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Squares, Cubes, and Time-Space Efficient String Searching 

M. Crochemore!  and  W. Rytter  2 

Abstract. We address several technical problems related to the time-space optimal string-matching 
algorithm of Galil and Seiferas (called the GS algorithm). This algorithm contains a parameter k on 
which the complexity depends and that originally satisfies k > 4. We show that k = 3 is the least 
integer for which the GS algorithm works. This value of the parameter k also minimizes the time of 
the search phase of the string-searching algorithm. With the parameter k = 2 we consider a simpler 
version of the algorithm working in linear time and logarithmic space. This algorithm is based on the 
following fact: any word of length n starts by less than log~ n squares of primitive prefixes. Fibonacci 
words have a logarithmic number of square prefixe s. Hence, the combinatorics of prefix squares and 
cubes is essential for string-matching with small memory. 

We give a time-space optimal sequential computation of the period of a word based on the GS 
algorithm. The latter corrects the algorithm given in [GS2] for the computation of periods. We present 
an optimal parallel algorithm for pattern preprocessing. This paper also provides a cleaner version 
and a simpler analysis of the GS algorithm. 

Key Words. Analysis of algorithms, Algorithms on strings, Pattern matching, String matching, 
Periods of words, Parallel algorithms 

1. Introduction. This paper  discusses the s t r ing-matching problem:  f inding all the 

occurrences of a pat tern  within a text. 
The algori thm of Gali l  and  Seiferas [GS2]  was the first t ime-space opt imal  

a lgori thm for the str ing-searching problem, and  its existence even disproved a 
conjecture stated by the authors  [GS1].  The algori thm works in time l inear in 

the size of input  words and  requires only a cons tan t  addi t ional  memory  space. 
Later we refer to this a lgori thm as the GS algorithm. The basic parameter  of the 

algori thm is an integer k. As is writ ten on p. 281 of [GS2] :  " the cons tant  of 
propor t ional i ty  in our  a lgor i thms '  worst-case runn ing  times will be propor t iona l  
to k, so there is a practical reason to keep k small." The GS algori thm was 
originally designed with k > 4. Recently, two other t ime-space opt imal  string- 

searching algori thms were discovered, see [CP]  and  [C]. However,  despite this 
we believe that  the GS algor i thm is of so great impor tance  that  it deserves further 

investigation. In  this paper  we show that  the GS algor i thm also works with k = 3. 
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At the same time, we present a complete proof of the result which provides a 
cleaner version and a simpler analysis of the GS algorithm. 

The GS algorithm can be treated as a space-efficient implementation of the 
algorithm of Knuth, Morris, and Pratt [KMP].  The K M P  algorithm essentially 
works in stages composed of a left-to-right scan of the pattern against the text 
followed by a shift of the pattern to the right. The main operation in one stage 
consists of making a suitable safe shift of the pattern. We refer the reader to 
[KMP] and I-A] for the definition of the shift function and the failure function 
related to the algorithm. More recently, Simon IS] has improved on the K M P  
algorithm, using a clever implementation of the automaton underlying it. In I-C] 
a time-space optimal string-searching algorithm is presented that can also be 
considered as an efficient implementation of the K M P  algorithm. 

Space-efficient implementations are based on properties of the periods of prefixes 
p[1 .. i] of the pattern p. If we know that the periods of these segments are always 
large with respect to i, then it is easy to reduce space, memorizing a single constant 
of proportionality. If the period of a prefix is small, then the pattern starts with 
a segment, which repeats in the pattern several times, say k times. Such a segment 
is defined later in this paper as a highly repeating prefix (HRP). The main parameter 
of the HRP is the number k which essentially describes the continuation of the 
HRP as a period. If k = 2, then the HRP yields a square prefix, if k = 3 it leads 
to a cube prefix. Hence, the combinatorics of cubes and squares in strings plays 
an important role in the problem. In particular, if the string is cube-free or 
square-free, the string searching is much simpler (no pattern preprocessing is even 
needed). 

We show that the number of HRPs of a word x is O(loglxl). The result is very 
easy to prove for k > 3, but the proof becomes very intricate for k = 2. In this 
ease the bound on the maximum number of HRPs is shown to be less than log~ Ix ], 
where �9 is the golden ratio. We even exhibit the words that reach the upper bound. 
As a coincidence, the bound log~[xJ is the same as the bound on the number of 
certain periods of the entire word x that come in the analysis of the K M P  
algorithm (see [KMP]). 

We further examine the problem of computing all the periods of a word. A 
linear-time algorithm may be derived from the K M P  algorithm. A time-space 
optimal algorithm to compute the periods of a word is given in [C]. We show 
that the GS algorithm can also be adapted for this purpose, provided the parameter 
k is chosen large enough (k > 7). Thus, this leads to a new time-space optimal 
algorithm for computing the periods of a word. It also corrects a flaw in [-GS2]. 

The preprocessing phase of the GS algorithm consists of a decomposition of 
the pattern that we call a k-perfect decomposition. We show that preprocessing can 
be efficiently computed in parallel. To do so, we assume that k > 4, and we show 
how to compute a 4-perfect decomposition of the pattern in time logZn with 
n/logZn processors in the CRCW PRAM model. The complexities becomes 
respectively log 3 n and n/log 3 n in the CREW PRAM model. 

The paper is organized as follows. The time-space optimal string-searching 
algorithm is presented in Section 2. It is based on the decomposition theorem 
proved in Section 3. Sections 4 and 5 are devoted to the case k = 2. The former 
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shows that the proof  of Section 3 cannot be extended to this case, and the latter 
provides the accurate upper bound on the number  of squares, prefixes of a word. 
The t ime-space optimal computat ion of periods is given in Section 6. The last 
section presents the parallel algorithm for the decomposition of a word. 

Throughout  this paper  we consider a text t and a pattern p. Words t and p are 
on the same alphabet A. The empty word of A* is denoted by e. 

2. Highly Repeating Prefixes. String-searching algorithms repeatedly perform a 
series of scans of the pattern against the text, and shifts of the pattern t o t h e  right. 
We are first interested in algorithms that perform left-to-right scans, as the K M P  
algorithm does. In these algorithms the current situation is when a mismatch is 
met during left-to-right scanning. The next step is then a shift of the pattern to 
the right. At this point, the algorithm has discovered inside the text t an occurrence 
of a prefix y of the pattern p followed by a letter b (see Figure 1). If y is the pattern 
itself, then an occurrence of the pattern is found. If  not, ya is a prefix of p for 
some letter a ~ b. 

The shift that comes next must if possible keep a prefix of the pattern matching 
the text. This is realized by both the K M P  algorithm and Simon's algorithm. It 
is easy to see the following fact: 

Let x = vz with v nonempty. Then z is a prefix of x 
iff x is a prefix of some power v e of v. 

When x is prefix of V k for some nonempty prefix v of x, v is called a prefix period 
of x, and the integer I v l is called a period of x. In other words, two letters occurring 
in x at distance I v l coincide. The word z of the above fact, which is both a proper 
prefix and a suffix of x, is called a border ofx. Borders and periods are in one-to-one 
correspondence. Finally, we denote by per(x) the smallest period of x. 

The base of many  combinatorial  properties of repetitions in words is given by 
the well-known periodicity lemma of Fine and Wilf (see ILl). Its weak version 
can be formulated as follows: 

Let p and q be two periods of a word x. If p + q < I x], 
then gcd(p, q) is also a period of x. 

pattern v ] z ]al I 

,'l scalay ~'-I [ 

text ', : 
Shift ~i [ v' [a I I r I 

Fig. 1. Left-to-right scan: Iol is a period of y = vz. 
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The K M P  string-matching algorithm is based on a linear-time computat ion of 
periods of all prefixes of pattern p, and, since all these periods (or associated 
borders) can be pairwise distinct, the space complexity of the algorithm is 
inherently O(Ip I). 

The idea used in GS algorithm to save on space is to eliminate some prefix 
periods of the pattern, namely its large periods. When the prefix y of Figure 1 has 
a large period, the algorithm shifts the pattern to the right a number of places 
less than the shortest period ofy. This kind of shift is not optimal but no occurrence 
of the pattern in the text is missed, and this avoids memorizing large periods. 

Large periods are defined relative to an integer k that is always considered as 
greater than 1 in the following. It  is greater than 3 in [GS2]. We show that the 
same approach works for k = 3 in a later section. 

Recall that a word v is said to be primitive if it is not a power of another word, 
that is, v = u / implies both u = v and i = 1. Note that the empty word is not 
primitive. 

We now introduce the basic notions. Let v k be a prefix o f  x with v a primitive 
word (k > 1). The word v is called a k-highly repeating prefix of x, a k-HRP of x, 
or even an H R P  of x when k is clear from the context. When v is a k -HRP of x, 
the prefix v 2 of x has the smallest period Iv[. Thus, we can consider the longest 
prefix z of x which has the prefix period v. Then the scope of v is the interval of 
integers [-L, R] defined by 

L = Iv 2 ] and R = Izl- 

Note that, by definition, any prefix of x whose length falls inside the scope of v 
has the prefix period v. Some shorter prefixes may also have the same period, but 
we do not deal with them. Figure 2 shows the structure of scopes of k-HRPs of 
a word x. 

Let us take k = 2 and look at the Fibonacci word Fib 9 (recall that the sequence 
of Fibonacci words is defined by Fib 1 = b, Fib2 = a, and Fibi = Fib/_ 1Fibi_2 for 
i > 2). Figure 3 displays the scopes of its 2-HRPs. 

The following lemma shows that all the scopes of HRPs  of a word x are pairwise 
disjoint (see Figure 2), Lemma 2 gives a lower bound on periods of prefixes whose 
length does not belong to any scope of an HRP.  These two lemmas provide the 
basic elements for a proof  of Algorithm SIMPLE-TEXT-SEARCH (shown in 
Figure 4). 

v2 [ v2 I v2 

vl l v l  ; 
I 
f 
I 

scope ofv l  

X 

scope of v2 

Fig. 2. Scopes of highly repeating prefixes. 

scope of v3 
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abaa babaabaa babaa babaabaa babaa baa b 

t D v//////A 
6,6 10,11 16,19 26,32 

Fig. 3. The ninth Fibonacci word: its repeating prefixes and associated scopes. 
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LEMMA 1. Let [L1, R1] and [/~, R2] be the respective scopes of  two different H R P s  
Vl and V 2 o f  x .  Assume that Iv1[ < [v2[. Then R 1 < L 2. 

PROOF. Let z be the prefix of  length R~ of x. If  L 2 _< R , ,  then the square v 2 is 
a prefix of z. Therefore, the periodicity lemma applies to periods I vlL and I vzl of 
the prefix v 2. It implies that  gcd(I Vl l, I v2 l) is a period of this prefix. However,  since 
Ivll < Ivzl, gcd(lvlL, Ivz l )<  Ev21 and we get a contradict ion with the primitivity 
of vz. [] 

LEMMA 2. Let (vi/i = 1 . . . . .  r) be the sequence of  k -HRPs  of  x. Let  ([Li; Ri]/  
i =  1 , . . . ,  r) be the corresponding sequence of  scopes. Then any nonempty prefix 
u of x satisfies 

per(u) = Li/2, 

per(u) > l u I/k, 

if lul is in [L i, Ri] for some i, 

i f  not. 

PROOF. Let u be a nonempty  prefix of  x. If  l u ldoes  not  belong to any scope of 
k-HRP,  any prefix period of  u has length greater than luL/k. Thus per(u) > lul/k. 
Assume that  l ul belongs to some [L i, Ri]. It  is then a prefix of some power  
v e (e > 2 > 1) of  the ith k - H R P  vi of  x. W o r d  u has period Ivil which is equal to 

Algorithm SIMPLE-TEXT-SEARCH 
/* Searches text t for pattern p. */ 
/* An O(r)-space version Of the KMP algorithm, where r is the number of k-HRPs 

of p. (ILl, Ri]/i = 1 . . . . .  r) is their sequence of scopes. */ 
pos:= 0 ; j : =  0; 
while pos < n - m do 

{ while j < m and p[j + 1] = t[pos + j  + 13 d o j : = j  + 1; 
i f j  = m then return match at position pos; 
i f j  belongs to some [Li, Ri] then { pos:= pos + Li/2;j:= j - Li/2; } 
else {pos := pos + I_j/k] + 1; j := 0; } 

} 
return false; 

end. 

Fig. 4. The searching-phase algorithm. 
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Li/2 by the definition of scopes. Applying the preceding lemma, it can also be 
deduced that u has no shorter period, which means per(u) = L J2. [] 

Algorithm SIMPLE-TEXT-SEARCH is a version of the K M P  algorithm. It is 
an adaptation of the algorithms of [GS1] and [GS2]. During a run of the 
algorithm, lengths of shifts are computed according to the property stated in 
Lemma 2 on the list of scopes of k-HRPs. We assume that these intervals have' 
been computed previously. 

Inside Algorithm SIMPLE-TEXT-SEARCH, the test "j belongs to some 
[L i, R J "  can be implemented in a straightforward way. It needs O(1) space in 
addition to the list of scopes, and does not affect the asymptotic time complexity 
of the algorithm. The clue is to have a pointer to the current scope, whose value is 
recomputed each time variable j is modified. 

THEOREM 3. Assume that the pattern p has r k-HRPs and that their list of  scopes 
and their list of  lengths are already computed. Then the Algorithm SIMPLE- 
TEXT-SEARCH solves the string-searching problem on p and t using O(r) space 
and performing at most k.[t[ symbol comparisons. The total complexity of  the 
algorithm is also linear in [t [. 

PROOF. see [GS2]. To evaluate the time performance of the algorithm it can be 
shown that the value of expression k- pos + j is strictly increased by each symbol 
comparison. [] 

We now come to the preprocessing phase. It is presented in Figure 5 as 
Algorithm PREPROCESS. We leave the proof of the time linearity of Algorithm 
PREPROCESS to the reader. It is worth noting that the algorithm works in the 
same way as Algorithm SIMPLE-TEXT-SEARCH, i.e., as if the pattern is being 
sought inside itself, which explains why it is linear. 

Algorithms SIMPLE-TEXT-SEARCH and PREPROCESS require O(r) extra 
space to work. This space is used to store the scopes of the k-HRPs of the pattern 

Algorithm PREPROCESS 
/* Computes the k-highly repeating prefixes of pattern p of length m. */ 
/* Returns their list of scopes (in increasing order) ([Li, Ri]/i = 1 . . . . .  r) */ 

let SCOPE be an empty list; 
pos:= 1;j:= 0; 
while pos  + j < m do 
( w h i l e p o s + j < m a n d p [ j +  1 ] = p [ p o s + j + l ] d o j : = j +  1; 

if pos < (pos +j)/k then add [2*pos, pos +j]  to the end of SCOPE; 
i f j  belongs to some [Li, Ri] in SCOPE then { pos := pos + Li/2; j := j - LJ2; } 
else { pos:= pos + [j/kJ + 1;j:= 0; 

) 
return SCOPE; 

end. 

Fig. 5. The preprocessmg-phase algorithm. 
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p. A simple application of the periodicity lemma shows that, for k >_ 3, a nonempty 
word x has no more than 1Ogk_llXl k-HRPs. This relies on the following fact: if 
u and v are two HRPs of x and lul < Iv I, then the stronger inequality holds, 
(k - 1)" lul < Ivl. However, the case k = 2 is more difficult to handle, and one of 
our results is the logarithmic bound for the case k = 2 (see Section 5). 

Denote by HRPI(x)  and HRP2(x) respectively, when defined, the shortest and 
the second shortest k-HRPs of a given word x. The basic tools are now properties 
and interplay between HRPl s  and HRP2s starting at some specific positions inside 
the pattern. We can use Algorithm PREPROCESS to compute H RP l s  and 
HRP2s. The trick is simply to stop the execution of the algorithm the first time 
it discovers the second HRP. This proves the following. 

LEMMA 4. Assume that pattern p has at least two k-HRPs. The shortest and the 
second shortest k-HRPs of p, HRPI(x)  and HRP2(x) respectively, can be computed 
in 0(1) space and time proportional to the length of HRP2(x). 

3. Cube Prefixes. What happens if the pattern has at most one k-HRP? We say 
that such a pattern is k-simple. In this case, obviously, we can make string searching 
in linear time using only O(1) memory space by applying Algorithms PRE- 
PROCESS and SIMPLE-TEXT-SEARCH of the previous section. The most 
memory consuming is the list of scopes, but now this list is reduced to only one 
pair of integers specifying only one scope (or even no pair if the pattern has no 
HRP at all). Unfortunately not all patterns are simple. For  instance, if we take 
k = 2, then the Fibonacci words are not simple. However, these words become 
simple with k = 3. On the contrary, the word ((aeb)ec) e is not simple for any k < e. 

When k _< 3, words satisfy a remarkable combinatorial property (Theorem 5 
below), originally discovered by Galil and Seiferas for k > 4 (see [GS2]): 

each pattern p can be decomposed into uv 
where u is "short"  and v is a k-simple word. 

With such decomposition of the pattern p the searching algorithm can be realized 
conceptually in two phases as follows. First, find all occurrences of v, which is 
efficient due to the simplicity of v. The algorithm SIMPLE-TEXT-SEARCH can 
be used for this purpose. Next, check whether the occurrences of v are preceded 
by u, which is fast due to the "shortness" of u. We define the shortness of u in 
relation to the period of v. More precisely, we say that the decomposition p -- uv 
is k-perfect iff v is k-simple and lul < 2.per(v). The time-space optimal string- 
searching algorithm is based on the next theorem. The proof is reported after the 
algorithm. 

THEOREM 5 (Decomposition Theorem): For k >__ 3, each nonempty pattern p has 
a k-perfect decomposition. 



412' M. Crochemore and W. Rytter 

Algorithm TEXT-SEARCH 
/* Searches text t for pattern p. */ 
/* Let k > 3 and let uv be a k-perfect decomposition of pattern p */ 

find all occurrences of v in t with Algorithm SIMPLE-TEXT-SEARCH; 
for each position i of an occurrence of v in t do 

{ check by a naive algorithm if u ends at i; 
if"yes" then report the match at position i-[u[; 

) 
end. 

Fig. 6. The searching phase with k-perfect decomposition. 

Once we have a perfect decomposition of the pattern p, as explained above, we 
can search for it with Algorithm TEXT-SEARCH (Figure 6). 

The following theorem, proved in [GS2], shows that Algorithm TEXT- 
SEARCH is t ime-space optimal, and that its time complexity depends monotonic- 
ally on the parameter  k. 

THEOREM 6 [GS2]. Algorithm T E X T - S E A R C H  computes the positions of  occur- 
rences o f  pattern p inside text  t. I t  uses constant extra memory space. I t  is linear 
in time and makes at most (k + 2) ' [ t l  symbol comparisons. 

The rest of the section is devoted to the proof  of Theorem 5. The proof  is 
constructive and eventually shows how to compute a perfect decomposition. We 
first prove constructively that such a decomposition exists, and then analyze the 
complexity of the construction. The proof  essentially relies on two lemmas. In the 
rest of the section, unless otherwise stated, H R P  means 3-HRP, and analogously 
for HRP1 and HRP2. 

LEMMA 7. Assume that z = HRPI(x)  is defined and let x = zx'. 

(a) I f  HRP2(x) is defined, IHRP2(x)I > 2" IHRPI(x)[. 
(b) I f  HRPI(x ' )  is defined, HRPI(x)  is a prefix of  HRPl (x ' ) .  

PROOF. The statements are illustrated in Figures 7 and 8. Use the periodicity 
lemma and the fact that k-HRPs are primitive words. [] 

HRPI(x) 

vl ] vl ] vl 

x 

v2 I v2 I i 
HRP2(x) 

Fig. 7. (Lemma 7(a).) HRP2(x) is at least twice as long as HRPI(x). 
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HRPI(x) 

Iv/ I 

I 
I 

X I 

v2 I v2 I v2 

HRPl(x') 

Fig. 8. (Lemma 7(b).) Sizes of HRP1 are nondecreasing. 

The  structure of  the decompos i t ion  a lgor i thm is based on a sequence V(x) of 
H R P l s .  The  elements of the sequence V(x) = (v 1, v2 , . . . )  are called working factors, 
and are defined as follows. The  first element v 1 is HRPI(x) .  Let  x = vlx', then v2 
is HRPI (x ' ) ,  and so on until there is no HRP1 .  In  part icular ,  the sequence is emp ty  
if x does not  s tar t  with any  kth power.  L e m m a  7 shows that  the sizes of the v~'s 
are in nondecreas ing order.  The  next l emma  completes  propert ies  of  their sizes: 
some v~ eventually reach the length of HRP2(x) ,  which is at least twice the length 
of v 1 by L e m m a  7 again (see Figure 9). 

LEMMA 8 (Key Lemma).  Let V(X) = ( V l ,  V 2 . . . .  ) be the sequence of  working factors 
of  x, and assume that HRP2(x)  exists. Let  i be the greatest integer such that 
IF1 "'" vii < I HRP2(x)  I. Then, if vi+ 1 exists, I vi+ 1 L >- IHRP2(x)  I. 

PROOF. Let  w be HRP2(x)  and  assume that  vi+ 1 exists. The assumpt ions  imply 
that  vi+ 1 overlaps the bounda ry  between the two first occurrences of  w as shown 
in Figures 11 and 12. We show that  v~+l cannot  be shorter  than  w. Assume that  
the cont rary  holds. Let  y and  y'  ~ e be defined by the equalities w = Fly 2 " "  v~y' 
and v~+l = y'y. Because we assume v~+l is shorter  than  w, y is a prefix of  w, so 
that  we can consider the word  z defined by w = yz. We now focus our  a t tent ion 
on the word  w' = zy, a ro ta t ion  of w. 

Case 1. We first consider the si tuat ion when the beginning of w' (inside the first 
occurrence of w) falls proper ly  inside some vj (see Figure 11). In teger  j is less than  
i + 1 because [vi+ 11 < [w'h. Since w -= HRP2(x),  w 3 is a prefix of x, and then ano ther  
occurrence of w' immediate ly  follows the occurrence we consider at posi t ion l Yl. 
Because v~+~ is in H R P 1 ,  two other  occurrences of it appea r  after the one at  
posi t ion Iv I ""vi[;  v~+l is thus a prefix of  w'. By L e m m a  7(b), we know that  vj is 
a prefix of  v~+ 1. Both  a rguments  imply  that  v~ is a prefix of  w'. This eventually 

ivllv21v l v4 I 
I I I I I 

X 

I I w 
HRP2(x ) 

Fig. 9. The sequence of HRPIs (I v41 = [w]). 
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x I I i 

I I 

Fig. 10. An impossible situation when x is primitive. 

vl v2 

I i 

W 

Z 

I 

v2 [ 

v4 

Fig. I1. Case 1: impossible because v2 is primitive. 

implies that vj is an internal factor of v jr  j ,  a contradiction with the primitivity of 
vj because, for a primitive word x, the situation presented in the Figure 10 is 
impossible. 

Case 2. The second situation is when w ' =  v j ' "  vivi+ 1 (see Figure 12). Again 
hypothesis Iv~+ll < Iwl leads to j < i + 1. This implies 21vii < Iwl by a simple 

' application of the periodicity lemma. Therefore, the word vj is also a 3-HRP1 of 
zyz,  because the latter is longer than 31vii. Thus, just after the occurrence of w' 

which is considered, vj is still an HRP1. This proves, through Lemma 7(b), that 
/)i+ 1 - ~ -  / ) j "  However, then w' is a nontrivial power of vj, and its rotation w = 
HRP2(x) is not primitive, a contradiction. [] 

Lemma 8 yields the notion of special  pos i t ions  in x. The first special position 
of x is defined as the length of the word vl "'" vi which arises from Lemma 8. If 
x = v 1 . "  vix', then the second special position is defined on x' in thesame manner, 
and so on until no application of Lemma 8 is possible (see Figure 13). If x has no 
HRP2, or even no HRP1 at all, the first position 0 is the only special position 
(corresponding to the decomposition (e, x) of x). 

I v2 I I 
I I I 

X 

Fig. 12. Case 2: impossible because w = HRP2(x) is primitive. 

- -  t - -  - -  
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i i 
I I 
I I 

at most one HRP 

Fig. 13. The sequence of working factors vl, v2, ... leads to special position e, and to the 3-perfect 
decomposition uv of x. 

THEOREM 5 (Decomposition Theorem). Let j be the last special positon of x. Let 
u = x [ 1 . . f ]  and v = x[_j + 1 .. hi. Then the decompositon uv of x is a k-perfect 
decomposition for k >_ 3. 

PROOF. By definition of the sequence of special positions of x, v is certainly 
3-simple because it has at most one HRP.  Indeed, word v is k-simple for any 
k > 3. It remains to prove that l ul < 2-per(v). The key point is that each next 
HRP2 is at least twice as large as the preceding one. This follows from Lemmas 
7 and 8. []  

The algorithm given by Galil and Seiferas [GS2] to compute perfect decomposi- 
tions can be described informally as follows: 

- -  Compute  the sequence of special positions from left to right (see Figure 13). 
- -  Compute  the sequence of H R P l s  to get the special position within the current 

HRP2  (see Figure 9). 

A more formal description of the algorithm is given in Figure 14. 
The correctness of Algorithhm D E C O M P O S E  immediately follows from the 

decomposition theorem (through Lemmas 7 and 8). The time complexity of the 
algorithm may be roughly analyzed as follows: from Lemma 4, the cost of the 
computat ion of the working factors is proport ional  to the total length of consecu- 
tive HRPls ,  which is linear; the cost of the computat ion of consecutive HRP2s is 
proport ional  to their total length, which is also linear. Hence the algorithm takes 
linear time and constant extra space. 

Algorithm DECOMPOSE(x) 
/* Computes a k-perfect decomposition of pattern x (k > 3), HRP is related to k. */ 

j :=  0; hrpl := IHRPI(x)I; hrp2:= IHRP2(x)I; 
while hrpl and hrp2 exist do 
{ j := j  + hrpl; hrpl := [HRPI(xj+ 1 "" xn)l; 

if hrpl > hrp2 then hrp2 := [HRP2(xj+ 1 ' "  x,)[; 
} 
return the decomposition (xl "'" x j, x j+ 1 "" x,) of x; 

end. 

Fig. 14. Computing perfect decompositions. 
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e, aabaababaabaababaabaabab 
a a  

a, abaababaabaababaabaabab 
abaaba 

aa, baababaabaababaabaabab 
baababaaba 

aab, aababaabaababaabaabab 
aa 

aaba, ababaabaababaabaabab 
abab 

aabaa, babaabaababaabaabab 
baba 

aabaab, abaabaababaabaabab 
abaaba 

aabaaba, baabaababaabaabab 
baabaa 

aabaabab, aabaababaabaabab 
o a  

Fig. 15. Shortest squares, prefixes of the right parts of the factorizations. 

4. The Perfect Decomposition Theorem Does Not Hold for k = 2. In the previous 
section the k-perfect decomposition theorem has been proved for k > 2. We show 
here that this is the smallest bound. This means that the GS algorithm does not 
work in constant space for k = 2. It works, however, in logarithmic space, as we 
will see in the next section. 

The consequence of the following proposition is that if uv is a factorization of 
x with v having at most one 2-HRP, then u cannot always be kept small. The 
proof is based on a rather short example shown in Figure 15. 

PROPOSITION 9. The decomposition theorem does not hold for  k = 2. More pre- 
cisely, for  any constant c > 0 infinitely many words x with the following property 
exist: if uv is a factorization of  x such that v has at most one 2-HRP, then 
l u[/per(v) > c (indeed, an even stronger inequality holds:[ul/[v I > C). 

PROOF. Let w = aabaabab. Note that the smallest period of this word and thus 
of w" (n > 0) is its length I wl = 8. Consider a factorization of the word w 3 of the 
form uu'w 2 (with u, u' ~ A* and w = uu'). The word v = u'w 2 obviously starts with 
the square (u'u) 2 but, as shown in Figure 15, it also starts with a strictly shorter 
square. For instance, ifu = aa  and u' = baabab, v starts with the square (baaba) 2. 

The factorization (aabaababaa, baababaabaabab) o fw  3 is such that the right part 
has at most one 2-HRP. The word v = baababaabaabab is indeed the longest suffix 
of w a with this property. Thus, to meet the result of the proposition, one simply 
has to choose x = w" for a large enough integer n. []  

5. Square Prefixes: k = 2 Works Well With Logarithmic Space. In this section 
we consider again 2-HRPs of patterns. It remains to consider prefixes of the form 
u 2 of a word x, with u a primitive word. We call them square prefixes. 

The number of square prefixes of a word can be logarithmic as happens for 
Fibonacci words (see Figure 3). This follows easily from the recurrences defining 
Fibonacci words and from the fact that two consecutive Fibonacci words "almost" 
commute (up to the exchange of the last two symbols). We show that the maximal 
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I "' 
i u2 _u2 

i i i I I ' v, Vl vl vI I_ _ d 
I 

I I 
Fig. 16. Case 1 in the proof of Lemma 10. 

number of square prefixes of a word is also logarithmic and is precisely less than 
log.lxl, where �9 is the golden ratio. Moreover, we characterize the words that 
reach the bound. As a consequence this shows that Algorithms SIMPLE-TEXT- 
SEARCH and PREPROCESS of Section 2 work in logarithmic space when 
applied with k = 2. 

Theorem 11 completes the note of Section 2 on the logarithmic number of 
k-HRPs for k > 3. Its proof is based on the next lemma, that gives a fundamental 
property on the lengths of square prefixes. The relation between three periods of 
a square prefix parallels the recurrence relation defining Fibonacci numbers. 

LEMMA 10. Let  ul 2, u22, u3 2 be threepref ixes  o f x  such that ul, u2, u3 are primit ive  

and ]u3[ < [u2[ < [ul[. Then ]u21 + lu3] < [u l ] .  

PROOF. Let pl,  p2, p3 be the respective lengths of the three words ul, u2, u3. 
When p2 < pl /2 ,  since p3 < p2, we obviously get the conclusion p2 + p3 _< pl. 
We then assume p2 > p l / 2  which implies that ul is a prefix of u22. We consider 
the word of length pl  - p2, vl = u2-  lul,  that is both a prefix of u2 and a suffix 
of ul. The integer Ivll, less than p2, is a period of u2 (u2 occurs at position p2 in 
x, and also at position pl  in x because u2 is a prefix of ul). 

It remains to prove that p3 < Ivll. We assume ab absurdo that Jvll < p3. We 
consider two cases according to the length of u3. They are illustrated in Figures 
16 and 17. 

ul 

u2 

vl [ vl 

i 
I 

vl 

u3 

i 
! i 

u3 
, 

I v3 v2 I 

Fig. 17. Case 2 in the proof of Lemma 10. 

ul 
| 

I _ _ _  

u2 
I 

vl 
J 
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Case 1 (see Figure 16). We first rule out the situation when u32 is a prefix of 
u2. It happens then that u32 has two periods p3 and ]vll. Moreover p3 + Ivll < 
2"p3 = lu32t. The periodicity lemma applies and proves that gcd(p3, Iv1 I) is also a 
period of U3 2. Since this period, less than p3, divides p3 = [u3l, it follows that u3 
is not primitive, a contradiction. 

Case 2 (see Figure 17). We consider now the opposite situation when u2 is a 
prefix of u32. The word u2 has periods p3 and l vl I. As in Case 1, if the periodicity 
lemma applies to the word u2, we get a contradiction with the primitivity of u3. 
Thus, the lemma does not apply, which means that p3 + I vl I > p2. Let v2 be the 
word u3-1 u2. It is both a prefix of u3 and a suffix of u2. Since it has length 
p2 - p3, it is shorter than vl: Iv21 < Ivll. Note that  Iv21 is a period of u3 (u3 
occurs at position p3, and at position p2 as a prefix of u2). Let v3 be such 
that u3 = vlv3 (vl is a prefix of u3 because we assume ab absurdo that I vll < p3). 
We have u2 = vlv3v2 (see Figure 17). 

Consider as a first step the word v3v2. Since Ivll is a period of u2, v3v2 is a 
prefix of uZ Moreover, it is a proper prefix of u3 because its length Iv31 + Iv21 
is smaller than the length of u3, Iv3l + [vii. Therefore, the word v3v2 occurs 
at positions Ivll and Ivlv31 in x, which proves that it has a period Iv31. It also has 
a period Iv2 I, like u3. The periodicity lemma applies: r = gcd(] v3 I, Iv21) is a period 
of v3v2. The conclusion of this first step is that r is a period of u3 itself 
because r divides the period Iv21 of u3. 

In a second step we consider the word u3. It has periods r and Ivll. We have 
r + Ivl[ < Iv31 + [vl[ = lu3[. By the periodicity lemma once more, r' = gcd(r, Ivll) 
is a period of u3. However, r' that divides both I vl I and Iv31 also divides their sum 
[v l [+  Iv3[ = lu31. This is impossible because u3 is primitive. This ends Case 2. 

Since both cases are impossible, p3 < [vii, and the conclusion follows: p2 + 
p3 < pl. [] 

The inequality conclusion of Lemma 10 cannot be improved. For instance, the 
Fibonacci word of Figure 3 has four square prefixes of respective lengths 6, 10, 
16, and 26. Furthermore, it is well known that f2  is a prefix of the Fibonacci 
word fi, for all i in the interval ( 4 , . . . , j  - 2). 

EXAMPLE. The word ababaabababaab begins with squares of lengths 4, 10, and 14 
corresponding to the 2-HRPs ab, ababa, and ababaab. Computation proves that 
no shorter word can have three 2-HRPs like it. 

FACT. The word aabaabaaabaabaabaaab begins with squares of lengths 2, 6, 14, 
and 20 corresponding to the 2-HRPs a, aab, aabaaba, and aabaabaaab. Computa- 
tion proves that no shorter word can have four 2-HRPs like it. Moreover, it is 
the unique word of length 20 on the alphabet {a, b} (up to the exchange of letters 
a and b) having this property. 

THEOREM 11. 7he number of square prefixes of a nonempty word x is less than 
log~lxl (where �9 stands for the golden ratio; qb = (1 + ~ ) / 2  = 1.618...). 
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PROOF. We first prove that, for i >  1, if x has i 2-HRPs, then I xl > 2"Fi+l  
(where F i is the ith Fibonacci number, Fi = [f~l). For  i =  1, Ixl-> 2 = 2 . F  2. 
For  i = 2, Ix[ > 6 > 2.F 3 = 4. By the fact stated in the example above, for i = 3, 
Ixl -> 14 > 2 - F  4. The rest of the proof is by induction on i. Let i _> 4. Let ul, u2, 
and u3 be the three longest 2-HRPs of x (in order of decreasing lengths). The word 
u3 2 has exactly i-2 2-HRPs. By induction its length is then greater than 2-F i_ 1. 
For  the same r e a s o n  lu221 > 2.Fg. By Lemma 10, we get lull > lu31 + lu21 which 
implies 2' lull > 2" F~_I + 2. F i = 2.Fi+ 1. Thus Ixl-- 2"F~+1, as expected. The 
Fibonacci number F i+ 1 is greater than (or equal to) ~ -  1. Thus I x I > 2. (I) i- 1 
which yields i < log~lx 1, an inequality that also holds for i = 1. [] 

It is known from [ K M P ]  that the number of certain periods of a word is 
bounded by log.[xl.  These periods of x are all greater than (or equal to) per(x), 
the smallest one. From this point of view, the result of Theorem 11 is a dual result 
that gives the same bound on the number of small starting periods of x. They are 
all not greater than per(x). The word shown in the above fact gives an example 
of a word which reaches the maximum number of square prefixes. The next 
proposition is a continuation of this example. 

PROPOSmON 12. Consider (ui/i >_ O) the sequence o f  words on the alphabet {a, b} 
defined by 

u o = a ,  u l = a a b ,  u 2=aabaaba,  and u i = u i _ l u i _  2 for i > 3 .  

Then,for each i, u z has the maximum number of square prefixes. Moreover, for i > 3, 
u 2 is the unique word on the alphabet {a,b} having this property (up to a 
permutation of  letters a and b). 

PROOF. A consequence of the above fact and Lemma 10. [] 

6. Time-Space Optimal Computation of Periods (k = 7). The evaluation of the 
periods of a word is strongly related to the computation of all overhanging 
occurrences of a pattern in a text. Indeed, periods of a word correspond to 
overhanging occurrences of the word over itself (see Figure 18). An overhanging 
occurrence of the pattern p in the text t is specified by a suffix z of t that is also 
a proper prefix of p. If t is written yz, the position of the overhanging occurrence 
of p is l yl, and if t = p, the position ]y[ is also a period of p, as already noted in 
Section 2. 

I x I 

I x '  I 
a period of x 

Fig. 18. Period and overhanging occurrence. 
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String-searching algorithms which use left-to-right scanning of the pattern 
against the  text can be naturally extended to compute overhanging occurrences 
of the pattern. Thus, they can be used to compute all the periods of a word. It is 
the case for the algorithm of Knuth, Morris, and Pratt  [ K M P ]  and its variations, 
and also for the t ime-space optimal algorithm of Crochemore [C]. We show that 
the algorithm of Galil and Seiferas is also adapted for this purpose, provided the 
parameter  k is large enough (k _> 7). This then leads to a new time-space optimal 
algorithm for computing periods in words. 

The computat ion of periods through the GS algorithm given in [GS2] was 
based on the following assertion: "per(x) is the position of the second occurrence 
of x inside xx . "  Unfortunately, this assertion does not always hold. For  instance, 
x = ababa has period 2 and the second occurrence of x inside x x  is at position 5. 
Indeed, the assertion holds when x is a power of its shortest prefix period. 

Let uv be a k-perfect decomposition of the pattern p. If u is empty, the algorithm 
of Section 2 naturally extends to the computat ion of overhanging occurrences. It 
works in linear time and constant space. The situation is different when u is 
nonempty because v can have many overhanging occurrences in t and thus u could 
be scanned too many times by the algorithm. To avoid this situation we impose 
a condition to the decomposition of the pattern and this yields the choice k = 7 
for the parameter. 

Assume u is not empty and k > 3. The pattern p can then be written p = 
uv = u'wk'v ' with u' a proper prefix of u, [ul < [wl "(k - 1)/(k - 2), and k < k'. The 
word w is the last k-HRP2 computedby  Algorithm D E C O M P O S E  of Figure 14. 

We define the following condition: 

(*) luf + 2"[w[ < Ip[/2. 

LEMMA 13. Let  uv be the k-perfect decomposition of  p computed by Algorithm 
D E C O M P O S E .  I f  u is nonempty and k >_ 7, then condition (*) is satisfied. 

PROOF. If u is nonempty we know that p contains k-HRPs. Let p 
u'wk'v ' where w is the last k-HRP2 computed by Algorithm D E C O M P O S E .  
Then [u[ < [ w l ' ( k - 1 ) / ( k - 2 )  and [v[ > ] w l ' ( k - 1 ) .  Condition (.) is also 
[ v l / 2 - l u [ / 2  - 2- [w[ > 0 or Iv[ - l u [  - 4-[w[ > 0. We have [vl - [u[ - 4 ' lw[ > 
Iw[-(k - 1) - [w[" (k - 1)/(k - 2) - 4" Iw[. The inequality k - 5 - (k - 1)/(k - 2) > 
0 is satisfied for k > 7. [] 

To compute overhanging occurrences of p in t we may assume without loss of 
generality that It[ = [p[. The core of the algorithm is a procedure that computes 
the overhanging occurrences ofp which starts in the left half of t (see Figure 19). 

LEMMA 14. On entry p and t, Algorithm Left_Occ works in constant space and 
time O(n) where n = It[ = [p[. 

PROOF. The result is obvious if u is empty. If not, since condition (.) is satisfied, 
the number of overhanging occurrences of v starting in the left half of t is less 
than n/lw[, where w is the last k-HRP2 computed by Algorithm D E C O M P O S E .  
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Function Left_Occ (p, t) 
/* It is assumed that It[ = [p[ */ 
/* Computes the set {lYl/t = yz, z prefix of p, and [Y[ < I t I/2} of positions of p in 

the left half of t */ 
P. '= ~ ;  
compute 7-perfect decomposition (u, v) of p; 
find all overhanging occurrences of v starting in the left half of t with 

Algorithm SIMPLE-TEXT-SEARCH; 
for each position i of an occurrence of v in t do 

if u is a suffix of t[1] .. .  t[i] then add i to P; 
return P; 

end. 

Fig. 19. Computing left overhanging Occurrences. 

Thus, testing for occurrences of  u in t takes less than (n/I wl)" 6/5 "l w[ compar isons  
because l u[ < 6/5"1 wl. The time is then O(n). [] 

To compute  all overhanging occurrences of  p in t, we first apply the algori thm 
Left Occ  and then repeat the same process with bo th  the right half  of  t and the 
left half  of  p (Figure 20). 

THEOREM 15. Algorithm Ov_Occ  f inds all overhanging occurrences o f  p in t in 
constant space and time O(n) where n = [p[ = [tl. 

PROOF. The correctness is left for the reader. Cons tant  space is enough to 
memorize  left or  right parts of  input strings. The time complexity is bounded  by 

c.  n + c" n/2 + ""  + c" n/2 i, 

where c is the constant  of  propor t ional i ty  for Algori thm Left_Occ. This quant i ty  
is less than 2" c" n which proves the result. [ ]  

Corol lary  16. Algorithm O v _ O c c  finds all periods of  a word of  length n in constant 
space and time O(n). 

Function Ov_Occ (p, t) 
/* Computes all the overhanging occurrences of p in t; we assume ]tl = ]Pl */ 

P := Left_Occ(p, t); 
while 7-perfect decomposition of p is different from (e, v) do 
{ n:= [tl/2; t :=  right half of t, t[n + 1 .. Itl]; p.'= left half of p of length 

It[ - n; add Left Occ(p, t) + n to P: } 
return( P ); 

end. 

Fig. 20. Computing overhanging occurrences. 
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PROOf. Apply Ov_Occ to the pair (p, p) and note that the position of an 
overhanging occurrence of p over itself is a period of p (see Figure 18). []  

7. Optimal Parallel Computation of the 4-Perfect Decomposition. We assume in 
this section that k -- 4. Assume that vl = HRPI(x)  exists. Consider the maximum 
integer e such that vl e is prefix of x (e > 4 because k = 4). Define LongHRPl(x)  
to be w = vl e-3. Let x' be such that x = wx'. By definition of vl and e, vl is not 
the HRPI(x').  Since HRP(x') cannot be shorter than vl, if it exists it is longer than 
vl (see Figure 21). 

We define the parallel working sequence of the word x as follows: P(x) is empty 
if LongHRP1 (x) is undefined; otherwise x = LongHRPl(x)x ' ;  the first element of 
P(x) is LongHRPl(x)  and the rest of the sequence is defined similarly on x'. 

We compute the elements of the parallel sequence P(x), or more precisely the 
sequence of positions of LongHRPls  occurring in the sequence. The crucial point 
in the parallel algorithm is the following fact due to k = 4 (and the periodicity 
lemma): 

FACT Let P(x) = (wl, w2 . . . .  ) be the parallel working sequence of x. For i > 0, 
2"lw~l < Iw~+xl. The length of P(x) is O(loglxl). 

We use the components of the string-searching algorithm of Vishkin IV] to 
compute the basic functions used in the preprocessing phase of the GS algorithm. 

LEMMA 17. Assume HRPI(x), HRP2(x}, and LongHRPl(x)  exist. Let nl, n2, 
and n3 be their respective lengths. Let n = ix]. Then HRPI(x), HRP2(x), and 
LongHRPl(x)  can be computed by an optimal parallel algorithm in O(log n) time 
on a C R C W  PRAM. 7hey use respectively nl/log(n), n2/log(n), and n3/log(n) 
processors. I f  HRPI(x) or HRP2(x) do not exist, then the number of processors is 
O(n/log(n)). 

PROOF. We use the version of Vishkin's algorithm given on pp. 225-230 of [GR] 
and consider the pattern preprocessing phase. Vishkin's algorithm is technically 
quite involved. Instead of going into details we use the components of the 
algorithm. In one stage the procedure MakeSparse is applied to bigger and 
bigger prefixes of the pattern (the sizes double) until a first periodic prefix 

continuation of vl 
~ . - ~  

I vl I vl I vl 

I 
! 
! 

LongHRPl(x ) 

vl I v' 1 - ]  
I 

X 

v2 v2 i 
Fig. 21. The next HRP1 is double the length (Iv21 > 2. Ivl [). 

v2 
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is discovered. The prefix is periodic iff its period does not exceed half of its 
length. 

If we discover the first prefix period vl, then we check whether it is an HRPI(x) 
and compute its continuation C (see Figure 21). This can be done using the 
procedure PeriodCont on p. 228 of [GR] and a kind of binary search. If we 
know the continuation C of the prefix period vl and its size, then computing 
LongHRPl(x) is a simple matter. 

The computation of HRP2(x) can be done essentially in the same way, the 
procedure MakeSparsePeriodic from [GR] can be used. The table of witnesses 
can be computed for the prefix C and the algorithm looks for the next supposed 
prefix period. We refer the reader to pp: 225-230 of [GR] for technical details. 

The time complexity and the number of processors are of the same order as 
that of the whole string-searching algorithm of Vishkin, restricted to the part of 
the pattern which is inspected. Hence the total number of operations is propor- 
tional to the size of the computed objects, if they are nonempty. If they are empty, 
then the number of all operations is merely proportional to the total size n of the 
input pattern. This completes the proof. [] 

Using parallel versions of functions HRP1, HRP2, and LongHRP1 the parallel 
algorithm is a simple version of the sequential pattern preprocessing. Its correct- 
ness follows from the correctness of the sequential counterpart. 

THEOREM 18. 7"he 4-perfect decomposition o f  a word x o f  length n can be found in 
log2n time with n/log2 n processors o f  a C R C W  P R A M  or in logan time with 

n/log 3 n processors o f  a C R E W  P R A M .  

PROOF. Let us analyze the Algorithm Parallel 4-perfect decomposition (Figure 
22). We have a logarithmic number of positions induced by the parallel working 
sequence. Hence there are O(log n) stages in the algorithm. In one stage we compute 
several objects using a number of operations proportional to the size of 
computed objects. The computation of HRPI(xI+ 1 "'" x,), LongHRP(xi+ 1 "'" x,,), 
and HRP2(xi+ 1 "'" xn) on a CRCW PRAM takes logarithmic time. Due to Lemma 
17 the total number of operations performed in one stage is proportional to the 
sizes of computed objects. However, the same analysis as that in the sequential 
case shows that the total size of these objects (HRPls, LONGHRPls ,  and HRP2s) 
computed in the algorithm is linear. Hence we have a parallel algorithm which 
works in log 2 n time and performs in total a linear number of operations. Due to 

Algorithm Parallel 4-perfect decomposition 
i:= 0; hrpl := IHRPI(x)I; longhrpl := ILongHRPl(x)l; hrp2 := IHRP2(x)I; 
while longhrpl and hrp2 exist do 
{ i:= i + longhrpl; hrpl := HRPI(xi+ 1 -"  xn)l; longhrpl := ]LongHRPl(xi+ 1 -"  xn)l; 

if hrpl > hrp2 then hrp2:= HRP2(xi+I "" xn) I } 
return the decomposition (x 1 . "  xi, xi+ 1 "'" xn); 

end. 

Fig. 22. Parallel perfect decomposition. 
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Brent 's  theorem (see p .  12 of [GR] )  the number  of processors  can be reduced to 
n/log 2 n. Brent 's  theorem does not  deal with the al locat ion of processors.  However ,  
it can be easily seen that  our  a lgor i thm can use the same processor  al locat ion as 
Vishkin's a lgor i thm for string searching. In fact we use the same componen t s  as 
Vishkin's a lgor i thm and even the s tructure of  the whole a lgor i thm is the same 
(processing exponent ia l ly  increasing segments  of the pattern). 

In the C R E W  model  the si tuat ion is analogous.  We need another  log(n) factor  
for the t ime complexity,  similarly as in Vishkin's  a lgori thm. The  compu ta t i on  of 
boolean  " o r "  and " a n d "  now takes logar i thmic t ime instead of constant  t ime like 
in the C R C W  model.  Hence  the a lgor i thm finds the same 4-perfect decomposi t ion  
as the sequential  one. It  does it within the claimed complexi ty  bounds.  This 
completes  the proof.  [ ]  

It  would be interesting to know whether  it is possible to reduce the time 
complexi ty  by a logar i thmic factor. 

8. Final Remarks .  Shifts in Algor i thm S I M P L E - T E X T - S E A R C H  can be im- 
proved  as shown by the following lemma.  Let us reconsider first the scope of an 
HRP.  Let v be a k - H R P  of x and consider the longest prefix z of x which has 
prefix per iod v. We define the extended scope of v as the pair  ([L, R], a) where 
[L, R] is the scope of v (L = [ v2 I, R = [z[) and a is the (unique) letter such that  za 
has the prefix per iod v (za is not  a prefix of x by the definition of z). 

LEMMA 19 (see Figure 23). Let  (vi/i = 1 . . . .  , r) be the sequence o f  k -HRPs  o f  x. 
Also let (([L i, R J ,  ai)/i = 1 . . . . .  r) be the corresponding sequence of  extended scopes. 
Let  u be a prefix o f  x, and let a be a letter such that ua is not a prefix o f  x. Then 

per(ua) = Li/2 /f lul is in [L i, Ri] for  some i and a = ai, 

per(ua) > lual - Li/2 /f lul is in [Li, Ri-] for  some i but a ~ ai, 

per(ua) > l u I/k otherwise. 

Extended scopes can also be used to enlarge intervals [L, R]:  when v is a k - H R P  
of x, we can define L as the length of the shortest  prefix of  x having v has the 

v [ v I v l v l  v 
I 
I 
I 

/ I 

scope of V 

shift=~l-~t+ 1 

v l] 
I ' "  
I 
1 

.i 1 
shift = M shift = [yl / k 

Fig. 23. Rule for shifts in scopes, at the end of a scope and outside a scope. 
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shortest prefix period. When doing so, the length of this period should be 
memorized together with the scope, because it is no longer L/2 as in previous 
sections. 

Both points mentioned here lead to a more practical implementation of the 
algorithms of this paper, but have obviously no influence on the asymptotic time 
complexities. 

Acknowledgments. We thank the referees for their interesting questions concern- 
ing this work. The discussion on a possible relation between the log o n bound for 
the number of 2-HRPs of a string and the length of its sequence of borders 
considered in the algorithm of [KMP] has not reached an end. We believe that 
such a relation possibly exists for words having a large (according to their length) 
number of 2-HRPs. 
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