Pattern-Matching and Text-Compression Algorithms

MAXIME CROCHEMORE

Gaspard Monge Institute, University of Marne-la-Vallée, France

THIERRY LECROQ

Laboratoire d’Informatique de Rouen, University of Rouen, France

Pattern matching is the problem of lo-
cating a specific pattern inside raw
data. The pattern is usually a collection
of strings described in some formal lan-
guage. Applications require two kinds of
solution depending upon which string,
the pattern, or the text, is given first.
Solutions based on the use of automata
or combinatorial properties of strings
are commonly implemented to prepro-
cess the pattern. The notion of indices
realized by trees or automata is used in
the second kind of solutions.

The aim of data compression is to
provide representation of data in a re-
duced form in order to save both storage
place and transmission time. There is
no loss of information, the compression
processes are reversible.

Pattern-matching and text-compres-
sion algorithms are two important sub-
jects in the wider domain of text pro-
cessing. They apply to the manipulation
of texts (word editors), to the storage of
textual data (text compression), and to
data retrieval systems (full text search).
They are basic components used in im-
plementations of practical softwares ex-
isting under most operating systems.
Moreover, they emphasize programming
methods that serve as paradigms in
other fields of computer science (system
or software design). Finally, they also
play an important role in theoretical
computer science by providing challeng-
ing problems.

Although data are recorded in various
ways, text remains the main way to
exchange information. This is particu-

larly evident in literature or linguistics
where data are composed of huge cor-
pora and dictionaries, but applies as
well to computer science where a large
amount of data is stored in linear files.
And it is also the case, for instance, in
molecular biology because biological
molecules can often be approximated as
sequences of nucleotides or amino acids.
Furthermore, the quantity of available
data in these fields tend to double every
18 months. This is the reason that algo-
rithms must be efficient even if the
speed and storage capacity of computers
increase continuously.

PATTERN MATCHING

When the pattern is a single string the
problem is known as string matching:
locate all occurrences of a string x of
length m in a text y of length n. The
string and the text are built over the
same alphabet 3 of size o. The naive
algorithm locates all occurrences in
time O(nm). But hashing provides a
simple method that avoids the qua-
dratic number of symbol comparisons in
most practical situations and runs in
linear time under reasonable probabilis-
tic assumptions [Harrison 1971; Karp
and Rabin 1987].

The first linear-time string-matching
algorithm was discovered by Morris and
Pratt [1970]. It has been improved by
Knuth et al. [1976]. The search behaves
like a recognition process by automa-
tion, and a character of the text is com-
pared to a character of the pattern no
more than logg(m + 1) (P is the golden

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



40 °

ratio (1 + V/5)/2). Hancart [1993] proves
that the delay of a related algorithm
discovered by Simon [1994] makes no
more than 1 + logym comparisons per
text symbol.

Boyer and Moore’s [1977] algorithm is
considered the most efficient string-
matching algorithm in usual applica-
tions. A simplified version of it (or the
entire algorithm) is often implemented
in text editors for the “search” and “sub-
stitute” commands. Cole [1995] proves
that the maximum number of symbol
comparisons is tightly bounded by 3n
after the preprocessing.

Several variants of Boyer and Moore’s
algorithm avoid the quadratic behavior
when searching for all occurrences of
the pattern. The most efficient solutions
in term of number of symbol compari-
sons have been designed by Apostolico
and Giancarlo [1986], Crochemore et al.
[Turbo-BM 1994], and Colussi [1994].
Empirical results show that the varia-
tions of Boyer and Moore’s algorithm
designed by Sunday [Quick Search
1990] and an algorithm based on the
suffix automaton by Crochemore et al.
[1994] are the most efficient in practice.

Searching for k£ patterns by repetitive
runs of previous algorithms on the text
y gives an overall O(kn) running time.
In 1975, Aho and Corasick designed an
O(n log o) algorithm to solve this prob-
lem, with a running time independent
of the number of patterns. It is imple-
mented by the fgrep command under
the UNIX operating system.

The notion of a longest common sub-
sequence (LCS) of two strings is widely
used to compare files. The diff command
of UNIX implements an algorithm
based on this notion where lines of the
files are considered as symbols. Infor-
mally, the result of a comparison gives
the minimum number of operations (in-
sert a symbol or delete a symbol) to
transform one string into the other. The
comparison of molecular sequences is
basically done with a related concept,
alignment of strings, which consists of
aligning their symbols on vertical lines.
This is related to an edit distance,

ACM Computing Surveys, Vol. 28, No. 1, March 1996

Maxime Crochemore and Thierry Lecrog

called the Levenshtein distance, with
the additional operation of substitution,
and with weights associated to opera-
tions. Hirchsberg [1975] presents the
computation of the LCS in linear space.
This is an important result because the
algorithm is used on large sequences.
Approximate string matching consists
of finding all approximate occurrences
of pattern x in text y. Approximate oc-
currences of x are segments of y that are
close to x according to a specific dis-
tance: their distance to x must be not
greater than a given integer k. Two
common distances are the Hamming
distance and the Levenshtein distance.
With the Hamming distance related
to the number of mismatches between
the pattern and its approximate occur-
rences, the problem is also called ap-
proximate string matching with &2 mis-
matches. With the Levenshtein distance
(or edit distance) the problem is known
as the approximate string matching
with %k differences. Approximate string
searching is a lively domain of research.
It includes, for instance, the notion of
regular expressions to represent sets of
strings. Algorithms based on regular ex-
pression are commonly found in books
related to compiling techniques. The
Shift-Or algorithm by Baeza-Yates and
Gonnet [1992], and by Wu and Manber
[1992] is a method that is both very fast
in practice and very easy to implement.
It adapts to the two preceding problems.
In applications where the text is to be
searched for several patterns, the text
needs to be preprocessed. Even if no
further information is known on their
syntactic structure, it is possible and
indeed extremely efficient to build an
index that supports searches. Data
structures to represent indices on text
files are: suffix trees [Weiner 1973; Mc-
Creight 1976; Ukkonen 1994], direct
acyclic word graph [Blumer et al. 1985],
suffix automata [Crochemore 1986], and
suffix arrays [Manber and Myers 1993].
All algorithms (except for suffix arrays)
build the index in time O(n log o).



Pattern-Matching and Text-Compressions Algorithms L 41

TEXT COMPRESSION

The following methods yield two basic
data compression algorithms that pro-
duce good compression ratios and run in
linear time.

The first strategy is a statistical en-
coding that takes into account the fre-
quencies of symbols to build a uniquely
decipherable code optimal with respect
to the compression criterion. The Huff-
man [1951] method provides such an
optimal statistical coding. It admits a
dynamic version in which symbol count-
ing is done at coding time. The compact
command of UNIX implements this ver-
sion.

Ziv and Lempel [1977] designed a
compression method wusing encoding
segments. These segments are stored in
a dictionary that is built during the
compression process. When a segment
of the dictionary is encountered later
while scanning the original text it is
substituted by its index in the dictio-
nary. In the model where portions of the
text are replaced by pointers on previ-
ous occurrences, the Ziv and Lempel
compression scheme can be proved to be
asymptotically optimal (on large enough
texts satisfying good conditions on the
probability distribution of symbols). The
dictionary is the central point of the
algorithm. Furthermore, a hashing
technique makes its implementation ef-
ficient. This technique, improved by
Welch [1984], is implemented by the
compress command of the UNIX operat-
ing system.

The problems and algorithms dis-

cussed give a sample of text-processing
methods. Several other algorithms im-
prove on their performance when the
memory space or the number of proces-
sors of a parallel machine are consid-
ered, for example. Methods also extend
to other discrete objects such as trees
and images.

REFERENCES

Listed in the following are either books
entirely devoted to pattern-matching or
text-compression algorithms or books on
the design of general algorithms that
contain a whole chapter on the topic. All
references mentioned in the text may be
found in these books.

AHO, A. V. 1990. Algorithms for finding pat-
terns in strings. In Handbook of Theoretical
Computer Science, Algorithms and Complex-
ity, Vol. A. J. van Leeuwen Ed., Elsevier,
Amsterdam, Ch. 5, 255-330.

BeLL, T. C., CLEARY J. G., aND WITTEN, I. H.
1990. Text Compression. Prentice Hall,
Englewood Cliffs, NJ.

CorMEN, T. H., LEISERSON, C. E., AND RIVEST, R.
L. 1990. Introduction to Algorithms. MIT
Press, Cambridge, MA, Ch. 34, 853—885.

CROCHEMORE, M. AND RYTTER, W. 1994. Text Al-
gorithms. Oxford University Press, New York.

GONNET, G. H. AND BAEZA-YATES, R.A. 1991.
Handbook of Algorithms and Data Structures.
Addison-Wesley, Reading, MA, Ch. 7, 251
288.

NELSON, M. 1992. The Data Compression Book.
M&T Books, New York.

SEDGEWICK, R. 1990. Algorithms in C. Addison-
Wesley, Reading, MA, Ch. 19 and 22.

STEPHEN, G. A. 1994. String Searching Algo-
rithms. World Scientific Press, River Edge,
NJ.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



