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Squares, Cubes, and Time—Space Efficient String Searching
M. Crochemore! and W. Rytter?

Abstract. We address several technical problems related to the time-space optimal string-matching
algorithm of Galil and Seiferas (called the GS algorithm). This algorithm contains a parameter k on
which the complexity depends and that originally satisfies k > 4. We show that k = 3 is the least
integer for which the GS algorithm works. This value of the parameter k also minimizes the time of
the search phase of the string-searching algorithm. With the parameter k = 2 we consider a simpler
version of the algorithm working in linear time and logarithmic space. This algorithm is based on the
following fact: any word of length # starts by less than logg n squares of primitive prefixes. Fibonacci
words have a logarithmic number of square prefixes. Hence, the combinatorics of prefix squares and
cubes is essential for string-matching with small memory.

We give a time-space optimal sequential computation of the period of a word based on the GS
algorithm. The latter corrects the algorithm given in [GS2] for the computation of periods. We present
an optimal parallel algorithm for pattern preprocessing. This paper also provides a cleaner version
and a simpler analysis of the GS algorithm.

Key Words. Analysis of algorithms, Algorithms on strings, Pattern matching, String matching,
Periods of words, Parallel algorithms

1. Introduction. This paper discusses the string-matching problem: finding all the
occurrences of a pattern within a text.

The algorithm of Galil and Seiferas [GS2] was the first time-space optimal
algorithm for the string-searching problem, and its existence even disproved a
conjecture stated by the authors [GS1]. The algorithm works in time linear in
the size of input words and requires only a constant additional memory space.
Later we refer to this algorithm as the GS algorithm. The basic parameter of the
algorithm is an integer k. As is written on p. 281 of [GS2]: “the constant of
proportionality in our algorithms’ worst-case running times will be proportional
to k, so there is a practical reason to keep k small.” The GS algorithm was
originally designed with k > 4. Recently, two other time-space optimal string-
searching algorithms were discovered, see [CP] and [C]. However, despite this
we believe that the GS algorithm is of so great importance that it deserves further
investigation. In this paper we show that the GS algorithm also works with k = 3.
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At the same time, we present a complete proof of the result which provides a
cleaner version and a simpler analysis of the GS algorithm.

The GS algorithm can be treated as a space-efficient implementation of the
algorithm of Knuth, Morris, and Pratt [KMP]. The KMP algorithm essentially
works in stages composed of a left-to-right scan of the pattern against the text
followed by a shift of the pattern to the right. The main operation in one stage
consists of making a suitable safe shift of the pattern. We refer the reader to
[KMP] and [A] for the definition of the shift function and the failure function
related to the algorithm. More recently, Simon [S] has improved on the KMP
algorithm, using a clever implementation of the automaton underlying it. In [C]
a time-space optimal string-searching algorithm is presented that can also be
considered as an efficient implementation of the KMP algorithm.

Space-efficient implementations are based on properties of the periods of prefixes
p[1..1] of the pattern p. If we know that the periods of these segments are always
large with respect to i, then it is easy to reduce space, memorizing a single constant
of proportionality. If the period of a prefix is small, then the pattern starts with
a segment, which repeats in the pattern several times, say k times. Such a segment
is defined later in this paper as a highly repeating prefix (HRP). The main parameter
of the HRP is the number k which essentially describes the continuation of the
HRP as a period. If k = 2, then the HRP yields a square prefix, if k = 3 it leads
to a cube prefix. Hence, the combinatorics of cubes and squares in strings plays
an important role in the problem. In particular, if the string is cube-free or
square-free, the string searching is much simpler (no pattern preprocessing is even
needed).

We show that the number of HRPs of a word x is O(log|x|). The result is very
easy to prove for k > 3, but the proof becomes very intricate for k = 2. In this
case the bound on the maximum number of HRPs is shown to be less than logy| x|,
where @ is the golden ratio. We even exhibit the words that reach the upper bound.
As a coincidence, the bound logg|x]| is the same as the bound on the number of
certain periods of the entire word x that come in the analysis of the KMP
algorithm (see [KMP]).

We further examine the problem of computing all the periods of a word. A
linear-time algorithm may be derived from the KMP algorithm. A time-space
optimal algorithm to compute the periods of a word is given in [C]. We show
that the GS algorithm can also be adapted for this purpose, provided the parameter
k is chosen large enough (k > 7). Thus, this leads to a new time-space optimal
algorithm for computing the periods of a word. It also corrects a flaw in [GS2].

The preprocessing phase of the GS algorithm consists of a decomposition of
the pattern that we call a k-perfect decomposition. We show that preprocessing can
be efficiently computed in parallel. To do so, we assume that k > 4, and we show
how to compute a 4-perfect decomposition of the pattern in time log? n with
nflog® n processors in the CRCW PRAM model. The complexities becomes
respectively log® n and n/log® n in the CREW PRAM model.

The paper is organized as follows. The time-space optimal string-searching
algorithm is presented in Section 2. It is based on the decomposition theorem
proved in Section 3. Sections 4 and 5 are devoted to the case k = 2. The former
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shows that the proof of Section 3 cannot be extended to this case, and the latter
provides the accurate upper bound on the number of squares, prefixes of a word.
The time-space optimal computation of periods is given in Section 6. The last
section presents the parallel algorithm for the decomposition of a word.

Throughout this paper we consider a text t and a pattern p. Words ¢ and p are
on the same alphabet A. The empty word of A* is denoted by e.

2. Highly Repeating Prefixes. String-searching algorithms repeatedly perform a
series of scans of the pattern against the text, and shifts of the pattern to the right.
We are first interested in algorithms that perform left-to-right scans, as the KMP
algorithm does. In these algorithms the current situation is when a mismatch is
met during left-to-right scanning. The next step is then a shift of the pattern to
the right. At this point, the algorithm has discovered inside the text ¢ an occurrence
of a prefix y of the pattern p followed by a letter b (see Figure 1). If y is the pattern
itself, then an occurrence of the pattern is found. If not, ya is a prefix of p for
some letter a # b.

The shift that comes next must if possible keep a prefix of the pattern matching
the text. This is realized by both the KMP algorithm and Simon’s algorithm. It
is easy to see the following fact:

Let x = vz with v nonempty. Then z is a prefix of x
iff x is a prefix of some power v° of v.

When x is prefix of v* for some nonempty prefix v of x, v is called a prefix period
of x, and the integer |v| is called a period of x. In other words, two letters occurring
in x at distance |v| coincide. The word z of the above fact, which is both a proper
prefix and a suffix of x, is called a border of x. Borders and periods are in one-to-one
correspondence. Finally, we denote by per(x) the smallest period of x.

The base of many combinatorial properties of repetitions in words is given by
the well-known periodicity lemma of Fine and Wilf (see [L]). Its weak version
can be formulated as follows:

Let p and g be two periods of a word x. If p + g < |x]|,
then ged(p, q) is also a period of x.

pattern

text

Fig. 1. Left-to-right scan: |v| is a period of y = vz.
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The KMP string-matching algorithm is based on a linear-time computation of
periods of all prefixes of pattern p, and, since all these periods (or associated
borders) can be pairwise distinct, the space complexity of the algorithm is
inherently O(|p|).

The idea used in GS algorithm to save on space is to eliminate some prefix
periods of the pattern, namely its large periods. When the prefix y of Figure 1 has
a large period, the algorithm shifts the pattern to the right a number of places
less than the shortest period of y. This kind of shift is not optimal but no occurrence
of the pattern in the text is missed, and this avoids memorizing large periods.

Large periods are defined relative to an integer k that is always considered as
greater than 1 in the following. It is greater than 3 in [GS2]. We show that the
same approach works for k = 3 in a later section.

Recall that a word v is said to be primitive if it is not a power of another word,
that is, v = u' implies both u = v and i = 1. Note that the empty word is not -
primitive.

We now introduce the basic notions. Let v* be a prefix of x with v a primitive
word (k > 1). The word v is called a k-highly repeating prefix of x, a k-HRP of x,
or even an HRP of x when k is clear from the context. When v is a k-HRP of x,
the prefix v* of x has the smallest period |v]. Thus, we can consider the longest
prefix z of x which has the prefix period v. Then the scope of v is the interval of
integers [L, R] defined by

L=|v*| and R =]|z|

Note that, by definition, any prefix of x whose length falls inside the scope of v
has the prefix period v. Some shorter prefixes may also have the same period, but
we do not deal with them. Figure 2 shows the structure of scopes of k-HRPs of
a word x.

Let us take k = 2 and look at the Fibonacci word Fib, (recall that the sequence
of Fibonacci words is defined by Fib, = b, Fib, = a4, and Fib; = Fib,_,Fib,_, for
i > 2). Figure 3 displays the scopes of its 2-HRPs.

The following lemma shows that all the scopes of HRPs of a word x are pairwise
disjoint (see Figure 2), Lemma 2 gives a lower bound on periods of prefixes whose
length does not belong to any scope of an HRP. These two lemmas provide the
basic elements for a proof of Algorithm SIMPLE-TEXT-SEARCH (shown in
Figure 4).

l V3 l v3 .
' — T
I v2 I v2 I v2 l : .
1 —1 = = - [
"l ] 1 i i
T ; -
I o . I
R “ —_ s [S——
scope of v/ scope of v2 scope of v3

Fig. 2. Scopes of highly repeating prefixes.



Squares, Cubes, and Time-Space Efficient String Searching 409

lﬂbaabiaababaababaabaababaabaab

abaababaabaababaababaabaababaabaab

i Y,

66 10,11 16,19 26,32

Fig. 3. The ninth Fibonacci word: its repeating prefixes and associated scopes.

LemMa 1. Let[L,, R,] and [L,, R,] be the respective scopes of two different HRPs
v, and v, of x. Assume that |v,| <|v,|. Then R, < L,.

Proor. Let z be the prefix of length R, of x. If L, < R,, then the square v} is
a prefix of z. Therefore, the periodicity lemma applies to periods |v,| and |v,| of
the prefix v3. It implies that ged(v, |, |v,]) is a period of this prefix. However, since
lvg] < |v,|, ged(lvyl, lv,]) < |v,| and we get a contradiction with the primitivity
of v,. O

LEMMA 2. Let (v/i=1,...,r) be the sequence of k-HRPs of x. Let ([L;, R{]/
i=1,...,r) be the corresponding sequence of scopes. Then any nonempty prefix
u of x satisfies

per(u) = L;/2, if |u| is in [L;, R;] for some i,
per(u) > |ul/k, if not.

Proofr. Let u be a nonempty prefix of x. If |u| does not belong to any scope of
k-HRP, any prefix period of u has length greater than |u}/k. Thus per(u) > |u|/k.
Assume that |u| belongs to some [L;, R;]. It is then a prefix of some power
v¢ (e = 2 > 1) of the ith k-HRP v, of x. Word u has period |v;| which is equal to

Algorithm SIMPLE-TEXT-SEARCH
/* Searches text ¢ for pattern p. */
/* An O(r)-space version of the KMP algorithm, where r is the number of k-HRPs
of p. ([L;, R/i=1,...,r) is their sequence of scopes. ¥/
pos:=0; j:=0;
while pos < n —m do
{ whilej<mand p[j+ 1] =t[pos+j+1]doj:=j+1;
if j = m then return match at position pos; _
if j belongs to some [L;, R;] then { pos:= pos + Ly/2; j:=j — Ly/2;}
else {pos:= pos + | j/k]+ 1;j:=0;}

return false;
end.

Fig. 4. The searching-phase algorithm.
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L;/2 by the definition of scopes. Applying the preceding lemma, it can also be
deduced that u has no shorter period, which means per(u) = L,/2. O

Algorithm SIMPLE-TEXT-SEARCH is a version of the KMP algorithm. It is
an adaptation of the algorithms of [GS1] and [GS2]. During a run of the
algorithm, lengths of shifts are computed according to the property stated in
Lemma 2 on the list of scopes of k-HRPs. We assume that these intervals have’
been computed previously.

Inside Algorithm SIMPLE-TEXT-SEARCH, the test “j belongs to some
[L;, R;]” can be implemented in a straightforward way. It needs O(1) space in
addition to the list of scopes, and does not affect the asymptotic time complexity
of the algorithm. The clue is to have a pointer to the current scope, whose value is
recomputed each time variable j is modified.

THEOREM 3. Assume that the pattern p has r k-HRPs and that their list of scopes
and their list of lengths are already computed. Then the Algorithm SIMPLE-
TEXT-SEARCH solves the string-searching problem on p and t using O(r) space
and performing at most k- |t| symbol comparisons. The total complexity of the
algorithm is also linear in |t|.

ProoF. see [GS2]. To evaluate the time performance of the algorithm it can be
shown that the value of expression k - pos + j is strictly increased by each symbol
comparison. O

We now come to the preprocessing phase. It is presented in Figure 5 as
Algorithm PREPROCESS. We leave the proof of the time linearity of Algorithm
PREPROCESS to the reader. It is worth noting that the algorithm works in the
same way as Algorithm SIMPLE-TEXT-SEARCH, i.., as if the pattern is being
sought inside itself, which explains why it is linear.

Algorithms SIMPLE-TEXT-SEARCH and PREPROCESS require O(r) extra
space to work. This space is used to store the scopes of the k-HRPs of the pattern

Algorithm PREPROCESS
/* Computes the k-highly repeating prefixes of pattern p of length m. */
/* Returns their list of scopes (in increasing order) ([L;, R]/i=1,...,r) */
let SCOPE be an empty list;
posi=1; ji=0;
while pos + j <m do
{ while pos +j <mand p[j + 1] = plpos +j+ 1] doj:=j + 1;
if pos < (pos + j)/k then add [2*pos, pos + j] to the end of SCOPE;
if j belongs to some [L;, R;] in SCOPE then { pos:= pos + L;/2; j:=j — Ly2;}
else { pos:=pos+ |j/k]+ 1,j:=0;}

return SCOPE;
end.

Fig. 5. The preprocessing-phase algorithm.
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p. A simple application of the periodicity lemma shows that, for k > 3, a nonempty
word x has no more than log,_,|x| k-HRPs. This relies on the following fact: if
u and v are two HRPs of x and |u| < |v], then the stronger inequality holds,
(k — 1)+ |u| < |v|. However, the case k = 2 is more difficult to handle, and one of
our results is the logarithmic bound for the case k = 2 (see Section 5).

Denote by HRP1(x) and HRP2(x) respectively, when defined, the shortest and
the second shortest k-HRPs of a given word x. The basic tools are now properties
and interplay between HRP1s and HRP2s starting at some specific positions inside
the pattern. We can use Algorithm PREPROCESS to compute HRP1s and
HRP2s. The trick is simply to stop the execution of the algorithm the first time
it discovers the second HRP. This proves the following.

LEMMA 4. Assume that pattern p has at least two k-HRPs. The shortest and the
second shortest k-HRPs of p, HRP1(x) and HRP2(x) respectively, can be computed
in O(1) space and time proportional to the length of HRP2(x).

3. Cube Prefixes. What happens if the pattern has at most one k-HRP? We say
that such a pattern is k-simple. In this case, obviously, we can make string searching
in linear time using only O(1) memory space by applying Algorithms PRE-
PROCESS and SIMPLE-TEXT-SEARCH of the previous section. The most
memory consuming is the list of scopes, but now this list is reduced to only one
pair of integers specifying only one scope (or even no pair if the pattern has no
HRP at all). Unfortunately not all patterns are simple. For instance, if we take
k = 2, then the Fibonacci words are not simple. However, these words become
simple with k = 3. On the contrary, the word ((a®h)°c)° is not simple forany k < e.

When k < 3, words satisfy a remarkable combinatorial property (Theorem 5
below), originally discovered by Galil and Seiferas for k > 4 (see [GS2]):

each pattern p can be decomposed into uv
where u is “short” and v is a k-simple word.

With such decomposition of the pattern p the searching algorithm can be realized
conceptually in two phases as follows. First, find all occurrences of v, which is
efficient due to the simplicity of v. The algorithm SIMPLE-TEXT-SEARCH can
be used for this purpose. Next, check whether the occurrences of v are preceded
by u, which is fast due to the “shortness” of u. We define the shortness of u in
relation to the period of v. More precisely, we say that the decomposition p = uv
is k-perfect iff v is k-simple and |u| < 2 - per(v). The time-space optimal string-
searching algorithm is based on the next theorem. The proof is reported after the
algorithm.

THEOREM 5 (Decomposition Theorem). For k > 3, each nonempty pattern p has
a k-perfect decomposition.
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Algorithm TEXT-SEARCH
/* Searches text ¢ for pattern p. */
/* Let k > 3 and let uv be a k-perfect decomposition of pattern p */
find all occurrences of v in ¢ with Algorithm SIMPLE-TEXT-SEARCH;
for each position i of an occurrence of v in ¢ do :
{ check by a naive algorithm if u ends at i;
if “yes” then report the match at position i-ju|;

}

end.

Fig. 6. The searéhing phase with k-perfect decomposition.

Once we have a perfect decomposition of the pattern p, as explained above, we
can search for it with Algorithm TEXT-SEARCH (Figure 6).

The following theorem, proved in [GS2], shows that Algorithm TEXT-
SEARCH is time-space optimal, and that its time complexity depends monotonic-
ally on the parameter k.

THEOREM 6 [GS2]. Algorithm TEXT-SEARCH computes the positions of occur-
rences of pattern p inside text t. It uses constant extra memory space. It is linear
in time and makes at most (k + 2)-|t| symbol comparisons.

The rest of the section is devoted to the proof of Theorem 5. The proof is
constructive and eventually shows how to compute a perfect decomposition. We
first prove constructively that such a decomposition exists, and then analyze the
complexity of the construction. The proof essentially relies on two lemmas. In the
rest of the section, unless otherwise stated, HRP means 3-HRP, and analogously
for HRP1 and HRP2.

LEMMA 7. Assume that z = HRP1(x) is defined and let x = zx'.

(a) If HRP2(x) is defined, HRP2(x)| > 2- |HRP1(x)|.
(b) If HRPI1(x) is defined, HRP1(x) is a prefix of HRP1(x').

Proor. The statements are illustrated in Figures 7 and 8. Use the periodicity
lemma and the fact that k-HRPs are primitive words. O

HRPI1(x)
vl IvI | vl |

T
I
| x
I

v2 l v2 | v2
HRP2(x)
Fig. 7. (Lemma 7(a).) HRP2(x) is at least twice as long as HRP1(x).
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HRP1(x)
] ! 1
7 7 7]
| vl ! x' —l
i v2 I v2 I v2
HRPI(x")

L

Fig. 8. (Lemma 7(b).) Sizes of HRP1 are nondecreasing,

The structure of the decomposition algorithm is based on a sequence V(x) of
HRPIs. The elements of the sequence V(x) = (vy, v,, .. .) are called working factors,
and are defined as follows. The first element v; is HRPL(x). Let x = v,x’, then v,
is HRP1(x"), and so on until there is no HRP1. In particular, the sequence is empty
if x does not start with any kth power. Lemma 7 shows that the sizes of the v’s
are in nondecreasing order. The next lemma completes properties of their sizes:
" some v; eventually reach the length of HRP2(x), which is at least twice the length
of v, by Lemma 7 again (see Figure 9).

LEmMA 8 (Key Lemma). Let V(x) = (v, v,,...) be the sequence of working factors
of x, and assume that HRP2(x) exists. Let i be the greatest integer such that
|vy -+ v;] <|HRP2(x)|. Then, if v, exists, |v;4 | = |HRP2(x)|.

Proor. Let w be HRP2(x) and assume that v;, , exists. The assumptions imply
that v, , overlaps the boundary between the two first occurrences of w as shown
in Figures 11 and 12. We show that v,,, cannot be shorter than w. Assume that
the contrary holds. Let y and y" # ¢ be defined by the equalities w = v v, - 1)
and v;,, = y'y. Because we assume v, ; is shorter than w, y is a prefix of w, so
that we can consider the word z defined by w = yz. We now focus our attention
on the word w' = zy, a rotation of w.

Case 1. We first consider the situation when the beginning of w' (inside the first
occurrence of w) falls properly inside some v; (see Figure 11). Integer j is less than
i + 1because |v;,| < |w'|. Since w = HRP2(x), w? is a prefix of x, and then another
occurrence of w' immediately follows the occurrence we consider at position |y|.
Because v;,; is in HRP1, two other occurrences of it appear after the one at
position v, - - v;|; v;4 ¢ is thus a prefix of w'. By Lemma 7(b), we know that v; is
a prefix of v;,,. Both arguments imply that v; is a prefix of w'. This eventually

=
1
1
|

w I w ]‘
HRP2(x)
Fig. 9. The sequence of HRP1s (| v4| = |w}).
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=
L

Fig. 11. Case 1: impossible because v2 is primitive.

implies that v; is an internal factor of v;v;, a contradiction with the primitivity of
v; because, for a primitive word x, the situation presented in the Figure 10 is

impossible.
Case 2. The second situation is when w' = v;- - vv;4, (see Figure 12). Again
hypothesis |v;,,| < |w| leads to j < i+ L. This implies 2|v;| < |w| by a simple
" application of the periodicity lemma. Therefore, the word v; is also a 3-HRP1 of
zyz, because the latter is longer than 3|v;|. Thus, just after the occurrence of w’
which is considered, v; is still an HRP1. This proves, through Lemma 7(b), that
v;+1 = v;. However, then w' is a nontrivial power of v;, and its rotation w =
HRP2(x) is not primitive, a contradiction. O

Lemma 8 yields the notion of special positions in x. The first special position
of x is defined as the length of the word v, - - - v; which arises from Lemma 8. If
x = v, - v;x, then the second special position is defined on x’ in the same manner,
and so on until no application of Lemma 8 is possible (see Figure 13). If x has no
HRP2, or even no HRP1 at all, the first position O is the only special position
(corresponding to the decomposition (g, x) of x).

<
[
N
N
<~
e}
I —
<
BN

- ]
I— ] |

Fig. 12. Case 2: impossible because w = HRP2(x) is primitive.

T
1
|
1
N
E
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vl |v2 |v3 v4 v5

at most one HRP

HRP2

S [ —

| Z v

Fig. 13. The sequence of working factors v, v2,... leads to special position e, and to the 3-perfect
decomposition uv of x.

THEOREM 5 (Decomposition Theorem). Let j be the last special positon of x. Let
u=x[1..j] and v = x[j + 1..n]. Then the decompositon uv of x is a k-perfect
decomposition for k > 3.

ProoF. By definition of the sequence of special positions of x, v is certainly
3-simple because it has at most one HRP. Indeed, word v is k-simple for any
k = 3. It remains to prove that |u| < 2-per(v). The key point is that each next
HRP2 is at least twice as large as the preceding one. This follows from Lemmas
7 and 8. 0

The algorithm given by Galil and Seiferas [GS2] to compute perfect decomposi-
tions can be described informally as follows:

— Compute the sequence of special positions from left to right (see Figure 13).
- Compute the sequence of HRP1s to get the special position within the current
HRP2 (see Figure 9).

A more formal description of the algorithm is given in Figure 14.

The correctness of Algorithhm DECOMPOSE immediately follows from the
decomposition theorem (through Lemmas 7 and 8). The time complexity of the
algorithm may be roughly analyzed as follows: from Lemma 4, the cost of the
computation of the working factors is proportional to the total length of consecu-
tive HRP1s, which is linear; the cost of the computation of consecutive HRP2s is
proportional to their total length, which is also linear. Hence the algorithm takes
linear time and constant extra space.

Algorithm DECOMPOSE(x)
/* Computes a k-perfect decomposition of pattern x (k > 3), HRP is related to k. */
j:=0; hrpl:= |HRP1(x)|; hrp2:= |HRP2(x)|;
while 2rpl and hrp2 exist do
{ je=Jj+ hrpl; hrpl:=|HRP1(x;, "+ X,)I;
if hrpl > hrp2 then hrp2:= |HRP2(x;., ' - x,)|;
}
return the decomposition (x4 -~ - Xj, X;41 ** - X,) of x;
end.

Fig. 14. Computing perfect decompositions.
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&, aabaababaabaababaabaabab aabaa, babaabaababaabaabab

aa baba
a, abaababaabaababaabaabab  aabaab, abaabaababaabaabab
abaaba abaaba
aa, baababaabaababaabaabab - aabaaba, baabaababaabaabab
baababaaba baabaa
aab, aababaabaababaabaabab  aabaabab, aabaababaabaabab
aa aa
aaba, ababaabaababaabaabab
abab

Fig. 15. Shortest squares, prefixes of the right parts of the factorizations.

4. The Perfect Decomposition Theorem Does Not Hold for £ = 2. In the previous
section the k-perfect decomposition theorem has been proved for k > 2. We show
here that this is the smallest bound. This means that the GS algorithm does not
work in constant space for k = 2. It works, however, in logarithmic space, as we
will see in the next section.

The consequence of the following proposition is that if uv is a factorization of
x with v having at most one 2-HRP, then u cannot always be kept small. The
proof is based on a rather short example shown in Figure 15.

ProposITION 9. The decomposition theorem does not hold for k = 2. More pre-
cisely, for any constant ¢ > 0 infinitely many words x with the following property
exist: if uv is a factorization of x such that v has at most one 2-HRP, then
|u|/per(v) > c (indeed, an even stronger inequality holds: |ul/|v| > c).

PrOOF. Let w = aabaabab. Note that the smallest period of this word and thus
of w" (n-> 0) is its length |w| = 8. Consider a factorization of the word w? of the
form uu'w? (with u, ' € A* and w = uw'). The word v = w'w? obviously starts with
the square (w'u)® but, as shown in Figure 15, it also starts with a strictly shorter
square. For instance, if u = aa and u’ = baabab, v starts with the square (baaba)®.
The factorization (aabaababaa, baababaabaabab) of w* is such that the right part
has at most one 2-HRP. The word v = baababaabaabab is indeed the longest suffix
of w® with this property. Thus, to meet the result of the proposition, one simply
has to choose x = w" for a large enough integer n. O

5. Square Prefixes: k = 2 Works Well With Logarithmic Space. In this section
we consider again 2-HRPs of patterns. It remains to consider prefixes of the form
u? of a word x, with y a primitive word. We call them square prefixes.

The number of square prefixes of a word can be logarithmic as happens for
Fibonacci words (see Figure 3). This follows easily from the recurrences defining
Fibonacci words and from the fact that two consecutive Fibonacci words “almost”
commute (up to the exchange of the last two symbols). We show that the maximal
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Fig. 16. Case 1 in the proof of Lemma 10.

number of square prefixes of a word is also logarithmic and is precisely less than
logg| x|, where @ is the golden ratio. Moreover, we characterize the words that
reach- the bound. As a consequence this shows that Algorithms SIMPLE-TEXT-
SEARCH and PREPROCESS of Section 2 work in logarithmic space when
applied with k£ = 2.

Theorem 11 completes the note of Section 2 on the logarithmic number of
k-HRPs for k > 3. Its proof is based on the next lemma, that gives a fundamental
property on the lengths of square prefixes. The relation between three periods of
a square prefix parallels the recurrence relation defining Fibonacci numbers.

LeMMA 10.  Let ul?, u2?, u3? be three prefixes of x such that ul, u2, u3 are primitive
and \u3| < |u2| < |ul|. Then |u2] + |u3] < |ull.

Proor. Let pl, p2, p3 be the respective lengths of the three words ul, u2, u3.
When p2 < pl/2, since p3 < p2, we obviously get the conclusion p2 + p3 < pl.
We then assume p2 > pl/2 which implies that u1 is a prefix of u22. We consider
the word of length pl — p2, vl = u2~ 'ul, that is both a prefix of 42 and a suffix
of ul. The integer |v1|, less than p2, is a period of u2 (u2 occurs at position p2 in
x, and also at position pl in x because u2 is a prefix of ul).

It remains to prove that p3 < |vl|. We assume ab absurdo that |vl} < p3. We
consider two cases according to the length of u3. They are illustrated in Figures
16 and 17.

u2 i w2

- T
-

vl | vi | L —— :

—- 4

| v3 v2 I

Fig. 17. Case 2 in the proof of Lemma 10.
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Case 1 (see Figure 16). We first rule out the situation when u3? is a prefix of
u2. It happens then that 43 has two periods p3 and |v1|. Moreover p3 + |vl| <
2-p3 = |u3?|. The periodicity lemma applies and proves that ged(p3, |v1]) is also a
period of u32. Since this period, less than p3, divides p3 = |u3|, it follows that u3
is not primitive, a contradiction.

Case 2 (see Figure 17). We consider now the opposite situation when u2 is a
prefix of u3%. The word u2 has periods p3 and |v1|. As in Case 1, if the periodicity
lemma applies to the word u2, we get a contradiction with the primitivity of u3.
Thus, the lemma does not apply, which means that p3 + |v1]| > p2. Let v2 be the
word u3~1 u2. It is both a prefix of u3 and a suffix of u2. Since it has length
p2 — p3, it is shorter than v1:|v2| < |v1|. Note that |v2]| is a period of u3 (43
occurs at position p3, and at position p2 as a prefix of u2). Let »3 be such
that u3 = vl1v3 (vl is a prefix of u3 because we assume ab absurdo that |vl| < p3).
We have u2 = vlv3v2 (see Figure 17).

Consider as a first step the word v3u2. Since [v1| is a period of u2, v3v2 is a
prefix of u2. Moreover, it is a proper prefix of u3 because its length [v3]| + |12]
is smaller than the length of u3, |v3] + |v1]. Therefore, the word v3v2 occurs
at positions |v1| and |v123| in x, which proves that it has a period |v3|. It also has
a period |p2|, like 43. The periodicity lemma applies: r = ged(|v3|, |v2]) is a period
of v3v2. The conclusion of this first step is that r is a period of u3 itself
because r divides the period |v2| of u3.

In a second step we consider the word u3. It has periods r and |v1|. We have
r + |vl] < |v3| + |vl] = |u3]. By the periodicity lemma once more, ¥ = ged(r, [v1])
is a period of u3. However, ¢’ that divides both |v1| and |v3]| also divides their sum

|vl] + |v3]| = |u3|. This is impossible because u3 is primitive. This ends Case 2.
Since both cases are impossible, p3 < |v1|, and the conclusion follows: p2 +
p3 < pl. dJ

The inequality conclusion of Lemma 10 cannot be improved. For instance, the
Fibonacci word of Figure 3 has four square prefixes of respective lengths 6, 10,
16, and 26. Furthermore, it is well known that f? is a prefix of the Fibonacci
word f;, for all i in the interval (4,...,j — 2).

ExampLE. The word ababaabababaab begins with squares of lengths 4, 10, and 14
corresponding to the 2-HRPs ab, ababa, and ababaab. Computation proves that
no shorter word can have three 2-HRPs like it.

Fact. The word aabaabaaabaabaabaaab begins with squares of lengths 2, 6, 14,
and 20 corresponding to the 2-HRPs a, aab, aabaaba, and aabaabaaab. Computa-
tion proves that no shorter word can have four 2-HRPs like it. Moreover, it is
the unique word of length 20 on the alphabet {a, b} (up to the exchange of letters
a and b) having this property.

- THEOREM 11. The number of square prefixes of a nonempty word x is less than
loggix| (where @ stands for the golden ratio; ® = (1 + \/g)/Z =1.618...).



Squares, Cubes, and Time-Space Efficient String Searching 419

Proor. We first prove that, for i > 1, if x has i 2-HRPs, then |x| >2-F,,,
(where F,; is the ith Fibonacci number, F;=|f]). For i=1, |[x|=2=2"F,.
Fori= 2, |x| > 6 > 2-F; = 4. By the fact stated in the example above, for i = 3,
|x} = 14 > 2- F,. The rest of the proof is by induction on i. Let i > 4. Let ul, u2,
and u3 be the three longest 2-HRPs of x (in order of decreasing lengths). The word
u3? has exactly i-2 2-HRPs. By induction its length is then greater than 2-F;_,.
For the same reason |u2?| > 2 F;. By Lemma 10, we get |ul| > |u3| + |42| which
implies 2+ |ul| >2-F,_, +2-F,=2-F;,,. Thus |x| = 2-F,,,, as expected. The
Fibonacci number F,., is greater than (or equal to) ® 1. Thus |x| > 2 -®' !
which yields i < logg|x|, an inequality that also holds for i = 1. O

It is known from [KMP] that the number of certain periods of a word is
bounded by logg|x|. These periods of x are all greater than (or equal to) per(x),
the smallest one. From this point of view, the result of Theorem 11 is a dual result
that gives the same bound on the number of small starting periods of x. They are
all not greater than per(x). The word shown in the above fact gives an example
of a word which reaches the maximum number of square prefixes. The next
proposition is a continuation of this example.

ProposiTION 12.  Consider (u;/i > 0) the sequence of words on the alphabet {a, b}
defined by

Uy =4a, u,;=aab, u,=aabaaba, and u;=u,_u;_, for i=3.

Then, for each i, u? has the maximum number of square prefixes. Moreover, for i > 3,
u? is the unique word on the alphabet {a,b} having this property (up to a

permutation of letters a and b).

Proor. A consequence of the above fact and Lemma 10. O

6. Time-Space Optimal Computation of Periods (k = 7). The evaluation of the
periods of a word is strongly related to the computation of all overhanging
occurrences of a pattern in a text. Indeed, periods of a word correspond to
overhanging occurrences of the word over itself (see Figure 18). An overhanging
occurrence of the pattern p in the text ¢ is specified by a suffix z of ¢ that is also
a proper prefix of p. If ¢ is written yz, the position of the overhanging occurrence
of p is |y|, and if ¢t = p, the position |y]| is also a period. of p, as already noted in
Section 2.

- ——

®
1 |

-
a period of x

Fig. 18. Period and overhanging occurrence.
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String-searching algorithms which use left-to-right scanning of the pattern
against the text can be naturally extended to compute overhanging occurrences
of the pattern. Thus, they can be used to compute all the periods of a word. It is
the case for the algorithm of Knuth, Morris, and Pratt [KMP] and its variations,
and also for the time-space optimal algorithm of Crochemore [C]. We show that
the algorithm of Galil and Seiferas is also adapted for this purpose, provided the
parameter k is large enough (k = 7). This then leads to a new time-space optimal
algorithm for computing periods in words. '

The computation of periods through the GS algorithm given in [GS2] was
based on the following assertion: “per(x) is the position of the second occurrence
of x inside xx.” Unfortunately, this assertion does not always hold. For instance,
X = ababa has period 2 and the second occurrence of x inside xx is at position 5.
Indeed, the assertion holds when x is a power of its shortest prefix period.

Let uv be a k-perfect decomposition of the pattern p. If u is empty, the algorithm
of Section 2 naturally extends to the computation of overhanging occurrences. It
works in linear time and constant space. The situation is different when u is
nonempty because v can have many overhanging occurrences in ¢ and thus u could
be scanned too many times by the algorithm. To avoid this situation we impose
a condition to the decomposition of the pattern and this yields the choice k = 7
for the parameter.

Assume u is not empty and k > 3. The pattern p can then be written p =
uv = w'w*v’ with «’ a proper prefix of u, |u| < |w|-(k — 1)/(k — 2), and k < k". The
word w is the last k-HRP2 computed by Algorithm DECOMPOSE of Figure 14.

We define the following condition:

() lul +2-|w] < |pl/2.

LEmMA 13. Let uv be the k-perfect decomposition of p computed by Algorithm
DECOMPOSE. If u is nonempty and k > 7, then condition () is satisfied.

Proor. K u is nonempty we know that p contains k-HRPs. Let p
uw¥v'" where w is the last k-HRP2 computed by Algorithm DECOMPOSE.
Then |u]l < |w|-(k—1)/(k—2) and |v|>|w]|-(k —1). Condition (x) is also
[v]/2 = {u]/2—2-|w|=0or |v]| —|u]| —4-|w] = 0. We have |v] — |u| — 4 |w| =
lwi-(k—1)—|w|- (k — 1)/(k — 2) — 4-|w]|. The inequality k — 5 — (k — 1)/(k — 2) =
0 is satisfied for k > 7. : O

To compute overhanging occurrences of p in t we may assume without loss of
generality that |t| = |p|. The core of the algorithm is a procedure that computes
the overhanging occurrences of p which starts in the left half of ¢ (see Figure 19).

LEMMA 14. On entry p and t, Algorithm Left_Occ works in constant space and
time O(n) where n = [t| = |p|.

Proor. The result is obvious if u is empty. If not, since condition (x) is satisfied,
the number of overhanging occurrences of v starting in the left half of ¢ is less
than n/|w|, where w is the last k-HRP2 computed by Algorithm DECOMPOSE.
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Function Left_Occ (p, t)
/* It is assumed that |t| = |p| */
/* Computes the set {|y|/t = yz, z prefix of p, and |y| < |£]/2} of positions of p in
the left half of ¢ */
P:=;
compute 7-perfect decomposition (u, v) of p;
find all overhanging occurrences of v starting in the left half of ¢ with
Algorithm SIMPLE-TEXT-SEARCH;
for each position i of an occurrence of v in ¢ do
if u is a suffix of ¢[1] ... ¢[i] then add i to P;
return P;
end.

Fig. 19. Computing left overhanging occurrences.

Thus, testing for occurrences of u in ¢ takes less than (n/|w|)- 6/5 - |w| comparisons
because |u| < 6/5-|w|. The time is then O(n). O

To compute all overhanging occurrences of p in t, we first apply the algorithm
Left_Occ and then repeat the same process with both the right half of ¢t and the
left half of p (Figure 20).

TuEOREM 15. Algorithm Ov_Occ finds all overhanging occurrences of p in t in
constant space and time O(n) where n = |p| = |t|.

Proor. The correctness is left for the reader. Constant space is enough to
memorize left or right parts of input strings. The time complexity is bounded by

cn+tcn2++cn2,

where ¢ is the constant of proportionality for Algorithm Left_Occ. This quantity
is less than 2 - ¢- n which proves the result. O

Corollary 16. Algorithm Ov_Occ finds all periods of a word of length n in constant
space and time O(n).

Function Ov_Occ (p, t)
/* Computes all the overhanging occurrences of p in t; we assume |t| = |p| */
P:= Left_Occ(p, t);
while 7-perfect decomposition of p is different from (e, v) do
{ n:=t|/2; t:=right half of ¢,t[n + 1..|t[]; p:= left half of p of length
[t| —n; add Left_Occ(p, t) + nto P:}
return( P );
end.

Fig. 20. Computing overhanging occurrences.
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Proor. Apply Ov_Occ to the pair (p,p) and note that the position of an
overhanging occurrence of p over itself is a period of p (see Figure 18). ]

7. Optimal Parallel Computation of the 4-Perfect Decomposition. We assume in
this section that k = 4. Assume that vl = HRP1(x) exists. Consider the maximum
integer e such that v1° is prefix of x (¢ > 4 because k = 4). Define LongHRP1(x)
to be w =v1°73, Let x’ be such that x = wx". By definition of v1 and e, v1 is not
the HRP1(x'). Since HRP(x') cannot be shorter than v1, if it exists it is longer than
vl (see Figure 21).

We define the parallel working sequence of the word x as follows: P(x) is empty
if LongHRP1 (x) is undefined; otherwise x = LongHRP1(x)x'; the first element of
P(x) is LongHRP1(x) and the rest of the sequence is defined similarly on x'.

We compute the elements of the parallel sequence P(x), or more precisely the
sequence of positions of LongHRP1s occurring in the sequence. The crucial point
in the parallel algorithm is the following fact due to k = 4 (and the periodicity
lemma):

Fact Let P(x) = (w;, w,,...) be the parallel working sequence of x. For i > 0,
2-|w;| < |w;y|- The length of P(x) is O(log|x]).

We use the components of the string-searching algorithm of Vishkin [V] to
compute the basic functions used in the preprocessing phase of the GS algorithm.

LemMA 17. Assume HRP1(x), HRP2(x), and LongHRPI(x) exist. Let nl, n2,
and n3 be their respective lengths. Let n = |x|. Then HRP1(x), HRP2(x), and
LongHRP1(x) can be computed by an optimal parallel algorithm in O(log n) time
on a CRCW PRAM. They use respectively nl/flog(n), n2/log(n), and n3/log(n)
processors. If HRP1(x) or HRP2(x) do not exist, then the number of processors is

O(n/log(m)).

ProOF. We use the version of Vishkin’s algorithm given on pp. 225-230 of [GR]
and consider the pattern preprocessing phase. Vishkin’s algorithm is technically
quite involved. Instead of going into details we use the components of the
algorithm. In one stage the procedure MakeSparse is applied to bigger and
bigger prefixes of the pattern (the sizes double) until a first periodic prefix

continuation of v/
Vel N T~
|v1|v1|v1|v1|v1|v1|1'f1]
I -
1
I
[}
1
I

X
¥ 1

L
LongHRP1() 2 | v2 | V2

Fig. 21. The next HRP1 is double the length (|v2| > 2-|v1]).
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is discovered. The prefix is periodic iff its period does not exceed half of its
length.

If we discover the first prefix period vl, then we check whether it is an HRP1(x)
and compute its continuation C (see Figure 21). This can be done using the
procedure PeriodCont on p. 228 of [GR] and a kind of binary search. If we
know the continuation C of the prefix period vl and its size, then computing
LongHRP1(x) is a simple matter.

The computation of HRP2(x) can be done essentially in the same way, the
procedure MakeSparsePeriodic from [GR] can be used. The table of witnesses
can be computed for the prefix C and the algorithm looks for the next supposed
prefix period. We refer the reader to pp. 225-230 of [GR] for technical details.

The time complexity and the number of processors are of the same order as
that of the whole string-searching algorithm of Vishkin, restricted to the part of
the pattern which is inspected. Hence the total number of operations is propor-
tional to the size of the computed objects, if they are nonempty. If they are empty,
then the number of all operations is merely proportional to the total size n of the
input pattern. This completes the proof. O

Using parallel versions of functions HRP1, HRP2, and LongHRP1 the parallel
algorithm is a simple version of the sequential pattern preprocessing. Its correct-
ness follows from the correctness of the sequential counterpart.

THEOREM 18. The 4-perfect decomposition of a word x of length n can be found in
log? n time with nflog® n processors of a CRCW PRAM or in log® n time with
n/log® n processors of a CREW PRAM.

ProoF. Let us analyze the Algorithm Parallel 4-perfect decomposition (Figure
22). We have a logarithmic number of positions induced by the parallel working
sequence. Hence there are O(log n) stages in the algorithm. In one stage we compute
several objects using a number of operations proportional to the size of
computed objects. The computation of HRP1(x;, , - -- x,), LongHRP(x;, - - x,),
and HRP2(x;, ; - -- x,) on a CRCW PRAM takes logarithmic time. Due to Lemma
17 the total number of operations performed in one stage is proportional to the
sizes of computed objects. However, the same analysis as that in the sequential
case shows that the total size of these objects (HRP1s, LONGHRP1s, and HRP2s)
computed in the algorithm is linear. Hence we have a parallel algorithm which
works in log? n time and performs in total a linear number of operations. Due to

Algorithm Parallel 4-perfect decomposition
i:= 0; hrpl := |HRPI1(x)|; longhrpl:= |LongHRP1(x)|; hrp2:= |HRP2(x)|;
while longhrpl and hrp2 exist do
{ i:=i+ longhrpl; hrpl:= HRPI(x;,, - - x,)|; longhrpl:= |LongHRP1(x; ;- " x,)|;
if hrpl > hrp2 then hrp2:= HRP2(x;,, " x,)| }
return the decomposition (x; - X;, X;41 " X,);
end.

Fig. 22. Parallel perfect decomposition.
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Brent’s theorem (see p. 12 of [GR]) the number of processors can be reduced to
n/log® n. Brent’s theorem does not deal with the allocation of processors. However,
it can be easily seen that our algorithm can use the same processor allocation as
Vishkin’s algorithm for string searching. In fact we use the same components as
Vishkin’s algorithm and even the structure of the whole algorithm is the same
(processing exponentially increasing segments of the pattern).

In the CREW model the situation is analogous. We need another log(n) factor
for the time complexity, similarly as in Vishkin’s algorithm. The computation of
boolean “or” and “and” now takes logarithmic time instead of constant time like
in the CRCW model. Hence the algorithm finds the same 4-perfect decomposition
as the sequential one. It does it within the claimed complexity bounds. This
completes the proof. O

It would be interesting to know whether it is possible to reduce the time
complexity by a logarithmic factor.

8. Final Remarks. Shifts in Algorithm SIMPLE-TEXT-SEARCH can be im-
proved as shown by the following lemma. Let us reconsider first the scope of an
HRP. Let v be a k-HRP of x and consider the longest prefix z of x which has
prefix period v. We define the extended scope of v as the pair ([L, R], a) where
[L, R] is the scope of v (L = |v*|, R = |z|) and a is the (unique) letter such that za
has the prefix period v (za is not a prefix of x by the definition of z).

LEMMA 19 (see Figure 23). Let (v;/i = 1,...,r) be the sequence of k-HRPs of x.
Also let ([L;, R;], a))/i = 1, ..., 1) be the corresponding sequence of extended scopes.
Let u be a prefix of x, and let a be a letter such that ua is not a prefix of x. Then
per(ua) = L;/2 if |ul is in [L;, R;] for some i and a = a;,
per(ua) > |ua| — L;/2 if |u| is in [L;, R;] for some i but a # a;,
per(ua) > |ul/k  otherwise.

Extended scopes can also be used to enlarge intervals [ L, R]: when v is a k-HRP
of x, we can define L as the length of the shortest prefix of x having v has the

4 N T _——
|2 / 3!
- / scope of v -

shift =yl - M + 1 shift = M shift = i /&

Fig. 23. Rule for shifts in scopes, at the end of a scope and outside a scope.
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shortest prefix period. When doing so, the length of this period should be
memorized together with the scope, because it is no longer L/2 as in previous
sections. '

Both points mentioned here lead to a more practical implementation of the
algorithms of this paper, but have obviously no influence on the asymptotic time
complexities.

Acknowledgments. We thank the referees for their interesting questions concern-
ing this work. The discussion on a possible relation between the logg n bound for
the number of 2-HRPs of a string and the length of its sequence of borders
considered in the algorithm of [KMP] has not reached an end. We believe that
such a relation possibly exists for words having a large (according to their length)
number of 2-HRPs.
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