be simplified into a bi-mobile A(T) by erasing the
marked black and white vertices of degree 2, and furthermore erasing the buds associated
to the edges incident to marked sinks. The bi-mobile A(T) can easily be seen to have same
excess as T. Now we simply extend the master bijection ® by setting ®(0) = A(T), see
Figure 2.9. The extended master bijection ® is now a bijection, for each § € Z, between



30 2. THE MASTER BIJECTION

= =
for bi-ori.
By A
= =
for ori.

FIGURE 2.9. The master bijection ® for bi-orientations (§ = 10 here) can be
obtained by a reduction to the oriented case (bottow-row) and simplification
of the obtained mobile. As shown in Figure 2.10 it can also be obtained
(top-row) by applying the local rules of Figure 2.11 to each edge.

/.
O—<—>0 = O—0 O—+—=0 :>OI rrrrr @)
o’
rd A pd A
/.
Qio—-—o O—»—D—<—O:>O%O
o’

FIGURE 2.10. The effect of the local rule (for oriented maps) on 2-way edges
(left-part) and 2-way edges (right-part).

the family Os of bi-oriented maps and the family of bi-mobiles of excess §. And, as shown
in Figure 2.10, ®(O) can be directly obtained from O by applying the extended local rules
shown in Figure 2.11 (forgetting weights for now), that is, for each 1-way edge apply the
same local rule as before: for each 2-way edge e, keep e unchanged in the bi-mobile, and for
each O-way edge e put the dual edge in the bi-mobile.

In a second step we further extend the master bijection ® to so-called weighted bi-
orientations. A weighted bi-orientation of a map M is simply defined as a bi-orientation of
M where each edge is assigned a weight in Z, with the condition that weights at ingoing
half-edges are positive and weights at outgoing half-edges are nonpositive . For d € Z,
extend the definition of Os to weighted bi-orientations: a weighted bi-oriented map is said
to be in Oy if the underlying unweighted bi-oriented map is in Oy, and with the condition
that for § < 0 the weights on the outer edges are (0,1) (0 at the outgoing half-edge, 1 at the
ingoing half-edge).

11t would equally work to assign weights in R, but we will not need it here.
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/.

O O O /> O7—20
w
f o

FIGURE 2.11. The local rule performed at each edge (0-way, 1-way or 2-
way) in the weighted bi-oriented formulation of the master bijection.

Similarly, define a weighted bi-mobile as a bi-mobile where each half-edge (excuding the
buds) receives a weight in Z, with the condition that half-edges at black vertices have non-
negative weights and half-edges at white vertices have positive weights. Then the master
bijection ® can be extended from bi-orientations to weighted bi-orientations by transfering
the weights as shown in Figure 2.11 when applying the local rules of ®. We obtain (see

Figure 2.12 for an example of excess —4):

N

FIGURE 2.12. The master bijection for weighted bi-orientations performed

—

0

3

on an example of excess —4.

THEOREM 16. For ¢ € Z, the extended mapping ® is a bijection from the family Os of
weighted bi-orientations to the family of weighted bi-mobiles of excess §.
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Again one can keep track of several weight and degree parameters of the weighted bi-
orientation. For a weighted bi-orientation, the weight (resp. the clockwise-degree) of a face
f is defined as the total weight (resp. total number) of outgoing half-edges having f on their
right, and the weight (resp. the indegree) of a vertex v is defined as the total weight (resp.
total number) of the ingoing half-edges at v. And for e an edge of O, the weight of e is the
total weight of the two half-edges of e. For a weighted bi-mobile T" and a vertex v € T, the
degree of v is the number of incident half-edges (including buds) and the weight of v is the
sum of the weights of the incident half-edges (excluding buds); and the weight of an edge
e € T is the total weight of the two half-edges of e. Then for 6 € Z, O € Oy, and T = ®(0),
the parameter-correspondence is as follows:

e For 0 > 0 (resp. 6 < 0, § = 0) each vertex (resp. inner vertex, non-marked vertex)
v of O corresponds to a white vertex w of T such that the indegree of v equals the
degree of w and the weight of v equals the weight of w,

e For § =0 (resp. 0 # 0) each face (resp. inner face) f of O corresponds to a black
vertex b of T' such that the degree of f equals the degree of b, the clockwise-degree
of f equals the number of edges (excluding buds) at b, and the weight of f equals
the weight of b,

e For 6 > 0 (resp. ¢ < 0) each edge (resp. inner edge) e of O corresponds to an edge
€ of T such that the weight of e equals the weight of e.

2.5. Proof of Theorem 11

To prove Theorem 11, first in the case § # 0, it is convenient to consider a larger family
of orientations that contains all the families Os for § # 0. Define F as the family of oriented
plane maps with the following conditions:

(i) there is no ccw cycle, except possibly for the outer cycle (when all outer edges
are ccw-outer),

(ii) every inner vertex can be accessed by a directed path starting from some outer
vertex,

(iii) for every corner ¢ = (v,e,e’) in the outer face, with e and e’ respectively on
the left and on the right at ¢ (looking from v), and such that e is going out of v,
then e’ # e and all the edges (strictly) between e and €’ in ccw order around v are
inner edges going out of v; the vertex v is called a floating vertez.

Note that Property (iii) easily implies that each outer edge of an orientation O € F is not
incident to the outer face on both sides, hence an outer edge is either cw-outer or ccw-outer,
but not both. Note also that, for 6 > 0 (resp. § < 0), Os is exactly the subfamily of F where
all the || outer edges are cw-outer (resp. ccw-outer). The cw-excess of an orientation in F
is defined as the number of cw-outer edges of O minus the number of ccw-outer edges of O.

We now extend the mapping ® to orientations from F; for O € F, define ®(O) as the
embedded subgraph obtained from O as follows:

(1) insert a black vertex vy inside each inner face f of O,

(2) for each incidence of an edge e = (u,v) with an inner face f of O, insert a new
edge from vy to v if f is to the right of e, or insert a bud at vy pointing (without
reaching) toward w if f is on the left of e,

(3) delete all the original edges of O, as well as the floating vertices (Property (iii)
ensures that these are not incident to any of the new created edges).

Note that in the special cases where O € Oy for é # 0, the formulation above is equivalent
to the formulation of ®(O) given in Section 2.1.
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The following result easily follows from the definitions:

CLAIM 17. Call cactus-orientation an orientation from F with no inner edge. Then, for
O a cactus-orientation, ®(O) is a mobile whose excess equals the cw-excess of O, and O is
the cactus-orientation for T as defined in Section 2.2.

(a) (b) (©)

FIGURE 2.13. (a) A local closure. (b) Proof by contradiction that Prop-
erty (i) is still satisfied after a local closure. (¢) Proof that Property (iii) is
still satisfied after a local closure.

For O € F, two outer edges e, e’ of O are said to be directly matched if e is cw-outer,
€’ is cew-outer, and €’ is directly after e in a cw-walk around the outer face of O. Define a
local closure on O € F as the operation of matching a pair of directly matched outer edges
into a unique edge, as shown in Figure 2.13(a).

CLAIM 18. For O an orientation in F with outer degree larger than 2, any local closure
on O yields an orientation O that is also in F. In addition, ®(O’) = ®(O) and O’ has the
same cw-excess as O.

PROOF. Let e, e’ be the directly matched pair involved in the local closure, let u and u’
be the respective origins of e, ¢’ and let v be their common end, so that the local closure has
the effect of merging v and «’ into a unique vertex, call it .

To show that O’ satisfies (i), we have to check that no ccw cycle (except possibly for the
outer face contour) can be created by the local closure. Assume such a cycle C is created.
Then, before closure, C' would form a directed path P from u to u’, and P has to traverse at
least one inner edge. Let € be the last inner edge traversed by P before reaching u, and let
ve be the end of e. Note that v. has to be a floating vertex (indeed, v’ is a floating vertex,
and if v, # u/, then the last portion of P, from v to ', only consists of ccw-outer edges),
hence we have the contradiction that € is an inner edge going to the floating vertex v.. To
show that O’ satisfies (ii), we have to check that an inner vertex w accessible from v in O is
still accessible from some outer vertex in O after the local closure; we easily see that w is
actually also accessible from u in O (due to the directed edge from u to v), hence is accessible
from @ in O'. To show that O’ satisfies (iii), we just have to check that @ satisfies (iii) when
u is a floating vertex, which is illustrated in Figure 2.13(c). Hence O’ is also in F.

Finally, the statements about the cw-excess and the fact that ®(O) = ®(O’) easily follow
from the definitions. |

To define the inverse operation, we need the following terminology. For O € F and
e = (4, v) an inner edge of O whose origin @ is an outer vertex, let ¢’ be the next outer edge
after e in ccw order around v. Then e is called admissible if all the edges strictly between
e and ¢’ in ccw order around u are outgoing. The local opening of O at e is the operation
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FIGURE 2.14. Local opening at an edge.

FIGURE 2.15. The situation in the proof of Claim 20.

of splitting e into two edges and @ into two vertices u,u’, so that u’ receives the edges of u
that are between e and €’ (included) in cew order around i, see Figure 2.14.
The following result easily follows from the definitions:

CrAIM 19. For O € F and e an admissible inner edge of O, let O’ be the orientation
obtained from O by a local opening at e. Then O' € F, ®(0') = ®(0), and O' has same
cw-excess as O.

We will also need the following result:

CLAIM 20. Let O be an orientation in F with at least one inner edge. Then O has at
least one admissible inner edge.

PROOF. Assume O has no admissible inner edge. Then, for each triple v, e, € such that
e is an outer edge, € is an inner edge, and e is the next edge after e in cw order around v, €
has to be ingoing at v. Since O has at least one inner edge, it is easy to see that such a triple
(vo, €o, €0) exists. Property (ii) ensures that there exists a directed path Py of inner edges that
starts at some outer vertex v; of O and ends at €, in addition v1 # vy due to Property (i).
Let 1y be the first edge of Py, e; the next outer edge after 7y in ccw order around vy, and
€1 the next edge after e; in cw order around vy, so that €; is ingoing at v;. Again, since O
satisfies (ii), there is a directed path P; of inner edges that starts at some outer vertex vs of
O and ends at €. In addition vy has to strictly avoid the portion between e (included) and
e1 (excluded) in the cw walk around the outer face of O (otherwise P; would meet Py and
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create a ccw cycle in O). Continuing iteratively we reach the contradiction that at each step
1, the outer vertex v; has to avoid a strictly growing portion of the outer face contour. [

We can now easily prove Theorem 11 for § # 0. Let O € Os, with § # 0 (note that O
has cw-excess d). And let O be obtained from O by a greedy sequence of local openings until
there is no inner edge left; note that ®(0) = ®(0) according to Claim 19. By Claim 17, O is
a cactus-orientation and T = @(6) is a mobile. In addition the excess of T"is 4, since it equals
(according to Claim 17) the cw-excess of O, which itself equals the cw-excess of O (according
to Claim 19). Since a local closure is the inverse of a local opening, O is obtained from 0]
by a greedy sequence of local closures. Note also that the effect of any greedy sequence of

local closures on O is to match the outer edges according to the cw-matching of O. Hence

U(T) = O. We have thus proved that ®(O) is a mobile T" of excess d such that ¥(T) = O.
Similarly, for 7" a mobile of excess §, with § # 0, let O be the cactus-orientation for T ,

of cw-excess & (note that ®(0) = T by Claim 17), and let O = ¥(T). As already noted, O

is obtained from O by any greedy sequence of local closures, so that, by Claim 18, O is in
Os and ®(0) = ®(0) = T. This concludes the proof of Theorem 11 for § # 0.

Proof for § = 0. Let O be a vertex-pointed orientation in Oy, with vy the pointed vertex.
Consider an edge e incident to vy, open e into a face of degree 2 to be taken as the outer
face. It is easy to see that the obtained orientation Oisin F (of cw-excess 0 since there
is one cw-outer edge and one ccw-outer edge), and that <I>(O) ®(0). We can consider
the cactus-orientation O (of cw-excess 0) obtained from 0 by a greedy sequence of local
opening operations. Then T" = <I>(O) is a mobile (of excess 0) with O as associated cactus.
In addition, O is obtained from O by a greedy sequence of local closures until having outer
degree 2, and O is obtained from 19) by a very last local closure that merges the two outer
edges of 6 and takes their common origin as the pointed vertex of O. Hence O = ¥(T).
Since ®(0) = ®(0) = ®(0) = T, we have thus proved that T = ®(0) is a mobile of excess
0 such that ¥(T) = O.

Similarly, for 7" a mobile of excess 0, let O be the cactus-orientation for T (of cw-excess
0), and let O € F be obtained from O by a greedy sequence of local closures until the
outer degree is 2, so that ®(0) = ®(0) = T according to Claim 18. Now let O be the
vertex-pointed orientation obtained from 9} by doing the last local closure, which merges
the two outer edges into one edge e, and taking the origin of e as the pointed vertex. Note
that O is precisely ¥(7'). In addition it is easy to see that OerF implies O € Oy, and
that ®(0) = @(5) Hence we have proved that O = ¥(T) is in Oy and ®(0O) = T. This
concludes the proof of Theorem 11 for § = 0.






CHAPTER 3

A slicing formula for simple bipartite maps

We prove in this chapter the analogue of Tutte’s slicing formula for simple bipartite
maps (i.e., the counting formula (5) stated in Theorem 2) using the master bijection. First,
in Section 3.1, using the bijection for § = —4 we give a bijection for simple plane quadran-
gulations, which coincides with the one introduced in [82, Sec.2.3.3]. Then, in Section 3.2,
we extend this bijection to any bipartite simple plane map with a quadrangular outer face.
Then, in Section 3.3 we drop the restriction of having at least one face of degree 4 by con-
sidering simple bipartite maps with two marked faces (so-called annular maps) of arbitrary
degrees; by the Lagrange inversion formula this yields (5) for r > 2 faces, which together
with the easy verification of the formula for » = 1 face (where we are counting rooted plane
trees) completes the proof of Theorem 2. We then show in Section 3.4 that, similarly as
Tutte’s slicing formula, our formula for simple bipartite maps extends to the quasi-bipartite
case, i.e., the case where exactly two faces have odd degree. We then briefly present two
alternative approaches in Section 3.5.

4

(a) ()

FiGURE 3.1. Left: a simple quadrangulation endowed with its unique 2-
orientation in O_4 (obtained from the unique minimal 2-orientation by re-
turning the outer cycle). Right: the corresponding ternary mobile.

3.1. Simple quadrangulations

For @ a plane quadrangulation, define a 2-orientation of ) as an orientation of ) where
all inner vertices have indegree 2 and all outer vertices have indegree 1. The following result
is well known (existence can also be proved by constructive algorithms [75, 43]):

LEMMA 21. A plane quadrangulation @ admits a 2-orientation iff Q is simple with at
least 2 faces. In the latter case, QQ admits a unique 2-orientation in O_4.

PROOF. We first prove the necessity of @ to be simple. Let C be a cycle of length 2k
in @, and let n,,ne,ny be the numbers of vertices, edges, and faces strictly inside C', and

37



38 3. A SLICING FORMULA FOR SIMPLE BIPARTITE MAPS

let Q¢ be the map obtained by keeping all vertices and edges on C or inside C'. Then the
Euler relation applied to Q¢ ensures that (n, + 2k) — (n. + 2k) + (ny + 1) = 2, ie., (i)
ny — ne +ny = 1. And the fact that all faces inside C' are quadrangles ensures that (ii)
2ne + 2k = 4ny. Taking 4x(i)+(ii) gives n. = 2n, + k — 2. Note that, if Q is endowed with
a 2-orientation, then n. — 2n, is also the number of edges inside C' having their end on C,
hence ne — 2n,, > 0. Hence k > 2, so that a quadrangulation endowed with a 2-orientation
has to be simple.

Now let @ be a simple plane quadrangulation, with V' the set of vertices and F the set of
edges of Q. It is well-known (and can be proved from the Euler formula, as in Section 1.1.3)
that for any simple bipartite map M, the number of edges is at most twice the number of
vertices minus 4, and equality holds iff M is a quadrangulation. Hence, with the notations
of Lemma 9, |E| = 2|V| —4 and for any S C V, |Eg| < 2|S| — 4. Moreover by definition
of 2-orientations, a(V) = 2|V| — 4 and for any S C V, a(S) = 2|S| — |Sext|, where Sex is
the set of outer vertices of @ that are in S. Hence we have o(V') = |E| and for any S C V,
a(S) > |Eg| with strict inequality when not all outer vertices are in S. By Lemma 9, @
admits a 2-orientation, and any 2-orientation is accessible from every outer vertex v of Q.
And by Lemma 8 @ admits a unique minimal 2-orientation O, and thus the orientation
obtained from O by reversing the outer cycle is the unique orientation of @ in O_4. g

Lemma 21 thus gives:

COROLLARY 22. Simple plane quadrangulations are in bijection with the subfamily F of
O_4 where each inner vertex has indegree 2 and each inner face has degree 4.

Now define a ternary mobile as a mobile where all white vertices have degree 2 and all
black vertices have degree 4 (note that such a mobile corresponds to an unrooted ternary
tree where inner nodes are black, the root and the edges at leaves are seen as buds, and a
white vertex is inserted in the middle of each edge connecting two inner nodes).

CLAM 23. Any ternary mobile has excess —4.

PROOF. Let n,, no, €, and b be respectively the numbers of black vertices, white vertices,
edges, and buds in a ternary mobile T. We have (i) ne +no = e + 1 (since T is a tree),
(ii) e + b = 4n, (since black vertices have degree 4), (iii) e = 2n, (since white vertices have
degree 2). Taking 4x(i)+(ii)+2+(iii), we obtain e — b = —4. O

Specializing the master bijection ® for § = —4 to the subfamily F we obtain:

PROPOSITION 24. Simple plane quadrangulations are in bijection with ternary mobiles.
For Q a simple plane quadrangulation and T the associated ternary mobile, each inner face
of Q corresponds to a black vertex of T'.

We recover here the bijection introduced by Gilles Schaeffer in his PhD [82, Sec.2.3.3]
between simple plane quadrangulations and unrooted ternary trees.

3.2. Extension to bipartite simple plane maps of outer degree 4

We now extend the bijection of Proposition 24 to bipartite simple plane maps with a
quadrangular outer face. Note that an orientation of a map can be seen as a weighted bi-
orientation, upon seeing each directed edge as a 1-way edge with weight 0 at the outgoing
half-edge and weight 1 at the ingoing half-edge. Hence, a 2-orientation of a plane simple
quadrangulation @) can be seen as a weighted bi-orientation such that:

e every inner (resp. outer) vertex has weight 2 (resp. 1),



3.2. EXTENSION TO BIPARTITE SIMPLE PLANE MAPS OF OUTER DEGREE 4 39

e every edge has weight 1,
e every face has weight 0.

Now, for M a bipartite plane map with outer degree 4 and no face of degree 2 (as in the
previous section it is always assumed that M has at least two faces), we extend the definition
as follows. Call 2-orientation of M a weighted bi-orientation of M such that:

e every inner (resp. outer) vertex has weight 2 (resp. 1),
e every edge has weight 1,
e every inner face of degree 2k has weight —k + 2.

Note that the first condition implies that the half-edge weights are not larger than 2, and
then the second condition implies that the edges either have weights (0,1) or (—1,2) (hence
all the edges are 1-way). Calling special the edges of weights (—1,2), the third condition
then implies that each face of degree 2k has k — 2 edges on its contour that are clockwise
and special. In view of proving Lemma 25 stated next, we introduce the following definition:
for M a plane map (whose vertices are considered as white), the star-map of M is the map
o(M) obtained from M by inserting a black vertex vy in each inner face f, and connecting
vy to all corners around f (thus o(M) has two kinds of vertices, black or white, and two
kinds of edges, those of M and the new black-white edges).

LEMMA 25. Let M be a bipartite plane map with a quadrangular outer face and no face
of degree 2. Then M admits a 2-orientation iff M is simple. In that case M admits a unique
2-orientation in O_y.

PROOF. (Sketch). First, by similar arguments as in Lemma 3.5 (using the Euler relation)
it can be shown that if M is endowed with a 2-orientation, then any cycle of length 2k of
M must satisfy k > 2, so that M has to be simple. Now, if M is simple, we can construct a
2-orientation of M as follows, see Figure 3.2. Consider the star-map o(M) of M, and define
a 2-regular orientation of o(M) as an a-orientation where

e a(v) = 2 for each inner white vertex,
e «(v) =1 for each outer white vertex,
e «(v) = k + 2 for each black vertex of degree 2k.

)

Then o(M) can be endowed with a 2-regular orientation by the following procedure, see
Figure 3.2(b)-(c):

(1) in each inner face f of M of degree 2k, with ¢i,...,cor the corners in cw order
around f, insert a simple map M, with a polygonal contour of degree 2k and
quadrangular inner faces, with vq,...,ve, the outer vertices of My in cw order
around its outer contour, and for each i € [1..2k] insert an edge between ¢; and v;,

(2) the obtained map is a simple quadrangulation @ and can be endowed with a 2-
orientation X¢; by the Euler relation it can be shown that in each inner face f of
degree 2k, exactly k + 2 of the edges {c¢;, v; }1<i<or are directed from ¢; to v;.

(3) in each inner face f of M contract the inserted map My into a black vertex; the
obtained orientation X of o(M) is thus a 2-regular orientation.

Note also that, since X, is accessible from every outer vertex of (), then clearly X is accessible
from any outer vertex. Hence any 2-regular orientation of M, in particular the minimal one
Xmin, 18 accessible from every outer vertex v. The minimal 2-regular orientation has also
the following crucial local property, see Figure 3.3:

PROPERTY 26. In Xpin, for any edge e = {b,w} connecting a black vertex b to a white
vertex w and directed toward w, the next edge € (which is in M) after e in clockwise order
around w s also directed toward w, such an edge € is called special.
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0
e}

(c)

FIGURE 3.2. For M a simple bipartite map with outer degree 4, construc-
tion of the unique 2-orientation of M that is in O_4. In (b) M is completed
into a simple quadrangulation @, and () is endowed with a 2-orientation
Xg. In (c) the orientation X is contracted into a 2-regular orientation
X of o(M); if X is not minimal (it is minimal in the example shown) one
gets the minimal 2-regular orientation Xy, of o(M) by greedily returning
cew cycles. In (d) the orientation induced by X, on M (with the outer
cycle reversed) is the unique 2-orientation of M in O_4 (the edges of weight
(—1,2), are the ones that in X,,;, were followed by an ingoing edge in ccw
order around their end).

Since every black vertex of degree 2k has outdegree k — 2 in Xy;,, Property 26 ensures
that every face of M of degree 2k has k—2 edges on its contour that are clockwise and special.
Let Y; be the weighted bi-orientation of M induced by Xy,in, where the special edges receive
weights (—1,2) and the non-special edges (which include the outer edges) receive weights
(0,1). Then it is easy to see that with these rules, the weight of every vertex in Yy equals
its indegree in X iy, and moreover the discussion above ensures that every face of degree 2k
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Local property on Xin: Proof by contradiction:
A = ; 3 = Ovoé =
iterate
saturated

(a) (b)

FIGURE 3.3. (a) The local property satisfied by a minimal 2-regular orien-
tation. (b) Proof of the local property by contradiction (failure of the local
property would imply the existence of a ccw cycle).

has weight —k + 2. Hence Yj is a 2-orientation. Clearly Y, is minimal. Let vy be an outer
vertex of Yy To show that Y} is accessible from vy, it is useful to use the concept of rightmost
path [11] applied to X (it applies more generally to orientations that are minimal and
are accessible from a fixed outer vertex vg). For e an edge of Xy, the rightmost path of e
is the unique oriented path P, starting from vg, ending at e, and such that there is no edge
pointing to P, from the left side of P, (possibly P. can pass several times by a same vertex).
Then it is easy to see that, by Property 26, if e is an edge of M, then all the edges of P, are
also in M, and since every vertex has at least one ingoing edge in M, this guarantees that
Y} is accessible from vy. Hence the orientation obtained from Yy by reversing the outer cycle
is in O_4. This gives the existence of a 2-orientation of M in O_4. Now, if there is another
2-orientation in O_y4, let Y be the associated minimal 2-orientation obtained by reversing
the outer cycle, and let X|; be the 2-regular orientation of o (M) that coincides with Y on the
edges of M, and such that the edges directed from black to white vertices are exactly those
following a special edge € of Yj in ccw order around the end of e. Then it can be checked by
a similar argument as in Figure 2.15 that X, is minimal, hence X is the minimal 2-regular
orientation of o(M), hence X{, = Xy, so that Yy = Yj, giving a contradiction. O

FIGURE 3.4. Left: the bipartite simple map of Figure 3.2 endowed with its
unique 2-orientation in O_4. Right: the corresponding 2-branching mobile.

Now define a 2-branching mobile as a weighted bi-mobile such that all black vertices
have even degree, each black vertex of degree 2k has weight —k + 2, each white vertex has
weight 2, and each edge has weight 1. Again these conditions imply that the edges of such
a bi-mobile T are of two types, those of weights (0,1), and those of weights (—1,2) (in
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particular all edges are black-white, so that T is a weighted mobile). Note that each white
vertex of a 2-branching mobile T has either degree 2, with the two incident edges of weights
(0,1), or has degree 1 with the unique incident edge of weights (—1, 2); such an edge is called
a pending edge of T. Note that, by the weight condition on black vertices, each black vertex
of degree 2k is incident to exactly k — 2 pending edges.

By similar arguments as in Claim 23, we have:

CLAM 27. Any 2-branching mobile has excess —4.

Since simple bipartite plane maps of outer degree 4 correspond bijectively to 2-orientations
in O_y4, the master bijection for § = —4 gives:

ProproOSITION 28. Simple bipartite plane maps of outer degree 4 are in bijection with
2-branching mobiles. For M a simple bipartite plane map of outer degree 4 and T the
associated 2-branching mobile, each inner face of M corresponds to a black vertex of T of
the same (even) degree.

Call rooted 2-branching mobile a 2-branching mobile with a marked bud (it is convenient
to include the mobile with a unique black vertex carrying 2 buds, one of which is the root-
bud). Denote by S = S(t;x2,x35,...) the series of rooted 2-branching mobiles where ¢
is conjugate to the number of non-root buds and z; is conjugate to the number of black
vertices of degree 2i, for ¢ > 2. The bijection of Proposition 28 would make it possible to
prove (5) when at least one face has degree 4, by coefficient extraction in S. To avoid too
many repetitions (similar calculations will be done in the next section to prove (5) in full
generality), we skip the details and give here only the equation that specifies S:

2t —1\ .,
S=t ; gt
P ()
i>2
which is classically obtained (similarly as in Figure 2.8) from a decomposition at the root,
and where the factor (2;:21) gives the number of ways to place the i — 2 pending edges at a

black vertex of degree 2i.

3.3. Extension to bipartite simple annular maps

The bipartite simple (plane) maps considered in the last section have the restriction that
the outer face has degree 4. In this section we drop this restriction by considering bipartite
simple maps having two marked faces of arbitrary (even) degrees. Define an annular map as
a map with two marked faces fy, f1, where fy is to be considered as the outer face and f; as
a marked inner face. For M an annular map, a separating cycle (resp. non-separating cycle)
is a cycle containing (resp. not containing) f in its interior, and the separating girth (resp.
non-separating girth) of M is the length of a shortest separating cycle (resp. shortest non-
separating cycle). For two separating cycles C,C’" we say that C contains C’ if the region
enclosed by C' is included in the region enclosed by C’ (where possibly the two regions are
equal, e.g. C contains itself).

LEMMA 29. For M an annular map of separating girth s, and for two separating cycles
C1,Cs each of length s, there exists a separating cycle Cy of length s and that contains both
Cq and Csy.

PROOF. Let Ry (resp. Ry) be the region enclosed by C; (resp. C3). And let R = R1NRy
and R' = Ry |J Rz, C the contour of R and C’ the contour of R’. As shown in Figure 3.6, we
have |C| + |C’'| < |C1] + |Ca|. Since one can extract a separating cycle from C' (resp. from
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inside ¢

outside c
+ exchange
marked faces

F1GURE 3.5. Left: A bipartite annular map in .Aéip’QQ) (with p =4, ¢ = 3,
s = 2 in the example), where the marked inner face is indicated by a triangle,
and the canonical cycle ¢ is drawn bolder. Right: Cutting along c yields
two components, one for the part inside ¢ and the other one for the part
outside ¢ (the roles of the two marked faces for the second component being

switched), which are respectively in the families Céi@ and Béip ),

("), we must have |C| = s and |C’| = s. Hence we can take C’ as a cycle Cy that fits the

stated conditions. O
(ZJ[(/) 111 212 17211,2 (/)11 0|2 112 011,2 11,2 211,2
cCh X X X X
GCQ X X X X
cC X X X
e’ X X X

FI1GURE 3.6. The table shows all the possible cases for the status of the area
on each side of an edge e (either in R; only, or in Rs only, or in both, or in
none). We see that in all cases, the contribution to |C1| + |C2| is at least
as large as the contribution to |C| + |C’| (with C1, Cy, C,C’ the contours of
Ry, Rs, Ry N Ry, Ry U Ry, respectively).

Thus, for M an annular map of separating girth s, M has a separating cycle of length
s that contains all separating cycles of length s. This cycle, called the canonical cycle of
M, can be seen as the outermost separating cycle of length s. Our strategy is to use the
canonical cycle to split any bipartite simple annular map M into components that can be
characterized by certain weighted bi-orientations and are amenable to a specialization of the
master bijection.

For s,p,q > 1, denote by A;QSP 29) the family of bipartite annular maps with separating
girth 2s and non-separating girth at least 4, where the outer face has degree 2p and the
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marked inner face has degree 2¢q; let C(ZQ) : .Aégs’%), and denote by BgiQ) the subfamily of

s
022(1) such that the outer face contour is the unique separating cycle of length 2s. Finally
denote respectively by AP ¢ BRY the corresponding families where there is a
distinguished corner in each of the two marked faces.

Let M € A;ZSP ’2q), with fo, f1 the outer face and the marked inner face, and let ¢ be the

canonical cycle of M. If we cut along ¢, we obtain two maps My, M7 € Céiq) X ng ), where
My is the part inside ¢ (with the face delimited by ¢ as outer face and f; as marked inner
face) and M is the part outside ¢ (with the face delimited by ¢ as outer face and fj as marked
inner face). Conversely, in a rooted formulation, take two maps My, M7 € Cﬁ(2q) Bgip )7 with
fo the marked inner face of My and f; the marked inner face of M;. Let ¢y be the outer
face contour of My and vg the outer vertex incident to the marked corner in the outer face;
define similarly ¢; and vy for M;. Then paste My, M; at their outer contours (both of length
2s) so that vg and v get identified, and cg, ¢; are merged into a unique cycle ¢, where we
distinguish the vertex resulting from the identification of vy and v,. Let M be the obtained
map with fy as the outer face and f; as the marked inner face. We easily check that c is the
canonical cycle of M and that M € A(2p 24) " The decomposition along the canonical cycle
thus yields the isomoprhism:

(11) 25 x AQP2D ~ C29) o BI2P),

fi’éipﬂq) = fféipgq)(mg, T3,...), C(2q) = Céiq) (x2,23,...), and Eéip) =
Béip )(32‘2, r3,...) as the generating functions of jfg?f ’Zq), C_Eip ) and Eg?, where z; is con-
jugate to the number of non-marked inner faces of degree 2i for i« > 2. Then (11) gives
2s - A(zp 20) — C’(Qp) B(QQ) and in the particular case p = s, gives 2s - C’(Qq) ng) Béi@
Hence

Define respectively

C(2p) C(Qq)

2p2q) _
(12) A
'
We now introduce weighted bi-orientations for annular maps in Céip ). For s,p > 1 and
M a bipartite annular map of outer degree 2s and marked inner face of degree 2p, define a
(2,2s)-orientation of M as a weighted bi-orientation such that:

e cvery inner (resp. outer) vertex has weight 2 (resp. 1),

e every edge has weight 1,

e every non-marked inner face of degree 2k has weight —k + 2, and the marked inner
face, of degree 2p, has weight —p + s.

Again these conditions imply that the edges are of two types, those of weights (0,1) and
those of weights (—1,2), which are called special. This time every inner face of degree 2k
has k — 2 clockwise special edges on its contour, except for the marked inner face, which has
k — s clockwise special edges; note that for s = 2 the marked inner face plays no special role
and we recover the definition of the previous section.

LEMMA 30. Fors,p > 1, let M be a bipartite annular map of outer degree 2s and marked
inner face of degree 2p. Then M admits a (2,2s)-orientation iff M € C(2p . In the latter
case M admits a unique (2 2s)-orientation in O_gs.

PROOF. (Sketch.) By similar arguments as in Lemma 21 using the Euler relation, it
can be shown that if M is endowed with a 2-orientation then any cycle C' of length 2k in M
satisfies k > 2 if C' does not enclose the marked inner face, and satisfies k > s if C' encloses
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Ficure 3.7. For M a simple bipartite map in Céip) (s =3and p =4
here), construction of the unique (2, 2s)-orientation of M that is in O_s;.
In (b) M is completed into a map @ € &, and Q is endowed with a (2, 2s)-
orientation (with no special edge, all inner vertices have indegree 2). In (c)
the (2, 2s)-orientation of @ is contracted into a (2, 2s)-regular orientation X
of (M), where the black vertex inside the marked inner face f; of M gets
indegree deg(f1)/24 s; the obtained orientation (if not already minimal) can
then be made minimal by greedily returning ccw cycles. In (d) the induced
orientation of M with the outer cycle reversed is the unique 2-orientation
of M in O_s, (special edges, indicated by a double arrow, are the ones that
in X were followed by an ingoing edge in ccw order around their end).

the marked inner face, so that M must be in Céip ). To show existence of such an orientation
for M € Cgp ) (and accessibility from the outer cycle), the base-case is for the subfamily

Es C Cgis) where all non-marked inner faces have degree 4. In that case, a 2-orientation of
M has no special edge, and existence (and accessibility from the outer contour) can be proved
using Lemma 9 and the Euler relation, in a similar way as done in Lemma 21 for simple
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quadrangulations. Then the general case can be proved very similarly as in Lemma 25 with
the following adjustements: (i) in the so-called (2, 2s)-regular orientation of o (M), the black
vertex inserted in the marked inner face f has indegree deg(f)/2+ s (instead of deg(f)/2+2
for the other inner faces), (ii) to prove the existence of a regular orientation of o(M) one
completes M (adding vertices and edges inside each face f of M) into a map M’ € & (instead
of completing it into a simple quadrangulation as in Lemma 25), where the marked face of
M’ is in the area of the marked inner face of M, see Figure 3.7. |

Define now a (2,2s)-branching mobile as a weighted bi-mobile where all black vertices,
one of which is marked, have even degree, such that every unmarked (resp. the marked)
black vertex of degree 2k has weight —k + 2 (resp. weight —k + s), every edge has weight
1, and every vertex has weight 2. Again the edges are of two types, those of weights (0,1)
and those of weights (—1,2) called pending edges, each white vertex is incident either to two
non-pending edges or to one pending edge; and the weight conditions at black vertices then
imply that every non-marked (resp. the marked) black vertex of degree 2k is incident to
k —2 (resp. k — s) pending edges. Similarly as in Claims 23 and 27 we have

CLAIM 31. Each (2,2s)-branching mobile has excess —2s.

FIGURE 3.8. Left: A bipartite simple annular map in Cég) endowed with its
unique (2, 6)-orientation in O_g. Right: the corresponding (2, 6)-branching
mobile.

By Lemma 30 the master bijection ® for § = —2s thus gives:

ProOPOSITION 32. The family Céip) of annular maps is in bijection with the family of

(2,2s)-branching mobiles where the marked black vertex has degree 2p. For M € Cézp) and
T the associated weighted mobile, each non-marked inner face in M corresponds to a non-
marked black vertex of the same (even) degree in T'.

We can then use (12) and Proposition 32 to obtain an explicit expression for the series
Ap29) = Y o> Eéip’Qq), i.e., the generating function of bipartite simple annular maps with
prescribed degrees of the two marked faces (and a distinguished corner in each of the two
marked faces).

PROPOSITION 33. For p,q > 2, the generating function Ap.29) g given by

- dpq (2p—1\ [2q—1 2i —1\ .
13)  AC@p2a) _ ( SPta|,_y, where S=t+ Y x;( . S
(13) ptag\p—2/)\q—2 = g i=2
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PrOOF. Let Té?p) = Téip)(t; X9, X3, ...) be the series counting (2, 2s)-branching mobiles
whose marked black vertex has degree 2p, with a distinguished corner at the marked black
vertex, where t is conjugate to the number of buds and z; is conjugate to the number of non-
marked black vertices of degree 2i, for ¢ > 2. Then Proposition 32 gives C’Q(ip ) — 23-T2(fp ) le=1
(where the factor 2s is due to the marked corner in the outer face of annular maps in C_gip )).
As in the previous section, call pending edge an edge incident to a white leaf. In a (2,2s)-
branching mobile, the marked black vertex b carries deg(b)/2 — s pending edges (edges
leading to a white leaf) and the other deg(b)/2 + s adjacencies are with “rooted mobiles”
such as considered in the previous section, which are counted by the series S specified by

S =t+Ys,zi(%,)S*!. Hence TP = (.2P)SP*s, so that cir) = 2$(pzj’s)5p+s|t:1.

% p—s

By (12), it gives (note that the power of S does not depend on s):
#(2p.2 2p 2q
(14) A2 - 23(p_ ()5
Hence, defining S(p,q,s) = 2s(p2_ps) (q2_qs), we have A(2P20) — v(p,q,2) SPT4, where
v(p,q,d) = Emiz(p’q) B(p,q,s). It is then easy to check by a decreasing induction on d

s=

(starting from d = min(p, q)) that v(p, ¢, d) is equal to n(p, ¢, d) := ;1% (217”:;) (zqq:;), noticing

that n(p,q,d) —n(p,q,d + 1) = B(p, q,d). O

We can then easily extract the coefficients of A(2p:2q) using the Lagrange inversion

formula. First, note that, since S = /(1 — 37,5, mi(ii:zl)Si), then S := S/t satisfies

S=1/(1- Disp Tit! (2;__21)51), so that, for any k > 1, and for any nonnegative numbers
ng,...,NpL, We have,

L P P o T
= [tZiimx;z...zzh]gk

[tk+27: nighe .. 'LZZZ}L]Sk.

Now, by the Lagrange inversion formula, we have, with e = p+ ¢+, in; (note that e gives
the number of edges in the associated annular map):

[x;"’ . 'th]Sp+q|t:1 — [texgz . .th]SP"rq

P+q; NR1T, e—p— 2t —1\ ,\—¢
= T[x22...xhh][y P q](l_zxi(i_2>y)

i>2
Pt+q; n n 2i—1 —¢
- et 2(i)
i>2
_ ptqfe—=14no+---+np ﬁ 2 —1\™
e e—1,ng,...,np Py i —2

— (p+q)(e+;_3)!ﬁ1<2i— 1)”

A\ 71 —2
;. 1
i=2 "

with = 2+ ). n; the associated number of faces. Hence

k . ng
> -3)! 2p—1\ [2¢—1 1 /2i—1\"
n2 L pnn A(2P12‘1):(6+T74 ”7
[o2” 3] el PN p-2)\g-2)uilio2
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which proves (5) for r > 2 faces (upon multiplying by Hf':2 n;1(24)™ to account for numbering
the non-marked faces and marking a corner in each of these faces). Finally, the case of one
face in (5) is just the fact that Catalan numbers count rooted plane trees, which concludes
the proof of Theorem 2.

REMARK 34. Another possible way to prove Theorem 2 is via a substitution approach.
Indeed the bipartite model and the simple bipartite model are well-known to be linked by the
following substitution scheme [9, 29]: any rooted bipartite map M is uniquely obtained from
a rooted simple bipartite map C' where every edge is either left untouched or is doubled into
a 2-cycle inside which a rooted bipartite map is patched; C is called the simple core of M.
Denote by F = F(t;x1, 22, 23,...) (resp. G = G(t;x9,x3,...)) the series of rooted bipartite
maps (resp. rooted simple bipartite maps) where t is conjugate to the number of edges and
x; 18 conjugate to the number of faces of degree 2i for i > 1. Then the above substitution
scheme gives:

F(t;xq1,29,23,...) = G(u,x2,3,...), where u=t+1tF(t;x1,22,23,...).

From this equation it is then in principle possible to obtain a “Lagrangean” expression for
G from a Lagrangean expression for F (which itself can be obtained from the BDG bijec-
tion [26] using an integration-step to unmark the pointed vertex, or more directly from the
bijection in [81]). Such calculations in the univariate case can be found for instance in [55,
Sec.2.9], also in [29] for quadrangulations and 2p-angulations, and more generally in [31]
for multivariate series to count maps of girth at least d with a control on the degrees of the
faces.

3.4. The case of two odd faces

It is known that Tutte’s slicing formula can be extended to quasi-bipartite maps, i.e.,
maps with exactly two faces of odd degree, the first combinatorial proof was given in [40,
Theo.VI p.75] (by a reduction to the bipartite case); it can also be proved using an exten-
sion [26] of the bijection of Section 2.3 to arbitrary maps with control on the face degrees,
see e.g. [34, Prop.7.5] and [A29]. The unified statement is as follows, with the notations of
Section 1.2.2:

THEOREM 35 (Tutte). Let £y, ..., £, be positive numbers. Then, when O (bipartite case)
or 2 (quasi-bipartite case) of the {; are odd we have

(15) Al ) = ;1)! H&(mf/iz_—lu)’

=1

where e = 3", 0; andv=e—1+2.
As we show here, our formula for simple bipartite maps has a similar extension:

THEOREM 36. Let ¢1,...,¢, be positive numbers. Then, when 0 (bipartite case) or 2
(quasi-bipartite case) of the £; are odd we have

(16) |S(ly, ..., 4| = WH&([Z;Q_IQO,

1 .
where e = 53, {;.

The approach follows the very same lines as the one in the previous section (relying

on annular maps), so that we only list the main arguments. For p,q,s > 0, denote by

Agi’fimq“) the family of annular maps where the outer face has degree 2p + 1, the marked
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inner face has degree 2¢ 4+ 1, and the separating girth is 2s + 1 (it has to be odd since all
cycles separating the two odd degree faces have odd length) and the non-separating girth is
at least 4. Let Céi'ﬁl) = Aéi‘j_ll’zq“), and denote by Béi(ﬂl) the subfamily of Céif{l) such

that the outer cycle is the unique separating cycle of length 2s + 1. And let ffgiﬁl’zﬁl),

C_gifgl), _g(ﬂl) be the associated families with a distinguished corner in the outer face and

in the marked inner face. Then by the same arguments as to obtain (11) we have

(28 + 1)/{'(2P+172q+1) ~ C_'(2¢I+1) « B’(2P+1).

2s5+1 2s+1 2s5+1
S . . T(2p+1,2¢+1 (2p+1,2¢+1
Considering now the generating functions Agszri 20t = gs’ri 20t (15 23,...) (resp.
=(2g+1 S(2g+1 2p+1,2q+1 2g+1 . .
Césﬂ ) = 02(53:‘; )(:172, x3,...)) of maps from /{12513:1 2at+1) (resp. C_gsﬂ )), where x; is conju-
gate to the number of non-marked inner faces of degree 2i, we have similarly as in (12)
S(2p+1)  A(2q+1)
E(2p+1,2q+1) _ 025+1 'C2s+1
2s+1 - C‘:(25+1)
2541

The next step is to charaterize maps in Céiﬂl) by certain orientations. For M a quasi-

bipartite annular map with outer face degree 2s 4+ 1 and marked inner face degree 2q + 1,
define a (2, 2s+ 1)-orientation of M as weighted bi-orientation where each inner (resp. outer)
vertex has weight 2 (resp. 1), each edge has weight 1, each non-marked inner face of degree
2k has weight —k+ 2, the marked inner face has weight —g+ s, and the outer face has weight
0. Then, similarly as in Lemma 30, M admits a 2-orientation iff M is in Cgiiﬁl), and in
that case, M admits a unique 2-orientation in O_ss_1 (we can also make it a corollary of
Lemma 30; indeed let M’ be the unique annular map with a w-rotation symmetry p around
the marked inner face, and such that M is the quotient of M’ by p; then M’ admits a unique
(2,4s + 2)-orientation in O_45_2, and by uniqueness, this orientation is invariant under p,
hence by taking the quotient, M inherits a (2,2s + 1)-orientation in O_o4_1, which has to
be unique).

The master bijection then ensures that Cg‘f{l) is in bijection with the family of weighted
bi-mobiles with a marked black vertex of degree 2¢q + 1, non-marked black vertices of even
degree, such that each non-marked black vertex of degree 2k has weight —k 4 2, and the
marked black vertex has weight —q + s, every edge has weight 1 and every white vertex has
weight 2. This bijection and a decomposition of such mobiles with a distinguished corner at
the marked black vertex then ensure that

4(2 +1)_ 2q+1 441 . o 22—1 i1
Coath —(2s—i—1)<q_S Satstl) w1thS—t—|—1§>2xi i o ST
so that

- 2 1\ /2 1
A;i;:rlmq-s-l) — (25 + 1)< D+ > ( q+ ) L gptatly
p—s)\qg—s
Hence, if we define 3,4 s = (25+1)(**7) (>}, then the generating function A2P+1.2a+1) .=

p—s q—s
T(2p+1,2¢g+1 .
Zs>1 Aésﬁ at+l) satisfies

A@p+1.2¢+1) _ ~(p, q, 1)Sp+q+1 lt=1,

where ¥(p, ¢,d) := Z:ir;(pm B(p, q, s), and similarly as in Proposition 33 it can be checked by
_ (2p+1)(2¢+1) ( 2p )( 2q )

a decreasing induction on d (starting at min(p, q)) that ¥(p, g, d) vt () (2
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so that we obtain

(17) A@p+1,20+1) _ (2p+1)(2¢+1) [ 2p 2q gpratl),

p+qg+1 p—1/\qg—1 -
Then, for any non-negative integers no, ..., np, with e := p+ ¢+ 1+, in;, the Lagrange
inversion formula gives

h . n;
ny onn fepr12e41) _ (€47 = 3)! 20 \( 24 2i—1
(252 .. 2] A @+ D+ T (T I1(5_, :

i=2
which yields (16) in the quasi-bipartite case, upon multiplying the above coefficient by the

factor H?:z n;1(24)™ to account for numbering the non-marked inner faces and distinguishing
a corner in each of these faces.

3.5. Alternative approaches

3.5.1. Orientations for the annular maps in ng). In the two previous sections we
have seen that for 1 < s < ¢ with s and ¢ of the same parity, every map M € ng) admits
a unique weighted orientation in O_; such that every inner (resp. outer) vertex has weight
2 (resp. 1), every edge has weight 1, every non-marked inner face of degree 2k has weight
—k + 2, and the marked inner face (of degree ¢) has weight (—q + s)/2.

One can actually prove the existence of closely related orientations, with the difference
that this time all vertices (including the outer ones) have weight 2, and the marked inner
face has weight (—¢ — s)/2 instead of (—¢q + s)/2. It can be proved that the existence of
such an orientation also characterizes maps in C§Q). However, (using the Euler relation), one
can check that if the outer face contour is not the unique separating cycle of length s, then
there is an outer vertex v such that any such orientation is not accessible from v. Hence it is
necessary that M € Bé‘” to have accessibility. Conversely one can prove that any M € ng)
has a unique such orientation in Oy, called the canonical orientation of M. Specializing the
master bijection (case & = s), such maps are in bijection with weighted mobiles having the
same conditions as the (2, ¢)-branching mobiles considered in the previous sections, with the
only difference that the marked black vertex of degree ¢ has weight (—¢ — s)/2 instead of
(—g+s)/2, thus is incident to (g+s)/2 pending edges (instead of (¢—s)/2 for (2, ¢)-branching
mobiles). It then implies that

B — s( q ) Sla-s)/2|,_
s (q+5)/2 [e=1
which is consistent with sC\? = B@ . G®) and G\@ = ((q—i)/2) Sla+s)/2,

3.5.2. A simplified annular approach in the bipartite case. For ¢ > 1, consider
a rooted simple bipartite maps with a secondary marked face of degree 2¢q having a distin-
guished corner (we take here the equivalent convention that rooted means “with a marked
directed edge”). Blowing the root-edge e into a face of degree 2 taken as the outer face, and
where the corner at the origin of e is marked, we obtain a map that is in Bg2q), and the
mapping is clearly a bijection. Hence

_ 2q
B(ZQ) =9 Sq—l _
> 0—1 =1
is the series of rooted simple bipartite maps with a secondary marked face of degree 2q
having a distinguished corner, where x; is conjugate to the number of non-marked faces of
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v

@

(a) (b) (c)

FIGURE 3.9. (a) A rooted bipartite simple map M with a secondary marked
face of degree 2¢g = 6. (b) Blowing the root-edge into a face of degree 2 taken

as the outer face, we obtain a map M in 852‘”. (¢) The canonical orientation
(in Og) for M.

degree 2¢ and t is conjugate to the number of non-root edges. By coeflicient extraction in
this series using the Lagrange inversion formula, we again recover (5). Note that this proof
gives the formula also in the case of one face (as opposed to the approaches of Section 3.3 and
Section 3.5.1, where the map is required to have at least two faces). This approach is simpler
but has some limitations when compared to the approach of Sections 3.3 and Section 3.5.1:
it does not seem well adapted to an extension to the quasi-bipartite case, and it does not
extend well to higher girth (the most generalizable approach is the one of Section 3.5.1,
which extends to hypermaps with control on a so-called ingirth parameter). However it is
nice to have such a simplified approach when dealing with the bipartite case only.

We will somehow rely on a combination of the two approaches presented in this section
(from Section 3.5.2 the idea of marking an edge to be opened into a face of degree 2, and
from Section 3.5.1 the idea of cutting along a canonical cycle into two components that are to
be endowed with canonical weighted bi-orientations in O_y and Os, respectively) to handle
bipartite quadrangulations with boundaries in the next chapter.






CHAPTER 4

An analogue of Krikun’s formula for quadrangulations
with boundaries

In this chapter we prove an analogue of Krikun’s formula for (bipartite) quadrangulations
with boundaries, as stated in Theorem 4, using the master bijection adapted to maps with
boundaries. In the maps we consider, the boundaries are self-avoiding and vertex-disjoint,
hence can be considered as “big” vertices; we first (Section 4.1) adapt the theory of orienta-
tions and the master bijection to this setting. Then in Section 4.2 we show how to apply the
master bijection strategy to bipartite quadrangulations with boundaries; similarly as in Sec-
tion 3.2, we start with a subcase where the orientations are simpler to handle, here the case
where at least one boundary has length 2 (in Section 4.2.1). We introduce bi-orientations for
such maps, and then characterize the associated bi-mobiles and their generating function.
Then in Section 4.2.2 we extend the bijective encoding to allow for an outer boundary face
of arbitrary even degree, which allows us to prove (in Section 4.2.3) Theorem 4, by count-
ing the corresponding weighted bi-mobiles (via generating functions). We then explain in
Section 4.3 how to apply a similar technique to triangulations with boundaries, and thereby
recover Krikun’s counting formula (Theorem 3). Finally in Section 4.4 we observe that these
formulas make it possible to solve the dimer model on rooted quadrangulations and rooted
triangulations (upon seeing dimers as boundaries of length 2).

4.1. Preliminaries on maps with boundaries

4.1.1. Maps with boundaries. A face f of a map is said to be simple if the number
of vertices incident to f is equal to the degree of f (in other words there is no pair of corners
of f incident to the same vertex). A map with boundaries is a map M where the set of
faces is partitioned into two subsets: boundary faces and internal faces, with the constraint
that the boundary faces are simple, and the contours of any two boundary faces are vertex-
disjoint; these contour-cycles are called the boundaries of M. Edges (and similarly vertices)
are called boundary edges or internal edges whether they are on a boundary or not; half-
edges are called boundary or internal whether they belong to an internal edge or a boundary
edge. If M is a plane map with boundaries, whose outer face is a boundary face, then the
contour of the outer face is called the outer boundary and the contours of the other boundary
faces are called inner boundaries. A quadrangulation with boundaries (resp. triangulation
with boundaries) is a map with boundaries where every internal face has degree 4 (resp.
degree 3).

4.1.2. Orientations for maps with boundaries. For M a map with boundaries,
an orientation of M is called consistent if every boundary edge has the incident boundary
face on its right. Define the indegree of a boundary C as the number of internal edges
with their end-vertex on C. Let Vi, be the set of internal vertices of M and I' the set of
boundaries of M. Given o a mapping from Vi, UT to N, define a boundary-a-orientation of
M as a consistent orientation of M such that each boundary C has indegree a(C), and each

53
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internal vertex v has indegree a(v). For M a plane map with boundaries whose outer face
is a boundary-face, a consistent orientation of M is called almost-minimal if the outer face
contour is the unique counterclockwise cycle. As an easy consequence of Lemmas 8 and 9
(upon seeing boundaries as “big” vertices), we have

LEMMA 37. Let M be a plane map with boundaries, and let X be a boundary-a-orientation
of M. If the outer face of M is an internal face, then M admits a unique minimal boundary-
a-orientation Xo. If the outer face of M is a boundary face and the outer boundary Cy
satisfies a(Cp) = 0, then M admits a unique almost-minimal a-orientation Xo. In addition,
in both cases, X is accessible from a vertex v iff Xo is accessible from v.

More generally we call a weighted bi-orientation of M consistent if every boundary edge
is 1-way of weights (0, 1) with the incident boundary face on its right. And such a weighted
bi-orientation is called almost-minimal if the outer face is a boundary-face and the outer
contour is the unique ccw cycle.

4.1.3. Adaptation of the master bijection to maps with boundaries. We will
only need here to adapt the master bijection for 6 € Z\{0} (the case § = 0 would correspond
to vertex-pointed maps with boundaries such that the pointed vertex is internal). Let § €
7Z\{0}, and denote by Oy the family of plane maps with boundaries endowed with a consistent
weighted bi-orientation, such that the outer face is a boundary face for § < 0 and an internal
face for § > 0, and when forgetting which faces are boundary faces, the underlying weighted
bi-oriented plane map is in Os.

Define now a (weighted) boundary bi-mobile as a (weighted) bi-mobile where every corner
at a white corner might carry additional dangling half-edges called legs (as buds, legs carry
no weight); white vertices having at least one leg are called special. The degree of a white
vertex v is the number of non-leg half-edges incident to v. Define the excess of a boundary
bi-mobile as the number of half-edges incident to a white vertex (including the legs) minus
the number of buds. For § € Z, denote by 1§5 the set of weighted boundary bi-mobiles of
excess 0 (again with the constraint that half-edges at white vertices have positive weight,
while half-edges at black vertices have non-positive weight).

(a) (b)

FIGURE 4.1. Reduction operation at the black vertex corresponding to a
boundary face in O € Oy.

We can now specialize the master bijection. For O € 55, let T' = ®(O) be the associated
weighted bi-mobile. Note that each inner boundary face f of O, of some degree k, yields a
black vertex b of degree k in T, such that b has no bud and the k£ neighbours wy, ..., wy of
b are the white vertices corresponding to the vertices around f. We perform the following
operations: insert k legs at b, one toward each of the edges around f; then pull the k
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neighbours wy, ..., wy to b, and finally recolor b as white, see Figure 4.1(a)-to-(b). Doing
this for each inner boundary we obtain (without loss of information) a weighted boundary
bi-mobile T” of the same excess as T, called the reduction of T. Let ® be the mapping such
that ®(0) = T".

Conversely, for T a (weighted) boundary bi-mobile, the expansion of T" is the (weighted)
bi-mobile T obtained from T by applying Figure 4.1(b)-to-(a) to every special white vertex
of T, such a white vertex with & legs yielding in T a distinguished black vertex b of degree k
with no buds, and with only white neighbours (and with half-edge weights (0, 1) on the edges
from b to each of the white neighbours). Note that, if 77 has non-zero excess § and if O € Os
denotes the weighted bi-oriented plane map associated to T by the master bijection, then
each distinguished face f € O (i.e., a face associated to a distinguished black vertex of T') is
simple; indeed if k£ > 1 denotes the degree of f, the corresponding black vertex b € T has k
white neighbours, which thus correspond to k distinct vertices incident to f. In addition the
contours of the distinguished inner faces are disjoint since the expansions of any two distinct
special white vertices of T are vertex-disjoint in 7. And for § < 0, the outer face is simple
and disjoint from the contours of the inner distinguished faces (indeed the vertices around
an inner distinguished face of O are all present in T, hence are inner vertices of O). We
thus conclude that O € (55, upon seeing the distinguished faces (including the outer face for
d < 0) as boundary faces. The following statement summarizes the discussion:

FIGURE 4.2. The master bijection from a consistent weighted plane bi-
orientation in (55 to a weighted boundary bi-mobile of excess § (the top
example has § = —4, the bottom-example has § = 5, the weights of bound-
ary edges, which are always (0, 1) by definition, are not indicated).
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THEOREM 38. The master bijection o adapted to consistent weighted bi-orientations is
a bijection between Os and Bs for each 6 € Z\{0}.

Again several parameters (weight and degree) of a consistent weighted bi-orientation
correspond to parameters of the associated weighted boundary bi-mobile. For a map M
with boundaries endowed with a consistent weighted bi-orientation, define the weight (resp.
the indegree) of a boundary C' as the total weight (resp. total number) of ingoing half-edges
incident to a vertex of C but not lying on an edge of C'. And for a weighted boundary bi-
mobile, define the weight of a white vertex v as the total weight of the half-edges (excluding
legs) incident to v.

Let O € Os and T = ®(0). Then every internal inner face of O corresponds to a black
vertex in T' of same degree and same weight; every internal vertex v € O corresponds to a
non-special white vertex v’ € T of the same weight and such that the indegree of v equals the
degree of v'; and every inner boundary of length k, indegree r, and weight 5 in O corresponds
to a special white vertex in T' with k legs, degree r, and weight j.

We finally state a useful parity lemma for orientations in @5:

LEMMA 39. Let O be a consistent weighted bi-orientation in Os (for some 6 € Z\{0}),
such that every internal edge, internal vertez, internal face, boundary, has even weight. Then
every internal half-edge also has even weight.

PROOF. Let T be the boundary bi-mobile associated with O by the master bijection
(Theorem 38). The parity conditions of O imply that all edges and vertices of T have even
weight. In particular an edge e of T' either has its two half-edges of odd weight, in which case
e is called odd, or has its two half-edges of even weight, in which case e is called even. Let
F' be the subforest of T formed by the odd edges. Since every vertex of T has even weight,
it is incident to an even number of edges in F. Hence F' has no leaf, so that F' has no edge.
Thus all edges of T are even, and by the local rules of the master bijection it implies that
all internal half-edges of O have even weight. ]

4.2. Application to quadrangulations with boundaries

4.2.1. The case where at least one boundary has length 2. Define a 2-outer
quadrangulation with boundaries as a quadrangulation with boundaries, with a distinguished
boundary face of degree 2 taken as the outer face. Let M be a 2-outer quadrangulation with
boundaries. A boundary-2-orientation of M is a consistent weighted bi-orientation of M
such that:

e cach internal edge has weight 0,

e each internal vertex has weight 2,

e each internal face (of degree 4) has weight —2,

e cach inner boundary of length ¢ has weight i + 2,
e the outer boundary has weight 0.

Note that the weight-conditions at internal vertices and edges easily imply that all weights
on internal half-edges are in [—2..2].

LEMMA 40. Let M be a 2-outer quadrangulation with boundaries. If M is loopless, then
M admits a unique boundary-2-orientation in O_.

PrROOF. Let My be the map with boundaries obtained from M by inserting a vertex
(considered as a white square vertex, whereas the vertices of M are considered as round
and white) in the middle of each edge, and with same boundaries (upon subdividing by 2)
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(d) (e) ()

FIGURE 4.3. (a) A 2-outer quadrangulation M with boundaries. (b) The
2-subdivided map Ms. (¢) The map o(Ms) (obtained from My by inserting
a star in each inner face) endowed with a 2-regular orientation X, which can
be obtained by the technique of Figure 3.2. (d) The map 7(Ms) (same as
o (Ms) except that the stars in the inner boundary faces are erased) endowed
with the induced boundary-a-orientation X’ (which is not minimal here).
(e) The map 7(Ms) endowed with its unique almost-minimal boundary-a-
orientation. (f) The induced boundary-2-orientation in O_,, obtained by
applying the transfer rules of Figure 4.5.

as in M. Note that if M is loopless then M is a bipartite simple map of outer degree 4
(precisely, all internal faces have degree 8 and each boundary face originally of degree i in
M has degree 2i in Ms). Hence, with the notations of Lemma 25, o(Mz) admits a 2-regular
orientation X. Let 7(Ms3) be the map with boundaries obtained from o(Ms) by deleting
the stars inserted inside the boundary faces of Ms, the boundary faces of 7(Msz) being the
same as in My (in other words, stars are inserted only in the internal faces of Ms, not in the
boundary faces). It is easy to check that the orientation X’ induced by X on 7(Ms) (upon
re-orienting the boundary edges so that they have the incident boundary face on their right)
is a boundary-a-orientation for the following a:

e for each internal white vertex (round or square) v of 7(Ms), a(v) = 2,



58 4. AN ANALOGUE OF KRIKUN’S FORMULA FOR QUADRANGULATIONS WITH BOUNDARIES

e for each black vertex b of 7(Ms) (of degree 8 since the internal faces of My have
degree 8), a(b) = 6, i.e., b has 2 outgoing and 6 ingoing edges,

e for each inner boundary C of length 2i in 7(M3) (originally an inner boundary of
length ¢ in M), a(C) =i+ 2. The outer boundary Ceyx; has a(Cext) = 0.

In addition X’ inherits from X the property of being accessible from every outer vertex of
7(Ms). By Lemma 37, 7(M3) admits a unique almost-minimal boundary-a-orientation, de-
noted X/ ., which is accessible from every outer vertex of 7(Mz). Similarly as in Property 26

we have the following property illustrated and proved ! in Figure 4.4:

PROPERTY 41. In X! . , for any edge e = {b,w} connecting a black vertex b to a white
vertex w (either round or square) and directed toward w, the next edge € (which is in M)
after e in clockwise order around w is also directed toward w.

Ol G
Proof of (i): Proof of (ii):
S A A S RN 2
ccw cycle ccw cycle
out saturated out- saturated
in-saturated out-saturated

FIGURE 4.4. (i) the local property at a round white vertex, below the proof
by contradiction, (ii) the local property at a square white vertex, below
the proof by contradiction. At each step the possible configurations are
constrained either due to ccw-cycle avoidance or due to a vertex outdegree
or indegree being saturated.

A

oO————~0b = oOo—0  Oo——20

0 0 -1 1 2 2

F1GURE 4.5. Top: the 3 possible configurations at an internal edge of M
in the minimal boundary-a-orientation of 7(Ms). Bottom: transfering the
configurations into weights on the half-edges.

INote that in X/ in» @ vertex of M on a boundary might have indegree larger than 2, so that we can
not recycle the proof of Property 26, it is actually crucial here that the internal faces of M have degree 4.
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Property 41 and the fact that each square vertex has indegree 2 implies that each internal
edge of M (subdivided by 2 in 7(Ms)) is of the 3 possible types shown in the top-part of
Figure 4.5. Let Yj be the induced consistent weighted bi-orientation of M, which is obtained
by applying the transfer rules of Figure 4.5, see Figure 4.3(e)-(f) for an example. It is easy to
see that Y; is a boundary-2-orientation of M. In addition, since X/, is almost-minimal, Y;
is also almost-minimal. And similarly as in Lemma 25, the fact that Property 41 is satisfied
ensures that Yy is accessible from the 2 outer vertices. Hence Yj is in O_5. Conversely
if there was another boundary-2-orientation Y; in O_s, then applying the transfer rules of
Figure 4.5 the other way would yield a boundary-a-orientation X7 of 7(Mz), and a similar
argument as in Figure 2.15 would imply that X; is almost-minimal, implying X; = X/

min

and thus Yy = Y;. O

It is tempting to directly use Lemma 40 in order to count loopless 2-outer quadrangu-
lations via the master bijection. But a crucial part is missing, namely we do not have the
property that being loopless is necessary in order to admit a boundary-2-orientation in (5_2.
However, in the bipartite case (i.e., when all faces, including the boundary faces, have even
degree), being loopless is automatically granted, and in addition the orientations simplify.

Denote by D, the family of bipartite 2-outer quadrangulations with boundaries. For
M € D, define a boundary-1-orientation of M as a consistent weighted bi-orientation of M
such that:

every internal vertex has weight 1,

every internal edge has weight 0,

every internal face (of degree 4) has weight —1,

every inner boundary of length 2i has weight ¢ + 1, and the outer boundary, of
length 2, has weight 0.

Note that the weight-condition at internal vertices implies that the half-edge weights are
at most 1, hence the internal edges either are 0-way of weights (0,0) or 1-way of weights
(=1,1). Then the weight condition at internal faces implies that every internal face has a
unique 1-way clockwise edge on its contour.

LEMMA 42. Every M € D, has a unique boundary-1-orientation in (/9\,2, which is called
the canonical bi-orientation of M.

PrOOF. By Lemma 40, M has a unique boundary-2-orientation Xy in (5_2. Clearly,
every internal face, internal vertex, and edge has even weight. And, since M is bipartite,
every boundary face also has even weight. Hence, by Lemma 39 every internal half-edge has
even weight. D1v1d1ng all these half-edge weights by 2 we obtain a boundary-1- orientation
X that is in O_,. In addition if there was another boundary-1-orientation X/ 1in O_,, then
doubling the weights of internal half-edges would yield a boundary-2-orientation X; in O_,
and different from Xy, contradicting the uniqueness in Lemma 40. ]

The corresponding (via the master bijection for maps with boundaries, Theorem 38)
weighted boundary bi-mobiles thus satisfy the following properties (there is also the fact
that the excess is —2, but it can easily be checked to be a consequence of these properties):

e every edge has weight 0, either black-black of weights (0,0), or black-white of
weights (—1,1),

e every black vertex has degree 4 and weight —1, hence has a unique white neighbour,

e for i > 0, every white vertex of degree i + 1 carries 2¢ legs.

Denote by 7, the family of such weighted boundary bi-mobiles. To summarize, Theo-
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(a) (b) (c)

FIGURE 4.6. (a) A bipartite 2-outer quadrangulation with boundaries en-
dowed with its canonical bi-orientation (where the 1-way edges are indicated
as directed edges, the O-way edges are indicated as undirected edges, and
the weights, which are uniquely induced by the bi-orientation, are not indi-
cated). (b) The dissection superimposed with the corresponding bi-mobile.
(¢) The reduced boundary bi-mobile (with 2: legs at each white vertex of
degree i + 1), where again the weights (which are uniquely induced by the
bi-mobile) are not indicated.

rem 38 and Lemma 42 yield the following bijective statement for bipartite 2-outer quadran-
gulations with boundaries, see Figure 4.6 for an example:

PROPOSITION 43. The family D, is in bijection with the family T,. For M € D, and
T € T, the associated weighted boundary bi-mobile, each inner boundary of length 2i in M
corresponds to a white vertex in T of weight (and degree) i + 1; and each internal vertex of
M corresponds to a white leaf in T.

4.2.2. The general case. For a > 1, denote by DéQa) the family of bipartite quadran-
gulations with boundaries, with a distinguished boundary face of degree 2a taking as the
outer face. In the last section we have described a bijection for D, = ’Dg). We describe here
more generally a bijection for Déza) for any a > 1; more precisely we give a a bijection for
§<(>2a)’ the family of objects from Déza) where an arbitrary edge (which can be a boundary
edge or an internal edge) is distinguished. Similarly as in Section 3.5.2, the first step is to
turn a map M € ﬁg%) into an annular map, by blowing the distinguished edge e into an
internal face f; of degree 2, taken as a marked inner face, to obtain a so-called (2a)-annular
quadrangulation with boundaries, i.e., an annular map with boundaries, where the outer face
fo is a boundary face of degree 2a, the marked inner face f; is an internal face of degree
2, and all the other internal faces have degree 4. Let g<(>2") be the family of bipartite (2a)-
annular quadrangulations with boundaries, and let £, := Qg). Then the above edge blowing
process yields, for any a > 1:

D(2a) ~ 2a
(18) Do) ~ g,

For M € ggla), an admissible 2-cycle of M is a 2-cycle ¢ of M such that f; is inside
¢ and such that any face inside ¢ and incident to a vertex on c¢ is an internal face (note
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(o}
c
o
outslde c
+ exchange
marked
faces

FIGURE 4.7. (a) A bipartite 4-annular quadrangulation with boundaries,
where the internal face of degree 2 (marked inner face) is indicated by a
triangle, and the outermost admissible 2-cycle ¢ is drawn bold. (b) The
two parts My, M7 resulting from cutting along ¢, each endowed with its
canonical bi-orientation (the marked inner face in each case is indicated by a
triangle, 1-way and 0-way edges are shown as directed and undirected edges,
respectively; the weights, which are uniquely induced by the bi-orientation,
are not indicated). (c) The bi-mobiles associated to the two parts. (d) The
reduced boundary bi-mobiles, where the marked vertex (corresponding to
the marked inner face) in each case is surrounded; the weights, which are
uniquely induced by the bi-mobile, are not indicated.

(a)

that the contour of f; is an admissible 2-cycle). A (2a)-annular quadrangulated dissection is
called reduced if the unique admissible 2-cycle is the contour of f;. Let ’Hg“) (resp. ]-"éQ‘l))
be the family of annular maps obtained from maps in an) (resp. from reduced maps in
g<(>2“)) by exchanging the roles of the two marked faces (so that the outer face is a degree 2
internal face, while the marked inner face is a boundary face of degree 2a). Finally, denote
by g:(f“), 50, and fé“) the families of maps respectively from gga>, &, and fé2a), where
there is a distinguished corner in the outer face and in the marked inner face. Note that
each M € ggﬂ has an “outermost” admissible 2-cycle ¢; if we cut M (seen as embedded on
the sphere) along ¢ we obtain two annular maps My, M; € ]:'<§2a) x &, called the two parts of
M: M is the part “inside” ¢ with the outer face (delimited by ¢) considered as a boundary
face and with f; as the marked inner face (an internal face); My is the part “outside” ¢,
where the face delimited by c is taken as the outer face (considered as an internal face) and
fo is taken as the marked inner face (a boundary face), see Figure 4.7(a)-(b) for an example.
Conversely, for My, M; € ]-:9“) x &, we obtain a map M ¢ g<(>2“) by pasting the outer
contours of My and M; (there are 2 ways to do it since the outer contours have length 2),
and then taking the marked inner face of My as the outer face of M, and the marked inner
face of M; as the marked inner face of M.
At the level of rooted objects, this decomposition yields the isomorphism:

(19) 2.G2 &~ F20) x £,
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where the factor 2 accounts for the choice of a vertex v on the outermost admissible 2-cycle
c of M (so that after cutting along ¢, in each component My, M7, the distinguished corner
in the face delimited by c is the corner at v; under this constraint there is now just one way
to paste the outer contours of My and M, for My, M, € ]:";(f") X 50).

Similarly as in the previous section, the maps in the respective families £, and _7:<§2a) can
be endowed with canonical bi-orientations from which we can apply the master bijection.
For M € £, a 1-orientation of M is a consistent weighted bi-orientation of M such that:

e every internal vertex has weight 1,

e every internal edge has weight 0,

e every internal face of degree 4 has weight —1, and the (unique) internal face of
degree 2 has weight 0,

e every inner boundary of length 2i has weight ¢ 4+ 1, and the outer boundary has

weight 0.
0 0 0 1 0 1 1 0 1
= = =
0 0 0 1 0 -1 0 0 0

FIGURE 4.8. Transferring bi-orientations and weights when blowing an edge
into an internal face of degree 2.

LEMMA 44. Every M € &, admits a unique I-orientation in (5,2, which s called the
canonical bi-orientation of M.

Proor. This is a corollary of Lemma 42. Indeed, seeing M as a map D € D, where
an edge e is opened into an internal face f1 of degree 2, the canonical bi-orientation of M is

directly derived from the canonical bi-orientation of D, using the rules shown in Figure 4.8.
O

For M € Hg“) (recall that the outer face is internal of degree 2 while the marked inner
face is a boundary face of degree 2a), define a I-orientation of M as a consistent weighted
bi-orientation such that:

e every internal vertex has weight 1,

e every internal edge has weight 0,

e every internal inner face (of degree 4) has weight —1, and the outer face (internal
of degree 2) has weight 0,

e every non-marked boundary of length 2i has weight i + 1,

e the marked boundary, of length 2a, has weight a — 1.

LEMMA 45. Let M € ’Hg“). Then M has a 1-orientation in Os iff M € ]-'éza), and in
that case M has a unique I1-orientation in (52, which is called the canonical bi-orientation
of M.

As in Section 3.5.1 the proof is omitted, see [S5] for details.
The weighted boundary bi-mobiles corresponding to maps in £, via the master bijection
are specified by the following properties (which imply that the excess is —2):
e every edge has weight 0, either black-black of weights (0,0), or black-white of
weights (—1,1),
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e every black vertex has degree 4 and weight —1 (hence has a unique white neigh-
bour), except for a unique black vertex of degree 2 and weight 0,
e for i > 0, every white vertex of degree i + 1 carries 27 legs.

Denote by U,, the family of these weighted boundary bi-mobiles.
And for a > 1, the weighted boundary bi-mobiles corresponding to maps in ]—'éza) are
specified by the following properties (which imply that the excess is 2):

e every edge has weight 0, either black-black of weights (0,0), or black-white of
weights (—1,1),

e every black vertex has degree 4 and weight —1 (hence has a unique white neigh-
bour),

e there is a marked white vertex of degree a — 1 that additionally carries 2a legs,

e for ¢ > 0, every non-marked white vertex of degree ¢ + 1 carries 2: legs.

Denote by V<(>2a) the family of these weighted boundary bi-mobiles. Lemmas 44 and 45
together with the master bijection (Theorem 38) then yield:

PROPOSITION 46. The family £, is in bijection with the family U,,, such that for M € &,
and T € U,, the associated weighted boundary bi-mobile, each inner boundary of length 2i in
M corresponds to a white vertex in T of weight (and degree) i + 1; and each internal vertex
of M corresponds to a white leaf in T

And for a > 1, the family ]-'éza) is in bijection with the family V<(>2“), such that for
M € féZ“) and T € V<(>2“) the associated weighted boundary bi-mobile, each non-marked
boundary of length 2i in M corresponds to a non-marked white vertex in T of weight (and
degree) i + 1; and each internal vertex of M corresponds to a non-marked white leaf in T.

4.2.3. Proof of Theorem 4. We now prove the counting formula (7) in Theorem 4,
using Proposition 46 and counting the associated weighted bi-mobiles (via generating func-
tions). Define a planted bi-mobile of quadrangulated type as one of the two connected com-
ponents P € {Ti,T>} obtained after cutting a bi-mobile 7' € T, in the middle of an edge
e; the half-edge h of e that belongs to P is called the root half-edge of P, and the vertex
incident to h is called the root-verter of P. The root-weight of P is the weight of h in T.
For j € {—1,0,1}, denote by R; = R;(t; o, 21,2, ...) the generating function of planted
bi-mobiles of quadrangulated type and of root-weight j, where ¢ is conjugate to the number
of buds, and z; is conjugate to the number of white vertices of degree i+ 1 (with 2¢ additional
legs) for @ > 0. Define also R :=t 4+ Ry. Then a decomposition at the root easily implies
that {R_1, Ro, R1} are specified by the equation-system

R*l = R37
(20) Ry = 3RR?% ' _
Ry = ZiZO Ti (3;) R_{.
For instance the factor (?;’) in the 3rd line accounts for the number of ways to place the 2i
legs when the root-vertex has degree i + 1 (the root half-edge plus 7 children), and the factor

3 in the second line accounts for choosing which of the 3 children of the root-vertex is white.
This implies that R =1 +3%,5z; (3;) R3*2_ or equivalently,

(21) R =t$(R), with ¢(y) = (1 -3 o <3Z> y3i+1) o

i>0
Let U, = U, (t;z9, 1, . ..) be the generating function of bi-mobiles from U, where one
of the 2 corners at the marked black vertex is distinguished, with ¢ conjugate to the number
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of buds and z; conjugate to the number of white vertices of degree i + 1 for 4 > 0. And for
a > 1, let VéQa) = Véza)(t;xo,xl, ...) be the generating function of bi-mobiles from V<(>2a)
where one of the 2a legs at the marked white vertex is distinguished, with ¢ conjugate to
the number of buds and z; conjugate to the number of non-marked white vertices of degree
i+1 for i > 0. A decomposition at the black vertex of degree 2 for U, (resp. at the marked
white vertex of degree a — 1 for Véza)) gives

3a —2 3a — 2
2 (2a) a—1 3a—3
UO—R, V: —( 1>R_1 —( 1>R .

Let nga) = ég“)(xo,x17...)7 E_"<> = Eo(xo,x17...)7 ﬁé2“) = Féza)(xo,xl,...) be the
respective generating functions of QKE“% 50, and ]?(()2‘1)7 where x( is conjugate to the number
of internal vertices and for ¢ > 1, x; is conjugate to the number of boundaries of length 7 that
delimit an inner boundary face that is unmarked (i.e., the outer boundary face is discarded

for 50 and g}f% and the marked inner boundary face of degree 2a is discarded for ]:"(()2“)).
Proposition 46 implies that (the factor 2 accounts for marking a corner in the outer face)

Ey=2U4|m1, FP9 =2v29|,_,

and Equation 19 implies that 2 é’ga) = EQ . F;(f“), so that we obtain

= 3a —2
2a) __ 3a—1
(22) Gg>2(a_1>R |e=1-
Now denote by SB,(m;ni,...,n,) the number of maps in D<(>2“) with a distinguished

corner in the outer boundary face, with m internal vertices, n; inner boundaries of length
2i for 1 <4 < h, and no inner boundary of length larger than 2h. The half total boundary
length is b = a+ ), in;, the total number of boundaries is 7 = 1+ ), n;, and the number of
edges is (by the Euler relation) e = 3b 4 2r + 2m — 4, which is 3b+ 2k with k :=r +m — 2.
Then (18) yields (with the factor 2 in front of e due to marking a corner in the new opened
face of degree 2)

n np1(2a 3a—2 m,.n n a—
2eBq(mima, ..., np) = [z5te] -~-xh’L]G£>2 ) = 2((1— 1)[330 apt et R o

Since R is specified by R = t¢(R), with ¢(y) = (1 — 3,59 2i(¥)y* )71, the Lagrange
inversion formula (recalled in Theorem 5) gives for any positive integers n, g,

1R = "o (y)".

Note that R := R/t satisfies R = 1/(1 — >is0 3+ (3) R¥+1), hence for any k > 1,

[t - -a:Z"]RkIt:1 = [zg'z]t-- -xzh]ékh:l
[t D Gt ne gm g g ok

[tk+m+2?=1(3i+1)mxgwx?1 -2 RF.

Hence, denoting p :=3a—1+m+ 2?21(31' +1)n; =m-+r+3b—2 = k+3b, we have (using
the Lagrange inversion formula from the 1st to the 2nd line):
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el Ry = [Pagal el R

3a—1 ., n ~3a+1 : 30\ g1\ 7P
= gty (1= Y )yt

2
p =0

h .
3a—1 . 31\\ P
- mopTh 1_3§ s
p [SU(] Z, ]( izox <Z>>

_ 3a—13m_|r7._1 p—1l+m+r—1 ﬁ 3\ ™
P p—1,m,ny,...,npy Py 7

so that we obtain (using k = m+7r—2, p=k+3b, e =p+k, and (3a —1)(**77?) = 2a(?"))

a—1 a

— 1) 30\ v 1 /30\™
5 . TR S k) L —
(23) Ba(msny, na, ..., np) =3 m!(k + 3b)! “<a>1:[1n'<2> ’

which, multiplied by H?zl n;1(24)™ (to account for numbering the inner boundary faces and
marking a corner in each of these faces), gives (7).

4.3. Application to triangulations with boundaries

We can follow a very similar approach for triangulations with boundaries, and derive a
bijective proof of Krikun’s formula (Theorem 3). We start with the case of I-outer triangu-
lations with boundaries, i.e., triangulations with boundaries with a distinguished boundary
face of degree 1, taken as the outer face. Let D, be the family of these maps. For M € Dy,
a boundary-1-orientation of M is a consistent weighted bi-orientation of M such that:

e every internal vertex has weight 1,

e every internal edge has weight —1,

e every internal face has weight —2,

e every inner boundary of length i has weight ¢ + 1, and the outer boundary has
weight 0.

Note that the weight condition at internal vertices implies that the half-edge weights are
at most 1, hence the internal edges are either 1-way of weights (—2,1) or 0-way of weights
(—1,0). Similarly as in Section 4.2.1 we have

LEMMA 47. Every M € Dy has a unique boundary-1-orientation in @_1, which is called
the canonical bi-orientation of M.

ProOF. The proof follows similar lines as the proof of Lemma 40 (the main difference
being that edges have to be subdivided into 4 edges instead of 2). For M a l-outer triangu-
lated dissection, define a boundary-2-orientation of M as a consistent weighted bi-orientation
of M such that:

every internal vertex has weight 2,

every internal edge has weight —2,

every internal face has weight —4,

every inner boundary of length ¢ has weight 2¢ + 2, and the outer boundary has
weight 0.
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Note that this exactly amounts to doubling the specifications for boundary-1-orientations.
And by Lemma 39 showing that any M € D, admits a unique boundary-1- orlentatlon in
O_ 1 amounts to showing that M admits a unique boundary-2-orientation in O_ 1, which we
are going to prove now (without all details).

Let M4 be the map with boundaries obtained from M by subdividing each edge e
(boundary or internal) into 4 edges, i.e., by inserting 3 vertices (of degree 2) on e, these 3
vertices being considered as white square vertices (whereas the vertices of M are considered
as white round vertices). Then M, is a plane bipartite simple map with a quadrangular
outer face. Hence o(My) can be endowed with a 2-regular orientation, and it induces a
boundary-a-orientation of 7(My) for the following a:

e cach internal vertex v has a(v) = 2,

o cach black vertex b (of degree 12) has a(b) = 8 (i.e., indegree 8 and outdegree 4),

e each inner boundary C of length 4i (originally of length ¢ in M) has a(C) = 2i+2;
and the outer boundary Cj (of length 4) has a(Cp) = 0.

Let Xiin be the unique almost-minimal boundary-a-orientation of 7(My). Similarly as
in the proof of Lemma 40 (but with a slightly more involved proof, omitted here), we have:

PROPERTY 48. In Xy, for any edge {b,w} connecting a black vertex b to a white vertex
w (either round or square) and directed toward w, the next edge (which is in My) after {b,w}
in clockwise order around w is also directed toward w.

-2 0 -3 1 -4 2

FIGURE 4.9. Top: the 3 possible configurations at an internal edge e of M
in the minimal 2-regular orientation of 7(My). Bottom: transferring the
configurations into weights on e.

Property 48 then easily implies that any internal edge of M (subdivided into 4 edges
in My) is of the 3 possible types shown in the top-part of Figure 4.9 (actually the 2nd case
can be excluded a posteriori, using Lemma 39). Let Yj be the induced consistent weighted
bi-orientation of M, which is obtained by applying the transfer rules of Figure 4.9. It is easy
to see that Y[ is a boundary-1-orientation of M, and similarly as in the proof of Lemma 40,
it is in (5_1 and it has to be unique. O

The weighted boundary bi-mobiles associated via the master bijection are characterized
by the following properties (which easily implies that the excess is —1):
e every edge has weight —1, either black-black of weights (—1,0), or black-white of
weights (—2,1),
e every black vertex has degree 3 and weight —2,
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e for i > 0, every white vertex of degree i + 1 carries ¢ legs.

Call T, the family of these weighted boundary bi-mobiles. We obtain from Lemma 47
and Theorem 38 the following bijective statement, see Figure 4.10 for an example:

(a) (b) (c)

FIGURE 4.10. (a) A l-outer triangulation with boundaries endowed with
its canonical bi-orientation (oriented edges have weights (—1,2) if internal
and weights (0, 1) if boundary, unoriented edges have weights (—1,0), the
half-edges of weight —1 being indicated by a cross). (b) The triangulation
superimposed with the corresponding bi-mobile. (¢) The reduced boundary
bi-mobile (with ¢ legs at each white vertex of degree ¢ + 1, and with again
the convention that half-edges of weight —1 are indicated by a cross).

PROPOSITION 49. The family D, is in bijection with the family Tn. For M € D, and
T € Ta the associated weighted boundary bi-mobile, each inner boundary of length i in M
corresponds to a white vertex in T of degree i +1; and each internal vertex of M corresponds
to a white leaf in T.

Then the general case is treated similarly as in Section 4.2.2; we consider, for any a > 1,
the family D(Aa) of triangulations with boundaries with a distinguished boundary face of
degree a taken as the outer face, and define 5(;) as the family of maps from D(Aa) where
an arbitrary half-edge (either on a boundary edge or on an internal edge) is distinguished.

Given D € 5(;), we can blow a new face of degree 1 at the marked half-edge h, this face
itself surrounded by a new face of degree 3 (both faces being considered as internal faces),
as shown in Figure 4.11. The new face f1 of degree 1 is taken as the marked inner face, and
the resulting annular map is called an a-annular triangulation with boundaries, that is, an
a-annular triangulation with boundaries is a map with boundaries where the outer face fj is
a boundary face of degree a, and all internal faces have degree 3 except for one internal face
f1 of degree 1. For a > 1 the family of a-annular triangulations with boundaries is denoted
by gg‘”, and the half-edge opening operation yields

(24) D~ g,
Next we can follow an annular approach (similarly as in Section 4.2.2) to encode a map
M e an) by two mobiles (the approach is illustrated in Figure 4.12). Define an admissible
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v
h =
1 @ ( ) ég E
u U=0

FIGURE 4.11. The operation of opening an half-edge h (on an internal or
boundary edge) in a triangulated dissection, which yields a new face of
degree 1 surrounded by a new face of degree 3 (both cases, whereas the
half-edge is on a loop or not, can be seen as the same operation of opening
the edge into a face of degree 2 inside which we place a loop on h’s side).

O
inside ¢

/ l
+ exchange

marked

faces

(4
(b)

() (d)

(a)

FIGURE 4.12. (a) a 3-annular triangulation with boundaries, where the
internal face of degree 1 (marked inner face) is indicated by a triangle, and
the outermost admissible loop ¢ is drawn bold. (b) The two parts resulting
from cutting along ¢, each endowed with its canonical bi-orientation (the
marked inner face in each case is indicated by a triangle, each directed
internal edge has weights {—2,1} and each undirected edge has weights
{-=1,0}, with a cross on the half-edge of weight —1). (c) The bi-mobiles
associated to the two parts. (d) The reduced boundary bi-mobiles, where the
marked vertex in each case is surrounded (black-white edges have weights
{=2,1}, and black-black edges have weights {—1,0}, with a cross on the
half-edge of weight —1).

loop of M as a loop £ such that f; is inside ¢ and such that any face inside ¢ and incident to
the vertex at /£ is an internal face. Cutting M along the “outermost” admissible loop, yields
two annular maps My, My called the two parts of M: M; is the part “inside” ¢ with the
outer face (delimited by ¢) considered as a boundary face and with f; as the marked inner
face (an internal face); My is the part “outside” ¢, where the face delimited by ¢ is taken as
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the outer face (considered as an internal face) and fy is taken as the marked inner face (a
boundary face), see Figure 4.12(a)-(b) for an example.

Then (as an easy consequence of Lemma 47) one can show that M; can be endowed
with a unique consistent weighted bi-orientation in (/9\,17 called its canonical bi-orientation,
such that:

e every internal vertex has weight 1,

e every internal edge has weight —1, either 1-way of weights (—2,1) or 0-way of
weights (—1,0),

e every internal face of degree 3 has weight —2, and the (unique) internal face of
degree 1 has weight 0,

e every inner boundary of length ¢ has weight ¢ 4+ 1, and the outer boundary has
weight 0.

And My can be endowed (the proof is omitted) with a unique consistent weighted bi-
orientation in O, called its canonical bi-orientation, such that

e every internal vertex has weight 1,

e every internal edge has weight —1, either 1-way of weights (—2,1) or 0-way of
weights (—1,0),

e every internal inner face (of degree 3) has weight —2, and the internal outer face
(of degree 1) has weight 0,

e every non-marked boundary of length i has weight 7 + 1,

e the marked boundary, of length a, has weight a — 1.

The weighted boundary bi-mobiles associated to M; is thus specified by the following
properties (which imply that the excess is —1):

e every internal edge has weight —1, either black-black of weights (—1,0), or black-
white of weights (—2,1),

e every black vertex has degree 3 and weight —2, except for a unique black vertex of
degree 1 and weight 0,

e for i > 0, every white vertex of degree i + 1 carries i legs.

And the boundary weighted bi-mobile associated with My is specified by the following
properties (which imply that the excess is 1):

e every internal edge has weight —1, either black-black of weights (—1,0), or black-
white of weights (—2,1),

e cvery black vertex has degree 3 and weight —2,

e there is a marked white vertex of degree a — 1 that additionally carries a legs,

e for i > 0, every non-marked white vertex of degree i + 1 carries 7 legs.

We can now sketch how to prove Theorem 3 by counting the encoding mobiles (via
generating functions), proceeding similarly as in Section 4.2.3, with slightly more involved
calculations. Define a planted bi-mobile of triangulated type as one of the two connected
components P € {T7,T>} obtained from some T' € T, by cutting an edge e in its middle;
the half-edge h of e belonging to P is called the root half-edge of P, and the weight of h
in T is called the root-weight of P. For j € {—2,—1,0,1}, denote by S; = S;(t; o, x1,...)
the generating function of planted bi-mobiles of triangulated type and root-weight j, with ¢
conjugate to the number of buds and x; conjugate to the number of white vertices of degree
i+ 1fori>0. And let S :=t+ S_;. A decomposition at the root easily implies that
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{S_2,5_1, 50,51} are specified by the following equation-system:

S, = &,
S = 288,
(25) So = 288+ 82,

Sl = ZiZO ZT; (2;)5,21..

The second line (and S = ¢ + S_1) gives S = t/(1 — 25y), so that the 3rd line gives
So(1 — Sp)(1 —28p) = 2tS;. If we now define A = 1 — 25, we have Sy = (1 — A)/2 and
1—Sp = (1+A)/2, so that A(1— A?) = 8tS;. Hence A = 8tS;+ A3, hence X := 1/A satisfies
X2 =14 8tS;X3. Since S = tX, S satisfies 5% = 1% + 85,53, hence S = t(1 — 85,5)71/2,
i.e., S satisfies the equation:

(26) S =1t¢(S), where ¢(y) = (1 — 829@- <2zl> y2i+1>_1/2.

i>0

S(a

Denote by G(A) = é(A“) (zo,x1,...) the generating function of maps from an) with a
distinguished corner in the outer face, where zg is conjugate to the number of internal
vertices and for ¢ > 1, x; is conjugate to the number of inner boundaries of length 7. Then

S(a) _ (20 =2 a—1 ) _(2a—=2\ coa1
(27) G, —(a_l)S_g le=1 St:l_(a—l S le=1-

where the two factors (separated by -) account for the contributions given by My and My,
respectively.

Define now n,(m;ni, na,...,ny) as the number of triangulations with boundaries, with
a marked boundary of length a having a distinguished corner, with m internal vertices, n;
non-marked boundaries of length n; for 1 < i < h, and no non-marked boundary of length
larger than h. The total boundary length is b := a+ ), in;, the number of boundaries is r =
14", ni, and the associated number of edges is (by the Euler relation) e = 2b+3r+3m —6,
which is 2b 4+ 3k with k :=r 4+ m — 2. Then (24) yields

= 2a —2
2enq(m;ny,na, ..., np) = [zg'e]" - 'xzh}G(Aa) = [agtalt - xp] ( a1 )52“1|t_1.

And a similar argument as in Section 4.2.2 (using S = S/t) ensures that for k > 1,
gt -] 8H iy = [P G g g 5t

Hence, by the Lagrange inversion formula (used in the transition from the 1st to the 2nd
line), and using the notations p := 2a—1+m+ 2?21(22’ +n; =2b+k, s=m+3 5,0 =
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k+1and B = 82?:0551'(2;):

[x()"m’fl...xzh]s%_l\t:l = [tpx{)”x;“...xzh]SQ“_l
_ 2a — 1[yp 2a+1I6nl,7111 ) nh <1 _82 ( ) 2z+1) —p/2
p
h .
20— 1 2:\ \ —P/2
_ mam ) (185 g )
D [z0' T} xh]( ;$z<i>
2a — 1

= , [zt [uf](1 — Bu)~P/?

= [zmayt . ]BS - [uf](1 — u) P2

IO . (GAE =

i=1

h N
2a -1 | 1 20\ (p+2s—2)!
- 4[Hm'< > T

=1

so that we obtain, using e = p + 2s — 2,

h N M
_  (2a—-1)! 4 1 /20\"| (e=2)!
’I’}a(m7n17n27...,nh)—m4 Hnill i 72m|p” .

i=1

Using 86:)1,)2' = éa(%) and p = 2b + k, this rewrites as

h N\ M
. B CatL N CCAN ) IR EAT
na(m7n17n27"'7nh) =4 m! (2b+k)|]a a Zl_A[nZl i ’

=1

Multiplying this last expression by H?Zl n;!i™ (to account for numbering the inner boundary
faces and marking a corner in each of these faces) finally gives (6).

4.4. Solution of the dimer model on quadrangulations and triangulations

A dimer-configuration on a map M is a subset X of the non-loop edges of M such that
every vertex of M is incident to at most one edge in X. The edges of X are called dimers,
and the vertices not incident to a dimer are called free. The partition function of the dimer
model on a class C of rooted maps? is the generating function of maps in C endowed with a
dimer configuration, counted according to the number of dimers and free vertices; and solving
the dimer model on C means deriving an explicit expression for the partition function. The
partition function of the dimer model is well-known for rooted 4-valent maps [86, 25] (and
more generally p-valent maps).

We observe that counting rooted maps with dimer configurations is a special case of
counting rooted maps with boundaries. More precisely, upon blowing each dimer into a
boundary face of degree 2, a rooted map with a dimer-configuration can be seen as a rooted
map with boundaries, such that all boundaries have length 2, and the root-corner is in an
internal face. Based on this observation we easily obtain from Theorem 4 that, for all m,r > 0

2Recall that rooted means: with a distinguished corner cg called the root-corner. The root-vertex vg is
the vertex incident to cp, and the root-edge is the edge after cp in clockwise order around vg.
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with m + 2r > 3, the number g, , of dimer-configurations on rooted quadrangulations with
r dimers and m + 2r vertices is

32rtm=2(5r 4 2m — 5)!

rlm!(4r + m — 2)!
Similarly, Theorem 3 implies that, for all m,r > 0 with m + 2r > 3, the number ¢, , of
dimer-configurations on rooted triangulations with r dimers and m + 2r vertices is

22m+3r—33r+1(7r +3m — 8)”
rim!(5r +m — 2)!!

(28) Qm,r = 4(m+2r — 2)

(29) tm = (m+2r —2)

We now aim at getting an explicit expression for the partition function, that is, the
generating function of the coefficients g, , or ¢,, . It should be possible to lift the expressions
in (28) and (29) to generating function expressions, however we find it easier to obtain
directly an exact expression from the bijections of Proposition 43 (for quadrangulations)
and Proposition 49 (for triangulations), without a possibly technical lift from the coefficient
expressions. Here this works by considering generating functions for the model with a slight
restriction at the root.

For quadrangulations, we consider the generating function Q(z,w) of rooted quadran-
gulations endowed with a dimer-configuration, with the constraint that both extremities of
the root-edge are free, where z is conjugate to the number of free vertices minus 2, and w
is conjugate to the number of dimers. These objects are clearly in bijection (by opening the
root-edge and every dimer into a boundary face of degree 2) with the set Q of rooted quad-
rangulation with boundaries all of length 2, such that the root-corner is in a boundary face.
So Q(x,w) is the generating function of maps in Q, where z is conjugate to the number of
internal vertices and w is conjugate to the number of inner boundaries. Note that Q can be
seen as a subset of D, except that we are marking a corner in the outer face. Thus, applying
the bijection of Proposition 43, we can interpret Q(z,w) in terms of the set 7;; of mobiles
from 7T, such that every boundary vertex has 2 legs. More precisely, upon remembering that
mobiles in 7, have excess -2, it is not hard to see that Q(z,w) = Q1 — Q2, where Q1 (resp.
Q2) is the generating function of mobiles from 7 with a marked bud (resp. with a marked
leg or half-edge at a white vertex) with x counting white leaves, and w counting boundary
vertices. From the series expressions obtained in Section 4.2.3 we get Q1 = Ry = R — 1 and
Q2 = * R_1 + 6w R_12%, under the specialization {t = 1,29 = x,21 = w,x; = 0 Vi > 2}.
Hence

(30) Qz,w)=R—-1—-2R*—6wR" where R=1+3zR*+ 9w R’.

Note that @(z,w) = Q(z, 2%w) is the generating function for the same objects, with z
conjugate to the number of vertices minus 2 (which by the Euler relation is also the number
of faces) and w conjugate to the number of dimers. Now, if we are interested in the phase
transition of this model, we need to determine how the asymptotic behavior of the coefficients
cn = [2")Q(z, w) (for n — 0o) depends on the parameter w. This amounts to studying [51]
the dominant singularities of @(z,w) considered as a function of z. (A companion maple
worksheet can be found on the webpage of the author.) Denote by o(w) the dominant
singularity of @(z, w), and let Z = o(w) — z. For all w > 0, the singularity type of @(z, w)
is Z3/2 (as for maps without dimers), and no phase-transition occurs. However we find a
singular value of w at wy = —3/125, where o(wg) = 4/45 and the singularity of Q(z,wq)
is of type Z4/3 (as a comparison, it is shown in [25, Sec.6.2] that for the dimer model on
rooted 4-valent maps endowed the critical value of the dimer-weight is wg = —1/10 and the
singularity type is the same: Z%/ ).
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For triangulations we consider the generating function T'(z,w) of rooted triangulations
endowed with a dimer-configuration, with the constraint that the root-vertex is free, where
x is conjugate to the number of free vertices minus 1, and w is conjugate to the number
of dimers. These objects are in bijection (up to opening the dimers into boundaries and
opening the root half-edge as in Figure 4.11) with the set T of triangulations with boundaries,
with one boundary of degree 1 taken as the outer face and all the other boundaries (inner
boundaries) of length 2, and such that there are at least two inner faces. Let 7 be the unique
triangulation with one boundary face of length 1 (the outer face) and one inner face. By the
preceding, T'(z,w) + x is the generating function of maps in 7/ = T U {r}. The bijection
of Proposition 49 applies to the set 7’ and allows us to express T(w, ) in terms of the set
7. of mobiles from T, such that every boundary vertex has 2 legs. More precisely, upon
remembering that mobiles in 7, have excess -1, this bijection gives T(x,w) + x = Ty — T4,
where 77 (resp. 7T3) is the generating function of mobiles from 7, with a marked bud
(resp. a marked leg or half-edge incident to a white vertex) with x counting white leaves
and w counting boundary vertices. From the series expressions obtained in Section 4.3,
we get Ty = Sop = (S —1)/(29) and Ty, = x S_5 + 10w S_53, under the specialization
{t=1,2¢0 = 2,20 = w,x; =0 Vi ¢ {0,2}}. Hence
(31) T(z,w) = % —z—x5%—-10wS® where S =1+ 825% 448w S".

Again we note that f(z,w) := T(z, z%w) is the generating function for the same objects,
with z conjugate to the number of vertices minus 1 (which by the Euler relation is also one
plus half the number of faces) and w conjugate to the number of dimers. We now discuss the
phase transition. We use the notations o(w) for the dominant singularity of 7'(z,w), and
Z = o(w)—z. We find that for all w > 0, the singularity of T(z, w) is of type Z3/2, so that no
phase-transition occurs. However, we find a singular value wy = —8v/105/5145 ~ —0.0159,

for which o(wg) = 5v/105/1008 ~ 0.0508 and T'(z, wp) has singularity type Z4/3.






CHAPTER 5

Extensions, perspectives, and other results

5.1. Extension of Chapter 3 to higher girth

5.1.1. Bijection for 2b-angulations of girth 2b. Call a weighted bi-orientation non-
negative if the weight of every half-edge is non-negative, i.e., every outgoing half-edge has
weight 0. For M a map, with V' the vertex-set and E the edge-set, and for a : V' — N and
B : E — N, define an «/S-orientation of M as a non-negative bi-orientation of M such that
every vertex v € V has weight a(v) and every edge e € E has weight S(e). For V/ C V and
E' C E define a(V') := 37 v a(v) and B(E') := Y . B(e). Let M’ be the map obtained
from M after replacing every edge e by a bunch of 3(e) parallel edges, called the edge-group
of M. Using the transfer rules shown in Figure 5.1, every «/S-orientation of M is equivalent
to an a-orientation of M’ with no ccw cycle inside an edge-group. This observation easily
yields the following extension of Lemmas 8 and 9 to weighted bi-orientations:

H@C@D

F1GURE 5.1. Rule to transfer a non-negative weighted bi-orientation to an
orientation, so that the total weight at a vertex is mapped to the indegree
at the same vertex.

LEMMA 50. For M = (V,E) a map, and for o : V — N and f: E — N, M admits an
a/ B-orientation iff:

[ ] Oé(V) = ﬁ(E)}
e VS CV, a(S) > B(Eg).

In addition, for vg € V, either all a/3-orientations are non-accessible from vy or all afB-
orientations are accessible from vo; and the latter case occurs iff VS C V\{wo}, a(S) >
B(Es).

If M is a plane map and admits an o/ S-orientation, then M admits a unique minimal
a/ B-orientation.

Lemma 50 makes it possible to extend Lemma 21 from simple quadrangulations to 2b-
angulations of girth 2b, for any b > 2. The crucial point is the Euler relation (2), which
guarantees that, for M = (V, E) a (non-tree) bipartite map of girth at least 2b, we have
(b — D|E| < b|V] — 2b, with equality iff M is a 2b-angulation. For M = (V,E) a 2b-
angulation, define a b/(b — 1)-orientation of M as an «/B-orientation where a(v) = b for
every inner vertex v, and 3(e) = b—1 for every inner edge e, a(v) = 1 for every outer vertex

75
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v, and B(e) = 1 for every outer edge e. Then Lemma 50 and the remark above on the Euler
relation easily give the following extension ! of Lemma 21:

FIGURE 5.2. Left: a 2b-angulation of girth 2b (b = 3 in the example) en-
dowed with its unique b/(b — 1)-orientation in O_g,. Right: the associated
weighted bi-mobile.

LEMMA 51. For b > 2 and M a plane 2b-angulation, M admits a b/(b — 1)-orientation
iff M has girth 2b. In the latter case, b/ (b — 1)-orientations are accessible from every outer
vertex of M, and M admits a unique b/(b — 1)-orientation in O_qgp.

Using the master bijection this implies that plane 2b-angulations of girth 2b with n
inner faces are in bijection with weighted bi-mobiles with n black vertices all of degree 2b
and weight 0, and where every white vertex has weight b and every edge has weight b — 1,
see Figure 5.2 for an example.

5.1.2. Extension to bipartite plane maps of outer degree 20 and girth 2b. We
can now extend the result to (non-necessarily 2b-angulated) bipartite plane maps of outer
degree 2b and girth 2b. For b > 2 and M a bipartite plane map of outer degree 2b, define a
b/ (b — 1)-orientation of M as a weigted bi-orientation of M such that:

e every inner (resp. outer) vertex of M has weight b (resp. weight 1),
e every inner (resp. outer) edge of M has weight b — 1 (resp. weight 1),
e every inner face of degree 2k has weight —k + b (hence k > b).
Then, building on Lemma 51 similarly as Lemma 25 builds on Lemma 21 in Chapter 3,
we obtain the following statement that extends both Lemma 25 and Lemma 51:

LEMMA 52. For b > 2 and M a bipartite plane map of outer degree 2b, M admits a
b/(b — 1)-orientation iff M has girth 2b. In the latter case, M admits a unique b/(b— 1)-
orientation in O_qp.

Now if we define a 2b-branching mobile as a weighted bi-mobile where:
e cvery white vertex has degree b,
e every edge has weight b — 1,
e every black vertex has even degree, and every black vertex of degree 2k has weight
—k+b,

then the master bijection gives:

When carrying out the existence proof using Lemma 50, it is more convenient to temporarily modify
the definition to a(v) = b — 1 at outer vertices and B(e) = b — 1 at outer edges.
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PROPOSITION 53. For b > 2, plane bipartite maps of outer degree 2b and girth 2b are
in bijection with 2b-branching mobiles, such that every inner face of degree 2k of the map
corresponds to a black vertex of degree 2k in the associated weighted bi-mobile.

Regarding the shape of a 2b-branching mobile T', note that the vertex weight condition
implies that the weights on half-edges are not larger than b, hence every edge either has
weights (4,7) with 4,7 > 0 and i + j = b — 1, or has weights (—1,b). An edge e of weights
(—1,b) is called a pending edge (the white extremity of e has its weight saturated to b by
e, hence is a leaf); note that the weight condition at black vertices ensures that any black
vertex of degree 2k is incident to k — b pending edges (the case with no pending edge thus
corresponds to 2b-angulations).

Define a planted 2b-branching mobile as one of the two connected components P €
{T1, T2} after cutting an edge of a 2b-branching mobile in its middle. The half-edge h € e
that belongs to P is called the root half-edge of P, and its weight is called the root-weight
of P. For i € [—1..b], let T; = T;(¢, xp, Tp11,.-.) be the generating function of planted 2b-
branching mobiles of root-weight b — 1 — 4, where t is conjugate to the number of buds, and
x, is conjugate to the number of black vertices of degree 2r. Then a decomposition at the
root easily implies that {T_1,...,T,} are specified by the equation-system (see Figure 5.3
for the case of i € [0..b — 2]):

FIGURE 5.3. For ¢ € [0..b — 2], decomposition of a mobile counted by T;
into two mobiles counted respectively by T} and T;_;, where j is the weight
of the half-edge incident to the root-vertex vy and on the edge leading to
the leftmost child of vg.

T, = 1,
i+1

T, = ZTjTi,j for i € [0..b — 2],
j=1

(32) T 2i—1 i+b—1

_ = i t T P

b—1 ;Cﬁ il (t +To)
< 2 —1 ;

D SR B [(FE SR
Sp1 N TP

To our knowledge, these series have nice factorized coefficients only for b = 2. For b > 2
and a fixed integer N, the system is algebraic whenever the variables x; are set to 0 for ¢
larger than IV, and the coefficients can be extracted iteratively from the system. Note also
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that for any b > 2 one has Ty = T and one can first extract the coefficients of Ty, ..., Ty—1,
and then the coefficients of T} from the coefficients of Ty. For instance, for b = 3 the system
reads:

Ty = 1T,
v = ThTy+Ts,
20 —1 .
T, = > t+Tp) " +?
: i>3m(i3>(+ e
— 2 —1 ,
_ E . i+3
T3 = ‘>4xl(i_4>(t+T0) .

5.1.3. Extension to annular bipartite maps of non-separating girth at least
2b. Similarly, the results of Chapter 3 on annular maps can be extended to higher girth. For
b>2ands,p>1,let Céz?z)s be the family of bipartite annular maps of non-separating girth
at least 2b, separating girth 2s, outer face degree 2s, and marked inner face degree 2¢q. And
for M a bipartite annular map with outer face degree 2s and marked inner face degree 2q,
define a b/(b — 1)-orientation of M as a weighted bi-orientation such that:

e every inner (resp. outer) vertex has weight b (resp. 1),

e every inner (resp. outer) edge has weight b — 1 (resp. 1),

e every non-marked inner face of degree 2k has weight —k + b (hence k > b), and the
marked inner face, of degree 2¢, has weight —q + s.

Again, Lemma 29 can be generalized to any b > 2 (with similar proof arguments, in
particular one starts with the case where all non-marked inner faces have degree 2b, and the
marked inner face has degree 2s), and one obtains

LEMMA 54. Forb > 2 and s,q > 1, a bipartite annular map M with outer face degree 2s
and marked inner face degree 2q admits a b/(b — 1)-orientation iff M € Céiqgs, In the latter
case, M admits a unique b/(b — 1)-orientation in O_qs.

The master bijection then gives the following result, which extends both Proposition 32
(case b = 2) and Proposition 53 (case s = b):

PROPOSITION 55. Forb > 2 and s,q > 1, the family Céigs is in bijection with the family
of weighted bi-mobiles with white vertices of weight b, edges of weight b — 1, black vertices of
even degree, one of which is marked, where every non-marked black vertex of degree 2k has
weight —k 4+ b, and the marked black vertex has degree 2q and weight —q + s.

Forb>2andr,s > 1, let Agip 2"?) be the family of rooted annular maps (rooted meaning
with a marked corner in the outer face and in the marked inner face) of outer face degree
2p, marked inner face degree 2¢, non-separating girth at least 2b and separating girth at

least 2s; define similarly the family Jﬂzif)fgg, with the difference that the separating girth

is required to be exactly 2s. And let /Téipéi'n = /T(;)péiq) (p, Tpy1,-..) (resp. Agpfgs) =

Egipfig (b, Tp41, - ..)) be the corresponding generating functions, with x; conjugate to the

number of non-marked inner faces of degree 2i, for i > b; and let ééi?z)s = fféi‘féiq). Then,
similarly as in (14), we have
7(2p,2q) _’2(12)172) '62(12;q2)
(33) A g = —Zmy
C.
2b,2s
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and moreover it follows from Proposition 55 (and decomposing the associated mobiles at the
marked black vertex) that

= 2
nggs =12s (q qs> (t+To) " |1=1.

Hence we have

= 2 2
e AT

where we note that the power of (¢ + Ty) does not depend on s. Moreover, as we have

seen in the proof of Proposition 33, the coefficient v(p,q,d) = > .~ ;25 (piS) (quS) is equal
to % (2;:(11) (2;:;). Hence we obtain the following generalization of Proposition 33:

PROPOSITION 56. For b > 2 and s,p,q > 1, the generating function ffgigi'n s given by

o dpq (2p— 1\ [2q—1
34 A(QP’QQ) _ rd t—+ TH)Pta|,_ ,
(34) 2b,2s pta\p—s g—s (t+To)" ™ i=1

where Ty is specified by the system (32).

The following consequence of Proposition 56 is in agreement with the strong belief that
for any ‘reasonable’ family F = |J,, 7, of planar maps, indexed by a size-parameter n
(such as the number of edges or the number of faces), there holds the universal asymptotic
behaviour |F,| ~ ¢-y™-n~%/2, for positive constants ¢,y depending on the family considered
(similarly as the universal law |F,| ~ c- ™ -n~%/2 for tree-families).

COROLLARY 57. For b > 2, and for any finite set A C {2b,2b+2,2b+4,...}, let ap a(n)
be the number of rooted bipartite maps of girth at least 2b and whose faces have degree in /.
Then, there exist computable positive constants ¢, (depending on A) such that

ap.a(n) ~ cy"n 52,

Proor. (Sketch.) We specialize the series Ty, ...,Tp—1,T, by setting xz; =t for 2i € A
and z; = 0 otherwise. Then the system (32) restricted to Tp,...,T,—1 is easily checked to
satisfy the hypotheses of the Drmota-Lalley-Wood theorem [51, VIIL.6], so that these series
have square-root singularities at their unique dominant singularity p. Therefore the same
applies to Eg{giw for any p,q with p > b and ¢ > b, implying [t"]/_lgf’z’iq) ~ kRT3 2m,

with v = p~1 and some computable constant £ > 0. Now observe that %[t”]ggipéiq) counts

rooted bipartite maps of girth at least 2b, with a root-face of degree 2p, a marked inner face
of degree 2¢, and n additional inner faces having degrees in A. Therefore

1 -
(n+1aya(n+2) = Z qu[t”}Aﬁ’féiq),
P,qEA

which gives the claimed asymptotic form of a, A (n). O

5.1.4. Extension to (non-necessarily bipartite) maps. It turns out that one can
easily build on the results obtained for bipartite maps and extend these results to arbitrary
maps, with control on the girth and face-degrees. We directly give the results at the most
general level, i.e., for annular maps. For d > 2 and s > 1, let M be an annular map of outer
face degree s. Define a d/(d — 2)-orientation of M as a weighted bi-orientation such that:

e every inner (resp. outer) vertex has weight d (resp. 1),
e every inner (resp. outer) edge has weight d — 2 (resp. 1),
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e every non-marked inner face of degree k has weight —k 4+ d (hence k > d), and the
marked inner face, denote by ¢ its degree, has weight —¢g + s (hence g > s).

Note that, since the weights on half-edges are at most d (due to the vertex weight condition),
the inner edges are of 3 possible types: either of weights (i, j) with 7,7 > 0and i+j = d—2,
or of weights (—1,d — 1), or of weights (—2,d). We have:

C1 dD—l dC C—1 dDO d—lC Oz jD" i’c

i,5,4',7" >0
i+j=d1

II 11 II i'+j5'=d-1
j'+i'=d

= i+ =d-2

: 2 dC C—1 d—lO Oz _<-/ )

2

FIGURE 5.4. Rules to transfer the weights of a d/(d — 1)-orientation of M>
to a d/(d — 2)-orientation of M.

FI1GURE 5.5. Bijection for annular maps. Left: an annular map of separat-
ing girth and outer face degree s, and non-separating girth at least d (s = 4
and d = 3 in the example), endowed with its unique d/(d — 2)-orientation.
Right: the associated weighted mobile.

LEMMA 58. Letd > 2, s > 1, and let M be an annular map of outer degree s. Then M
admits a d/(d — 2)-orientation iff M has separating girth s and non-separating girth at least
d. In that case M admits a unique d/(d — 2)-orientation in O_s.

PROOF. First, one can check that if there is a cycle ¢ that is either a separating cycle
of length smaller than s or a non-separating cycle of length smaller than d then such an
orientation can not exist (by using the Euler relation applied to the map restricted to ¢ and
to the interior of ¢).

Now assume this is not the case, i.e., that M has separating girth s and non-separating
girth at least d. Similarly as in Chapter 4, we consider the map M obtained from M (whose
vertices are considered as round) by inserting a vertex (considered as a square vertex) in
the middle of each edge. Note that M; is a bipartite map of outer degree 2s, separating
girth 2s and non-separating girth at least 2d, hence by Lemma 54 M, admits a unique
d/(d — 1)-orientation in O_ss. Now, as illustrated in Figure 5.4 there are simple transfer
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rules for weights, ensuring that d/(d — 1)-orientations of My are in bijection with d/(d — 2)-
orientations of M, and the bijection preserves the property of being minimal and being
accessible from an outer vertex. Hence M has a unique d/(d — 2)-orientation in O_;. 0

By similar arguments as in Section 5.1.3, it is then possible to obtain an expression
for the generating function Agp ;q)(mch Zg41,- - ) of rooted (non-necessarily bipartite) annular
maps of non-separating girth at least d, separating girth at least s, outer-face degree p and
marked inner face degree ¢, where x; is conjugate to the number of non-marked inner faces
of degree ¢ for ¢ > d. We omit the details and expressions (see [A24]), which are a bit more
involved than the ones for bipartite maps. In turn, these expressions make it possible to
extend Corollary 57 to any finite subset of integers (not necessarily even).

5.1.5. Getting the smaller girth cases. We have deduced Lemma 58 from Lemma 54
by 2-subdividing the edges. It is actually also possible to deduce Lemma 54 from Lemma 58
(supposing we are given Lemma 58 without knowing about Lemma 54). Indeed, for b, s > 1,
and for M a bipartite annular map of outer degree 2s, separating girth 2s and non-separating
girth at least d = 2b, the d/(d — 2)-orientation of M in O_y, has all its inner vertices, inner
edges, and inner faces of even weight. Hence, the associated mobile T has all its black
vertices, white vertices, and edges of even weight, from which it is easy to deduce that all
half-edges in the mobile have even weight (similarly as in Lemma 39 in Chapter 4, we denote
by F the subforest formed by the edges of T" whose two half-edges have odd weights, then the
even weight condition guarantees that all vertices are incident to an even number of edges
from F, hence F has no leaf and has thus to be empty). Hence all inner half-edges of M
have even weight, and dividing all the weights by 2, we obtain a b/(b — 1)-orientation of M
in O_yg, which has to be unique.

The argument works for any d > 2, and in particular it works for d = 2, so that
we can extend the statement of Lemma 54 (and also the associated bijective statement in
Proposition 56) to b = 1. For s = 1, this gives a bijection for unconstrained bipartite plane
maps with an outer face of degree 2 (which are equivalent to bipartite maps with a marked
edge, upon seeing the marked edge as opened into a face of degree 2). It can be checked
(see [A24] for details) that the bijection obtained this way coincides with the one in [81]. In
a second step, we note that we can exploit once more the interplay between Lemma 54 and
Lemma 58. Indeed the transfer rules of Figure 5.4 work for d = 1 as well, hence Lemma 54
extended to b = 1 yields Lemma 58 extended to d = 1. For s = 1, the bijection we obtain can
be checked (see [A24]) to be equivalent to the bijection introduced by Bouttier, Di Francesco,
and Guitter [24] for arbitrary maps with a marked vertex of degree 1, with control on the
vertex degrees (dually, in our setting, for arbitrary maps with an outer loop, with control on
the face degrees).

5.1.6. Extension to hypermaps. A hypermap (see [41] for a survey) is a face-bicolored
map, with dark faces and light faces, where every edge has a light face on one side and a
dark face on the other side (dark faces are sometimes called hyperedges); this generalizes the
concept of map, since a map M can be turned into a hypermap by blowing each edge into a
dark face of degree 2. Encouraged by the fact that the BDG bijection for vertex-pointed bi-
partite maps (reviewed in Section 2.3) extends to (vertex-pointed) hypermaps [26], we have
been able to extend the master bijection to the context of hypermaps, with applications to
counting hypermaps constrained by a certain generalization of the concept of girth.

For H a hypermap, a hyperorientation of H is a bi-orientation of H where every edge
is either 0-way or l-way with a dark face on its right. And a weighted hyperorientation
is a hyperorientation where every edge is assigned a weight in Z, with the constraint that
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0-way edges have non-positive weight, and 1-way edges have positive weight. Again, this
generalizes the concept of bi-orientation and weighted bi-orientation, as shown in Figure 5.7.

The master bijection can then be extended to the setting of hypermaps (in [S1]). For
d < 0 (resp. § > 0) we define Hs as the family of plane maps with a dark (resp. light)
outer face, endowed with a weighted hyperorientation such that, when forgetting weights
and face-colors, the underlying bi-oriented plane map is in Os. And we define Hg as the
family of vertex-pointed hypermaps endowed with a weighted hyperorientation such that the
underlying bi-oriented vertex-pointed map is in Ogy. A hypermobile is defined as a plane tree
with 3 types of vertices: light square, dark square, round, with possibly buds attached at
corners of light square vertices, and with the constraint that each (non-bud) edge has exactly
one dark square extremity, i.e., is either connecting a dark square vertex to a round vertex,
or connecting a dark square vertex to a light square vertex. A hypermobile is weighted
by assigning a weight to each edge, positive if the edge is incident to a round vertex, and
non-positive if the edge is incident to a light square vertex. Again this extends the concept
of (weighted) bi-mobile, since a bi-mobile can be turned into a hypermobile by considering
white vertices as round vertices, black vertices as light square vertices, and by inserting a
dark square vertex of degree 2 in the middle of each edge.

Then the master bijection is performed in the same way as for the underlying bi-oriented
map, with the only adaptation that, instead of calling ‘black vertices’ the vertices inserted
inside faces, we call these vertices respectively ‘dark square vertices’ (resp. ‘light square
vertices’) if inserted inside a dark (resp. light) face; the local rules at each edge (1-way or 0-
way, with the obvious weight-transfer rule) are shown in Figure 5.6. Note also that, as shown
in Figure 5.7, when all inner dark faces have degree 2, the local rules become equivalent (up
to the identification of bi-mobiles with hypermobiles where dark square vertices have degree
2) to the local rules for bi-oriented maps (Figure 2.11).

1-way edge O-way edge
w w
. C/«f. w
In the hypermobile o} o o
o

FI1GURE 5.6. Local rule performed at each edge when applying the master
bijection for hyperorientations.

Regarding how the notion of girth can be extended to hypermaps (there are several
possibilities), we have found a parameter (depending on the embedding in the plane) that
can be well handled by our bijective method: the ingirth of a plane hypermap H is defined as
the length of a shortest cycle ¢ such that all faces inside ¢ and sharing at least one edge with ¢
are light. This notion provides an extension of the girth (when all inner dark faces have degree
2 the ingirth coincides with the girth), and we again have the nice property that the ingirth
can be captured by the existence and uniqueness of certain weighted hyperorientations.
Precisely, for H a plane hypermap with an outer face of degree d and ingirth d, it can be
shown that H admits a unique hyperorientation in H_,4 such that

e every inner (resp. outer) vertex has weight d,
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2-way edge 1-way edge 0-way edge
In the map Oe— %0 O— <0 O—»e—20O
In the hypermap ‘ - -
Pus]
In the hypermobile| o=——&——0 O—I o) o o)
(ad ad

F1GURE 5.7. Under the identification of edges in maps with dark faces of
degree 2 in hypermaps, the local rules of Figure 5.6 for hyperorientions yield
the local rules of Figure 2.11 for bi-orientations.

e every dark face (hyperedge) of degree k has weight kd — k — d,
e every light inner face of degree k has weight —k + d.

Note that it extends the result for maps of outer degree d and girth d, since any dark inner
face of degree 2 has weight d —2 (which is consistent with the map context where every inner
edge has weight d — 2).

FI1GURE 5.8. Left: a plane hypermap with a dark outer face of degree d and
ingirth d (d = 4 in the example), endowed with its canonical hyperorienta-
tion. Right: the associated weighted hypermobile.

One can then use the master bijection for hyperorientations, which yields a bijection
(for any d > 1) between these plane hypermaps and a family of weighted hypermobiles, see
Figure 5.8 for an example. For d = 1 we recover in a dual setting the bijection in [21] for
bipartite map with a marked black vertex of degree 1, and for d > 2 our bijection specialized
to constellations (all dark faces have degree d, all light faces have degree divisible by d)
coincides with the one introduced in [20].

Again the results extend to annular hypermaps (and even more, they extend to a general
setting with so-called charges at vertices, edges, and faces, where the charge-parameters
add constraints on the minimal length of a cycle enclosing them, see [S1]). And again
the hypermobile generating functions can be specified by a system of equations (which is
algebraic when forbidding face-degrees larger than a fixed threshold N), and the generating
function of annular hypermaps with fixed non-separating and separating ingirth lower bounds
can be determined, see [S1] for details and expressions.
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5.2. Perspectives on Chapter 3

5.2.1. Irreducible maps. It should be possible to extend our results on bipartite maps
(Sections 5.1.2 and 5.1.3) and general maps (Section 5.1.4) under a slightly extended notion
of girth that is also considered in [31]. Let us just discuss here the extension of Lemma 52
and Proposition 53 (for bipartite maps). For b > 1 (the extended notion of girth becomes a
non-trivial extension only for b > 3), a bipartite map is said to be 2b-irreducible iff all cycles
have length at least 2b and the only cycles of length 2b are facial (i.e., are contours of faces of
degree 2b). The faces of degree 2b are called small faces. Note that we recover the classical
notion of girth at least 2b + 2 when there are no small faces.

For b > 3 and M a bipartite plane map of outer degree 2b and with all inner faces of
degree at least 2b — 2, define a b/(b — 1)-orientation of M as a weighted bi-orientation of M
such that:

e every inner (resp. outer) vertex has weight b (resp. weight 1),

e every outer edge has weight 1, and every inner edge has weight b — 1 or b — 2; those
of weight b — 2 are 1-way of weights (0,b — 2), these inner edges are called small
edges,

e for k > b, every inner face of degree 2k has weight —k + b, and every small face has
weight 0,

e every small edge has a small face on its right, and every small face f has clockwise-
degree 1, and the unique outgoing half-edge with f on its right belongs to a small
edge (thus there is a 1-to-1 correspondence between small edges and small faces).

Note that this extends the definition of b/(b — 1)-orientations given in Section 5.1.2 (which
corresponds to the case without small faces). As an extension of Lemma 52 it should be
possible to prove:

LEMMA 59. Forb > 3, and M a bipartite plane map of outer degree 2b and with all inner
faces of degree at least 2b—2, M admits a b/(b—1)-orientation iff M is (2b— 2)-irreducible,
in which case M admits a unique b/(b — 1)-orientation in O_gp.

Now define an eztended 2b-branching mobile as a weighted bi-mobile where every black
vertex has even degree at least 2b — 2 (black vertices of degree 2b — 2 are called small) such
that:

e every white vertex has weight b,

e every edge has weight b — 1 or b — 2, edges of weight b — 2 have half-edge weights
(0,b — 2), these are called small edges,

e for k > b, every black vertex of degree 2k has weight —k + b, and every small black
vertex has weight 0,

e the black extremity of every small edge is small, and every small black vertex has
2b — 3 buds and the unique incident edge is small (thus there is a 1-to-1 correspon-
dence between small edges and small black vertices).

The master bijection would then give the following extension of Proposition 53:

PROPOSITION 60. For b > 3, plane bipartite maps that are (b — 1)-irreducible and have
outer degree 2b are in bijection with extended 2b-branching mobiles. For k > b — 1, every
inner face of degree 2k in the map corresponds to a black vertex of degree 2k in the associated
weighted bi-mobile.

For b = 3 and when all inner faces are small (quadrangular), we should recover the
bijection in [A6] (with unrooted binary trees) for irreducible dissections of the hexagon.
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FIGURE 5.9. Left: a plane bipartite map of outer degree 2b = 6 and 4-
irreducible, endowed with its unique b/(b — 1)-orientation in O_g, (since
all inner faces have degree in {2b — 2,2b} there is no half-edge of negative
weight). Right: the associated weighted bi-mobile.

Figure 5.9 shows an example that mixes the bijection from [A6] with the bijection for
hexangulations of girth 6 (given in Section 5.1.1).

Similarly it should be possible to extend Proposition 53 (for annular bipartite maps)
allowing for small faces of degree 2b — 2 and where the only allowed non-separating cycle of
length smaller than 2b have length 2b — 2 and are contours of small faces. And it should
be possible to extend the results of Section 5.1.4 (for general annular maps), this time
allowing for small faces of degree d — 1. The generating function expressions obtained by our
method should match the expressions obtained recently in [31] using a different combinatorial
strategy relying on so-called slices (certain portions of maps). We expect a bijective link
between our mobiles and slices, which would establish a bridge between the two methods.

5.2.2. Mobile simplification when dropping the control on face-degrees. As a
special case of the results of Section 5.1.4, for d > 3, plane maps of outer degree d and girth
d are in bijection with weighted bi-mobiles where every white vertex has weight d, every
edge has weight d — 2, and every face of degree k has weight —k + d. The correspondence
is quite strong, since it keeps track of the face-degree distribution of the map. We can use
this correspondence and mobile enumeration to extract the number a%d) of plane maps of
outer degree d, girth d, with n edges, and a distinguished (root) corner in the outer face.

Surprisingly, for d = 3, we observe that the coefficient is very simple:

3. 271 (2p)!
3) 2= \&r
(35) A G T

The right-hand side is also well-known to be the number of rooted Eulerian triangulations
with 2n 4+ 2 faces. And there is a combinatorial proof of the latter, based on a bijective
correspondence between plane Eulerian triangulations with 2n+2 faces, and unrooted binary
trees with n nodes (vertices of degree 3), n+2 leaves, and n—1 inner edges (edges connecting
two nodes) each of which is directed.

In [C21] we give a bijection between outer-triangular simple plane maps with n inner
edges and plane Eulerian triangulations with 2n + 2 faces. The composition of this bijection
with the above mentioned correspondence gives us a bijective proof of (35), and even more,
the bijection keeps track of the number of inner faces of the outer-triangular simple plane
map (it corresponds to the number of nodes with no incoming inner edge in the oriented
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binary tree). We lose here control on the face-degree distribution, which seems to be the
price to pay in order to have a simplified encoding tree-structure 2.

We expect to have a similar procedure for any d > 3 using Eulerian d-angulations as
intermediate structures, which should then yield simplified generating function expressions
when keeping track only of the number of edges and the number of faces. We also plan to

investigate if similar simplifications occur in the bipartite case.

5.3. Other results on maps with boundaries

5.3.1. Loopless triangulations with boundaries. We may apply the strategy of
Section 4.2 to loopless triangulations with boundaries. We would thus consider, for each
a > 2, the family D of loopless triangulations with boundaries, with a distinguished
boundary face fy of degree a taken as the outer face; and consider the associated family

5(a) of maps from D@ with a distinguished edge. For M € f(a), we can open the marked
edge into an internal face f; of degree 2 (taken as the marked inner face). Then there is an
outermost 2-cycle ¢ among the 2-cycles that enclose f; while not touched (at a vertex or an
edge) by a boundary face in the enclosed area. Cutting along ¢ yields two maps My, M1,
with M; the part containing f; for i € {0,1}, and where in M; the face delimited by ¢ is
taken as the outer face, while f; is taken as the marked inner face.

Then, similarly as in Section 4.2, one can show that My (resp. M;) can be endowed
with a unique weighted bi-orientation in (/9\,2 (resp. @2) such that every internal vertex has
weight 2, every internal edge has weight 0, every internal face (of degree 3) has weight —1,
every non-marked boundary of degree k has weight k + 2, and in M, the marked boundary
(of length a) has weight a — 2. Note that the condition at internal faces implies that internal
edges are either 0-way of weights (0,0), or 1-way of weights (—1,1).

The corresponding weighted bi-mobiles can be enumerated via generating functions.
Defining R = R(t; xg, x2, 3,...) by

2141 ,
R=1+42z0R>+2 § zi( , >R2”3,
; i
>2
we find that the generating functions for maps from 5((1) with a marked corner in the
outer face (and where xq is conjugate to the number of internal vertices and z; is conjugate

to the number of inner boundaries of length ¢) should be equal to (2aa__13) (R?)%2 x R? =
(2@—3)R2a72.

a—1
However, as already mentioned in Section 4.2 (just after the proof of Lemma 40), a
crucial part is missing, namely the necessity of being loopless to admit the above defined

weighted bi-orientations. Hence, what we are counting is actually a superfamily of f(a); these

maps can have loops but these loops should be quite constrained (it would be interesting
to determine exactly how); for instance any loop ¢ in such a map must be touched (at its
incident vertex) by a boundary face in the area inside ¢. In the special case where there is a
unique boundary face (the outer face), being loopless should thus be sufficient and necessary,

and thus in that case we can exactly compute the generating function for maps in D(a) with

2Having a simpler encoding tree-structure, we have been able to show in [C23] that, for the random
rooted simple map M,, with n edges, the random discrete measure given by the distances from the root of
the n edges, rescaled by (2n)1/4, converges in law to a random measure closely related to ISE, similarly as
for random quadrangulations [38] and random maps [69]. In a work in progress [2], we expect to show the
stronger result that, as a random discrete metric space rescaled by (2n)1/ 4. the random rooted simple map
with n edges converges to the Brownian map.
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a distinguished corner in the outer face (and with xg conjugate to the number of internal
vertices), as

2 —
( aa_ 13) R%72 with R =1+ 220R%,

and from the Lagrange inversion formula we find that the number a, j of loopless triangu-
lations with a single boundary face of degree k 4 2, n internal vertices, and a marked corner
in the boundary face satisfies

(2k + 1)! 2"+ (2k + 3n)!
K2 nl(2k +2n+ 2)U

an k=

recovering in a bijective way the formula originally found by Mullin [73] and mentioned in
Section 1.2.1. The first bijective proof of this formula has been given in [77] (contrary to our
method which produces two mobiles, the construction in [77] encodes the map by a single
tree-structure).

5.3.2. Other results and obstacles for counting maps with boundaries. Ideally,
similarly as in Section 5.1, we would like to extend the results obtained in Chapter 4 in order
to have a bijection in each d > 1 for maps with boundaries, of girth at least d, the bijection
keeping track of the degrees of the internal faces and the degrees of the boundary faces.
However we see at the moment two main obstacles to achieve this goal:

e for M such a map, we can compute a certain (almost-) minimal regular boundary-
a-orientation on a map o (M) derived from M, but then the nice local properties
(Property 26 in Chapter 3, Properties 41 and 48 in Chapter 4) that made it possible
to apply transfer rules in order to get a weighted bi-orientation in O might fail to
hold when some internal faces have degree larger than d + 2,

e even in the favorable case when the internal face degrees are in {d,d + 1,d + 2},
where we obtain from the transfer rules a weighted bi-orientation in O, we have
the problem (as already seen in Chapter 4 after proving Lemma 40, and above in
Section 5.3.1) that, when there is more than one boundary and the girth constraint
is non-trival (it is trivial for d = 1, and for d = 2 in the bipartite case), having girth
at least d does not seem to be necessary to admit such a weighted bi-orientation,
and we are actually counting a superfamily of the one we are interested in.

Given these obstacles, the enumeration of maps with more than one boundary is thus
limited to maps with internal faces of degree at most 3, and to bipartite maps with internal
faces of degree at most 4, which is essentially what we have done respectively in Section 4.3
and Section 4.2 (we did ‘exactly’ instead of ‘at most’, but the two problems are essentially
the same, since for instance allowing for internal faces of degree 2 in the bipartite case just
comes down to opening some of the edges into such faces).

If there is a unique boundary, the enumeration should be limited, in each d > 1, to the
case where the internal faces have degree in {d,d+ 1,d + 2}. For d = 2 (loopless maps) this
would thus slightly extend the result at the end of Section 5.3.1, by allowing for internal
faces that are either triangular or quadrangular. For d > 3, we have already given in [A21]
a bijection when all internal faces have degree d (d-angulations with a boundary), and thus
it should be possible to extend it by allowing for internal faces of degrees in {d,d+1,d+ 2}.

Finally, in the case of one boundary, it should also be possible to deal with the irre-
ducibility condition (as seen in Section 5.2.1), that is, for each d > 3, to have a bijective
encoding of maps with one boundary, that are d-irreducible, and with internal face degrees
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in {d,d+ 1,d+ 2}. In particular we should be able to obtain bijective proofs of the count-
ing formulas (respectively obtained in [87] and [74]) for irreducible triangulations with a
boundary and irreducible quadrangulations with a boundary.

5.4. Distance properties of the master bijection

We now give a reformulation of the master bijection ¥ (from mobiles to oriented maps,
as presented in Section 2.2), which relies on a canonical labelling of the corners at the white
vertices of the mobile. The advantage of this alternative formulation is that it is well-suited
to a control on the distances of the associated (oriented) map. For the sake of conciseness, we
only discuss here the case 6 < 0 (i.e., the mobile has more buds than edges), the other cases
(6 =0 and § > 0) having similar reformulations. In a collaboration with M. Albenque, G.
Collet and O. Bernardi [2] (article in preparation) we give a similar labelled reformulation for
the bijection mentioned in Section 5.2.2 (between oriented binary trees and outer-triangular
simple maps) and exploit it to show the convergence of the random rooted simple maps with
n edges to the Brownian map.

5.4.1. A labelled reformulation of ¥. Let § < 0 and let T" be a mobile of excess
0. Recall from Section 2.2 that in its first formulation, the mapping ¥ proceeds with the
following steps:

(1) a bid (ingoing half-edge) is inserted at each ‘down-corner’ of T' (corner just after
an edge in ccw order around a black vertex),

(2) the buds are matched with the bids according to a ccw-walk around T where
buds are considered as opening parentheses and bids as closing parentheses, and a
directed edge e, called a closure-edge, is created out of each matched pair,

(3) the || unmatched buds are extended into edges reaching to a new vertex v, in-
serted in the outer face.

(a)

FIGURE 5.10. (a) A mobile T of excess 6 = —4 (b) The matching of bids
with buds (following a ccw-walk around 7' with buds as opening parentheses
and bids as closing parentheses). (¢) The map A(T'), superimposed with the
oriented map O = ¥(T') (which is also the dual of the oriented map obtained
from A(T) by erasing the white vertices and edges of T).
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Let A(T) be the (vertex-pointed oriented) map obtained after these steps, and let A\(T")
be the map obtained from A(T') after erasing the white vertices and the edges of T'; recall
that O = ¥(T) is obtained as the dual of A(T"). In A(T'), the || faces incident to v, are
called exterior faces and the other faces are called interior faces. It is easy to check (for
instance performing the matchings bud/bid step by step, from innermost to outermost) that
for every interior face f there is a unique closure-edge ey with f on its left and there is a
unique white corner (corner at a white vertex) incident to f; this corner denoted by c; is
just after the corner at the end-vertex of ey in ccw order around f; the white vertex at cy is
denoted by wy. The parent-face of f is the face on the right of ey.

Let A'(T) be obtained from A(T) by inserting in each exterior face f a white vertex
denoted by wy. Then it is easy to see that the edges of O = U(T) are recovered from A'(T)
as follows (see Figure 5.10): each closure-edge e, with f (resp. f’) the face on the left (resp.
right) of e, yields an inner edge e* of O, which goes from wy to wy. And moreover the
|6] white vertices in the respective exterior faces have to be connected together by an outer
|0]-gon, which forms the outer face of O.

Define now the depth-labelling of A(T) as the unique labelling of the faces of A(T') by
labels in N such that the |4| outer faces have label 0, and the label of every inner face is
one more than the label of its parent-face, see Figure 5.11(a) for an example. The canonical
labelling of T is then defined as the induced labelling of the white corners (corners at white
vertices) of T. Alternatively this labelling can be computed directly on T as follows (see
Figure 5.11(b)): starting from an exposed bud, initialize the current label value s to be 0,
then walking counter-clockwise around T':

e each time a non-exposed bud is crossed, s is increased by 1,
e cach time an edge is traversed from the white to the black extremity, s is decreased
by 1,
e each white corner is assigned the current value of s at the time it is visited.
Let e be a closure-edge of A(T'), call f the face on the left (always an interior face) and

f’ the face on the right, and let ¢ be the label of ¢;. Assume that f’ is also an interior
face (which is equivalent to ¢y having label greater than 1). Then it is not difficult to see
that cg is characterized as the first corner of label £ — 1 after c; in a counter-clockwise
walk around T'; ¢y is called the successor of cy. From this observation we get the following
labelled reformulation of the master bijection ¥ (case § < 0):

(1) determine the |§| exposed buds, and draw an infinite ray starting from each of these
buds so as to split the outer face fy into |§| outer faces fi,..., fis; then insert an
isolated white vertex v; in each outer face f; for ¢ € [1..|d]],

(2) endow T with its canonical labelling of the white corners, as specified above and
shown in Figure 5.11(b),

(3) for each white corner ¢ € T of label £ > 2, connect ¢ to its successor ¢’ (the next
white corner of label ¢ — 1 after ¢ in a counter-clockwise walk around T'), the new
edge being directed from ¢’ to c,

(4) for each i € [1..]6]] and for each white corner ¢ € T of label 1 and incident to the
outer face f;, connect ¢ to the white vertex v;, the new edge being directed from v;
to ¢,

(5) connect the |§| outer vertices v1,...,v)5 by an outer |§|-gon that is oriented ccw.

This reformulation has a similar flavor as the Schaeffer bijection [82, Ch.6] from well-labelled
trees to vertex-pointed quadrangulations, and thus we can expect to obtain useful esti-
mates/bounds for the distances between vertices in terms of the labels of the corresponding
mobile.
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FIGURE 5.11. (a) The depth-labelling of the map A(T) obtained in Fig-
ure 5.10. (b) The induced labelling of the white corners of T', called the
canonical labelling of T, which can be alternatively obtained from a ccw
walk around T starting at an exposed bud. (c¢) The closure O = ¥(T') can
be obtained from 7" endowed with its canonical labelling.

5.4.2. Interpretation of the labels and bounds on the distances. Let § < 0 and
let O € Os. As shown in [11], for each inner edge e € O, there is a unique directed path P,
of inner edges that starts at some outer vertex, ends at e, and such that no edge arrives to
P, from the left-side, see Figure 5.12. The path P, is called the rightmost path of e, and its
length is denoted by L(e).

Q

A
O

FIGURE 5.12. Left: an orientation O € O_4, with a distinguished inner
edge e, the rightmost path of e being shown bolder. Right: generic situation
for the rightmost path of an inner edge e.

In the labelled reformulation of ¥ given above, it is easy to see that each white corner
¢ of T corresponds to an inner edge e. of O = ¥(T), and moreover, with k£ > 1 the label of
¢, the backward path in O starting from ¢ and jumping at each step to the next successor
until reaching an outer vertex is the rightmost path of e. Since this path decreases by 1 in
label at each step until reaching an outer vertex (of label 0), we conclude that the label £(c)
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of ¢ is equal to L(e.). In particular, if we denote by d(v) the distance of any inner vertex v
from the outer contour of O (length of a shortest path, not necessarily directed, connecting
v to some outer vertex), and denote by v. the inner vertex of O corresponding to the white
vertex of T at ¢ (v, is also the end-vertex of e.) then d(v.) < £(c). For each inner edge e € O,
denote by d(e) the distance of the end-vertex of e to the outer contour of O, and denote by
K (O) the maximum of L(e) — d(e) over all inner edges e of O. Then we have, for any white
corner c of T,

(36) |d(ve) = £(e)] < K(O),

which is to be read as ¢(c) providing an estimate (up to K(O)) of the distance from v, to
the outer face contour.

label m(c, )

F1GURE 5.13. Ilustration that the rightmost paths starting at respective
white corners ¢, ¢’ meet at label m(c,¢’) — 1, when m(c,c’) > 2 (i.e., when
¢, are incident to the same outer face f;, for some i € [1..|d]]).

Next we consider the distance in O, denoted d(v,v’), between two arbitrary (inner)
vertices v, v, i.e., the length of a shortest (not necessarily directed) path connecting v to v’.
For ¢, ¢ two white corners of T, we have seen that there is (in O) a path of length ¢(c) (resp.
£(c)) from v, (resp. v ) to the outer contour. Since any two outer vertices are at distance
at most ||d]/2] we have the easy bound

d(ve,ver) < L(e) + (") + [|0]/2].

Similarly as in the Schaeffer bijection [82, Ch.6] for quadrangulations (see e.g. [53]), we can
get a better bound, expressed in terms of the quantity m(c, ¢’) defined as the minimal label
of all white corners that are between ¢ and ¢’ in a ccw walk around T. If m(e,¢’) > 2, then
as shown in Figure 5.13 the rightmost path of e, meets the rightmost path of e. at the
corner of label m(c,¢’) — 1, so that there is a path in O connecting v, to v and of length
0(c) — (m(e,d') = 1)+ (") — (m(e, ) — 1). Hence, for m(c, ') > 2 we have

d(ve,ver) < L(c) + () —2m(c,c') + 2,

while for m(c,¢’) = 1 we can use the upper bound given above. We can combine both upper
bounds, and symmetrize in ¢, ¢, to get

(37) d(ve,ver) < U(c) 4+ £(') — 2max(m(c, ), m(c, ¢)) + [|8]/2] + 2.
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Let us finally mention that the extended master bijection for (possibly weighted) bi-
orientations presented in Section 2.4 can also be given a labelled reformulation, since this
extension can be seen as a mere adaptation of the master bijection for orientations (as shown
in Figure 2.9).

5.4.3. Possible applications. Let ), denote a uniformly random rooted quadrangu-
lation, and denote by d(.) the distance in @, and for ¢ > 0 denote by d.(.) the distance
rescaled by c, i.e., d.(v,v") := d(v,v')/c. Note that for any u, > 0, (Qn,d,, (.)) forms
a sequence of random discrete metric spaces. A seminal result obtained recently indepen-
dently in [63] and [67] is that for u, = (8n/9)*, (Qn,du, (.)) converges in law (for the
so-called Gromov-Hausdorff topology) as n — oo to a random metric space called the Brow-
nian map, which has almost surely the topology of the sphere [53, 66, 54] (it was already
known [38, 62] that the random discrete measure given by the distances from the root-
vertex, renormalized by (8n/9)'/%, converges to an explicit random discrete measure on R
that is closely related to the ISE law [4]).

A key ingredient to prove this result is the Schaeffer bijection [82, Ch.6] (reformulating
a construction of Cori and Vauquelin [42], and generalized to higher genus in [36]), which
also corresponds to the BDG bijection [26] (reviewed in Section 2.3) specialized to quadran-
gulations. This bijection maps a so-called well-labelled tree T (i.e., an unrooted plane tree
with a positive label £(v) at each vertex v such that the minimum label over all vertices is
1 and |[¢(v) — £(u)| < 1 for any two adjacent vertices u,v) with n edges to a vertex-pointed
quadrangulation @ with n faces. And a crucial point is that, with d(.) the distance in @ and
vo the pointed vertex of @), one has

(38) d(v,v9) = £(v).

Moreover, for two vertices v,v" € T, denote by m(v,v’) the smallest label seen in a ccw walk
around T starting at v, ending at v’, and never seeing v or v’ in-between. Then

(39) d(v,v") < (v) + L(v") — 2max(m(v,v"), m(v',v)) + 2.

The two bounds (36) and (37) we have obtained in Section 5.4.2 can thus be seen as
respective analogues of (38) and (39), up to the additional term K(O) in (36) and the addi-
tional term [|6]/2] in (37). We thus expect that the master bijection could make it possible
to prove convergence to the Brownian map for random maps in families specified by girth
and face-degree constraints (bijections in Chapter 3 and its generalizations in Section 5.1),
as in the following conjecture:

CONJECTURE 61. Let d > 1, let A be a finite set of integers in {d,d+ 1,...}, and let
Mana(n) be the set of rooted maps of girth at least d, with n faces all of degree in A. And
let My a(n) be a uniformly random map in Mgna(n). Then there is a computable positive
constant ¢ = cq a such that (Mg a(n),d,,1/4(.)) converges in law to the Brownian map.

Let us briefly discuss here the case of rooted simple quadrangulations, i.e., the case
A = {4} and d = 4. We can first rely on a crucial lemma in the recent article [1] (which
shows Conjecture 61 for the the case of simple triangulations and simple quadrangulations),
where it is proved that, if Q),, denotes a uniformly random simple quadrangulation with
n faces endowed with its unique minimal 2-orientation, then K(Q,)/n'/* converges in law
to 0. Proving this relies on a key deterministic result established in [1, Prop.7.12] (which
hopefully could be extended to the general setting of Conjecture 61): “for @ a rooted sim-
ple quadrangulation with n faces, K(Q) > en'/* implies that Q has a cycle T' of length
O(Diam(Q)/(en'/*)) such that both components obtained after cutting along T' are ‘large’
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(in the sense that they have diameter Q(en'/4))”, and as shown in [1, Theo.8.1] (based
on contour processes, see also Lemma 15 in [C23] for a line of proof based on analytic
arguments), the latter event is typically unlikely for random maps.

Since K(Q,)/n'* converges in law to 0, (36) can be seen as analogous to (38) after
renormalizing distances by n'/4. More easily (37) can be seen as analogous to (38), again
after renormalizing by n'/* (which makes the contribution [|§|/2] negligible). The recent
article [63] has extracted a list of conditions to be checked that guarantee convergence to
the Brownian map (after rescaling distances by en'/# for a certain ¢ > 0):

(i): having analogous of (38) and (39),
(ii): the pair of contour-processes (around the labelled tree) giving respectively the
depth and the label converges in law to the so-called Brownian snake [61],
(iii): a certain condition of invariance under re-rooting (essentially, the distance from
the root to a random vertex has to have the same limit as the distance between
two random vertices).

For simple quadrangulations, we have seen above that (i) holds, and (iii) holds (essentially
due to the fact that the root can be placed anywhere in the quadrangulation). And since
the encoding mobiles (ternary trees as we have seen in Section 3.1) have bounded arity, one
could use the results in [65] to guarantee that (ii) holds. Therefore it should be possible to
use mobiles in order to show convergence of rooted simple quadrangulations to the Brownian
map. The convergence result is shown in [1] using a bijection with blossoming trees given
in [T1] (itself closely related to the bijection by Poulalhon and Schaeffer [78] for simple
triangulations). The advantage we see in using mobiles instead of blossoming trees in order
to attack Conjecture 61 is to have the general bound (37) and also to enable the bijective
encoding of maps of girth at least d > 1, with faces of arbitrary degree (whereas for d > 3,
bijections with blossoming trees are up to now limited to the case of d-angulations of girth
d, possibly with a boundary [3]).

The main obstacle we see to show Conjecture 61 is the lack (up to now) of a general
result that would guarantee (ii) for families of (canonically labelled) trees of bounded arity
and that are not simply generated (i.e., require a generation grammar of more than line,
such as (32) when b > 3).

Let us finally mention another possible line of research, namely the convergence of (suit-
ably rescaled) random rooted d-angulations of girth at least e with n faces, where d, e depend
on n, say for instance d = [n®] and e = |n®] with 0 < o < 3. Limiting behaviours different
from the Brownian map might be obtained depending on «, 3, possibly related to those dis-
covered in [64] (as a first step it would already be interesting to determine the asymptotic
order of typical distances).

5.5. Other results

In this section I describe (without details) some other research collaborations I have had
in recent years.

5.5.1. The 2-point and 3-point function of planar maps. To study the typical
distances in random maps, an alternative to the probabilistic method mentioned in Sec-
tion 5.4 is to try to solve for the so-called 2-point function of a family M = |, M,, of
maps. The 2-point function G;(z) of M is defined as the generating function of maps in M
with two marked vertices at mutual distance 7 (depending on the context, G;(x) can also be
defined as the generating function of rooted maps in M with a marked vertex at distance ¢
from the root-edge). The 2-point function thus gives access to the distribution of the mutual
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distance X,, between two vertices in a random bi-pointed map from M,,. Remarkably, the
2-point function of several families of rooted maps admits an exact expression, making it
possible to show that X,/ n'/4 admits an explicit limit law. To prove these exact expres-
sions a variety of insightful tools have been developed, based on guessing/checking [25, 52],
conserved quantities [29], and continued fraction theory [30].

The starting point is to use the Cori-Vauquelin Schaeffer bijection for quadrangula-
tions [42, 82] and more generally the BDG bijection for maps [26] with control on the
face-degrees. Indeed in these bijections (reviewed in Section 2.3 for the bipartite case) the
map is naturally vertex-pointed, and in the encoding labelled mobile each vertex is labelled
by the distance from the pointed vertex. Hence the bijection ensures that the cumulative
2-point function R;(x) := 3, ; Gj(x) can be seen as a generating function of rooted labelled
mobiles with positive labels and label i at the root-vertex, and based on this one can (using a
decomposition at the root) specify a recurrence for the R;(x) (for quadrangulations it reads
Ri(z) = 14+2R;(z) (Ri—1(x)+ R;(x)+ R;+1(x))) to be solved; or one can express the R;(x) as
the coefficients of the continuous fraction expansion of known map generating functions [30].
This latter method has made it possible to obtain very precise results, namely to express the
2-point function of bipartite maps (and more generally, maps) with bounded face-degrees
and a weight g for each face of degree 2k. In a recent joint work with E. Guitter [S2], we
have extended the expressions for bipartite maps to incorporate additionally a weight ¢, for
each black vertex and a weight ¢, for each white vertex in the bipartite maps.

An important recent result regarding the 2-point function is the new bijection by Ambjgrn
and Budd [5] between vertex-pointed quadrangulations and vertex-pointed arbitrary maps
that preserves the profile of distances from the pointed vertex (there already existed a classi-
cal bijection due to Tutte between both families, but it did not preserve the distance-profile).
This makes it possible to solve for the 2-point function of arbitrary maps (with no bound on
the face-degrees), which is very closely related to the 2-point function of quadrangulations
since they are both encoded by well-labelled trees; moreover assigning a fixed Boltzmann
weight w > 0 to each face amounts to assigning a weight w to each local max in the well-
labelled trees, and remarkably an exact (bivariate) expression also holds, as proved in [5]
using a guessing/checking approach.

In a recent work with J. Bouttier and E. Guitter [A30], we have extended this corre-
spondence to a bijection between vertex-pointed bipartite maps and vertex-pointed arbitrary
hypermaps, so as to preserve the profile of distances from the marked vertex, and such that
each hyperedge of degree k corresponds to a face of degree 2k in the associated bipartite
map. Similarly, this ensures that the 2-point function of hypermaps and the 2-point function
of bipartite maps are very closely related, being both encoded by labelled mobiles. And as-
signing a Boltzmann weight w to each face of the hypermap amounts to assigning a weight w
to each local max (under a certain sense) in the encoding labelled mobile. With E. Guitter
we have recently obtained partial results to compute the 2-point function of hypermaps with
the additional weight w at faces [S3]; the cumulative 2-point functions R;(z,w) can be seen
as the coefficients of a certain continuous fraction decomposition of a known map generating
function. However this continuous fraction is of a different type and the coefficients can not
be extracted in a determined way as in [30]; with some additional natural assumptions we
have been able to carry out the calculations in a constructive way and recover in the case
of maps (related to labelled well-labelled trees) the bivariate expressions obtained in [5].
It would be interesting to extend our approach to general hypermaps and prove (possibly
under mild assumptions) an explicit expression for the 2-point function of hypermaps with
a weight w at each face and a weight g; for each hyperedge of degree k.
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More generally, for any k£ > 2 one can consider the k-point function of a family M =
U,, My of maps, that is, the generating functions for maps in M with £ marked vertices
and prescribed mutual distances (there are (’2“) distances to be prescribed, one for each pair
of marked vertices). By a generalization of the Cori-Vauquelin-Schaeffer bijection due to
Miermont [70], labelled quadrangulations with k marked vertices, each having a certain
delay assignment, are in bijection with well-labelled maps with k faces. Building on this
bijection, Bouttier and Guitter have derived an explicit expression for the 3-point function
of quadrangulations [28]. Similarly the Ambjgrn-Budd bijection yields a correspondence
between well-labelled arbitrary maps with &k local min (to be taken as marked vertices) and
well-labelled maps with k faces. In a collaboration with E. Guitter [A31], we derive from
it the 3-point function of arbitrary maps, both in the univariate case (with respect to the
number of edges) and in the bivariate case (with a Boltzmann weight w at each face). This
allows us to compute the limit joint-law of the 3 pairwise distances in random tri-pointed
maps with n edges and a fixed Boltzmann weight w > 0 at faces, and we show that the limit
law (when rescaling by nt/ 4) is the same as for quadrangulations, up to a further rescaling
by an explicit constant factor depending on w. By a correspondence between the face-weight
w and the edge-density of the random maps, this also yields, for each A € (0,1) the limit law
for tri-pointed maps with n edges and A - n faces. We also conjecture (without a rigorous
proof, which would possibly require a technical saddle-point calculation) the scaling order
when A is close to 0 (say A-n ~n® for a € (0, 1)), corresponding to maps with few faces, or
close to 1 (say n- (1 —\) = n® for a € (0,1)), corresponding to maps with few vertices.

5.5.2. Bijections for unicellular maps in higher genus. A unicellular map of genus
g is a (rooted, i.e., with a marked corner) map with a unique face on the orientable surface
of genus ¢ (in genus 0 it corresponds to a plane tree). Equivalently, a unicellular map with
n edges is obtained by gluing pairwise the sides of a 2n-gon, and the genus of the unicellular
map is the genus of the obtained surface. Unicellular maps have connections with algebra
(they can be seen as factorizations of a long cycle in the symmetric group), probabilities (they
encode the nth moments of gaussian ensembles) and topology (seen as gluings of a polygon).
As discovered and proved by Harer and Zagier [58], the coefficients €,4(n) giving the number
of unicellular maps of genus g with n edges satisfy the following summation formula (proved
in [58] using matrix integral techniques and a clever polynomiality argument):

3 ey ()N = (2 — 1y 2 (T " 1) (JD

r>1
which yields, using some algebraic manipulations, the very simple recurrence
(n+1eg(n) =2(2n — 1eg(n— 1)+ (n —1)(2n — 1)(2n — 3)eg_1(n — 2).

Bijective proofs (relying on the BEST theorem) of the summation formula have been given
subsequently [56, 12], but without a simple combinatorial interpretation of the recurrence.

In a collaboration with G. Chapuy and V. Feray [A25] (building on a recursive de-
composition of unicellular maps discovered by G. Chapuy [37]), we have introduced a new
bijection for unicellular maps where for the first time the genus is readily read on the encod-
ing structure, yielding direct combinatorial proofs of all known formulas for unicellular maps
(including the Harer-Zagier recurrence, and the very precise Goupil-Schaeffer formula [57]
that keeps track of the vertex degree distribution). In our bijection a unicellular map M
with n edges is simply encoded by a pair made of a (rooted) plane tree T with n edges and
a permutation o of size n + 1 with all cycles of odd length, and the genus corresponds to
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1(n+1 — #cycles(c)). Our bijection has for instance been recently applied to characterize
the local limit of random unicellular maps of linear genus [6].

In this topic several interesting questions are open: for example up to now we have only
partially succeeded to generalize our bijection to so-called unicellular constellations (which
generalize bipartite unicellular maps) and we have not succeeded to find a bijective proof
of the Poulalhon-Schaeffer formula [79] (which extends the Goupil-Schaeffer formula). We
would also like to find a similar bijection for locally orientable unicellular maps, for which
(more involved) counting formulas exist; up to now a bijection giving a new summation for-
mula has been introduced in [12], and the recursive decomposition in [15] has been adapted
to the locally orientable case when vertices have degree in {1, 3}.

5.5.3. Baxter families and pattern-avoiding permutations. Baxter permutations
are permutations avoiding the patterns 3 — 14 — 2 and 2 — 41 — 3. They can also be defined
as the permutations obtained by iteratively inserting the highest entry just before a left-to-
right maximum or just after a right-to-left maximum in the permutation already built, and
as such they admit a simple generating tree that can be seen as a natural bivariate analogue
of the generating tree for Catalan structures (where the parent of a parenthesis word on
{a,b} is obtained by deleting the last factor ab). As for Catalan numbers, the so-called
Baxter numbers, defined as
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occur recurrently in combinatorics, counting for instance certain 3-line Young tableaux [39],
plane bipolar orientations, 2-orientations of quadrangulations, twin pairs of binary trees [48],
and non-intersecting triples of directed paths [A10,A11,A16]. Baxter permutations show
a strong link with planar maps: as shown in a collaboration with N. Bonichon and M.
Bousquet-Mélou [A11], there is a direct (of a much geometric flavour) bijection between
plane bipolar orientations and Baxter permutations; when specializing this correspondence
to Baxter permutations avoiding 2—4—1—3 we recover (under a more geometric formulation)
a bijection due to Dulucq, Gire, and West [47] with rooted non-separable planar maps.

I have again encountered Baxter structures in a recent collaboration [S4] with S. Burrill,
J. Courtiel, S. Melczer, and M. Mishna, in the context of certain walks on the Young lattice
ending in a row-shape (these can also be seen as certain walks in the 2D Weyl chamber
{0 < z < y}, ending on the z-axis). Intriguingly these walks are counted by the Baxter
numbers but the natural generating tree they have is different from the usual one for Baxter
structures; we have not yet managed to find a bijective proof for their enumeration, even
if a bijective connection is suggested by the equidistribution (for which we have up to now
only strong computational evidence) between the ending abscissa and a natural “switch-
parameter” on the classical Baxter family of non-intersecting triples of lattice paths.

In a more probabilistic direction, an interesting research problem is to determine a
convergence in law of pattern-avoiding permutations from a given class (represented as a set
of points in the square [0,1] x [0,1]), such as Baxter permutations (where one can exploit
the rich combinatorics of this specific class). Such convergence results have up to now been
established for simpler families of permutations (avoided patterns of length 3) in [76], where
the points tend to accumulate in the vicinity of a curve, which shouldn’t be the case for
families such as Baxter permutations, where the permutations points distribution seems
to obey a more chaotic behaviour, similarly as for planar triangulations embedded using
standard graph drawing algorithms.



5.6. PUBLICATION LIST 97

5.5.4. Intervals in Tamari lattices. In recent years there has been a growing interest
in the combinatorics of intervals of the Tamari lattice (lattice formed by binary trees with
n nodes, whose covering relation is given by the elementary rotation operation on binary
trees), starting with the work of Chapoton [33] who showed that the number of intervals of
the Tamari lattice (of size n) is given by:

e (n1)

The notion of Tamari lattice can be generalized to any m > 1 as a lattice on (m + 1)-ary
trees with n nodes (for m > 1 the covering relation is better seen on the encoding m-Dyck
paths). In a recent joint work with M. Bousquet-Mélou and L.-F. Préville-Ratelle [A22],
we have shown that the number of intervals (conjecturally giving the dimension of certain
coinvariant spaces [10, 33]) in the so-called m-Tamari lattice is more generally given by the
formula:

m+1 (m+1)%n+m

n(mn + 1) < )

The first step of the proof is to show that the associated generating function (with a sec-
ondary catalytic variable) satisfies an explicit equation. This equation can be solved for any
fixed (small) value of m using a generalization [19] of Tutte’s quadratic method to general
polynomial equations with a catalytic variable, giving the above formula. However to have a
proof that works uniformly over all m, the only way we have found is by a guessing/checking
approach, where the guessed expression of the (bivariate) generating function is an explicit
rational expression after a suitable change of variable (both for the main variable and for
the catalytic variable).

It is tempting to search for bijective proofs of these formulas. Up to now there is a
bijective proof, by Bonichon and Bernardi [13], only in the case m = 1, and it relies on
simple triangulations. Models of planar maps that would give fruitful intermediate objects
for m > 2 are still to be found. Let us finally mention that there are also beautiful factorized
counting formulas for Tamari intervals endowed with certain labellings [18]: again it would
be interesting to find bijective proofs of such formulas (here it is open in all cases, including
m = 1), possibly with models of (labelled) maps as intermediate objects.

n—1
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