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A word has a repetition when it has at least two
consecutive equal factors. For instance, abab is a repe-
tition (a square) in aababba.

Recently, it has been proved that the set of words
containing a square is not context-free [3,7].

This paper presents an algorithm to compute all
the repetitions of primitive factors in a word x in time
O(lx|log, Ix1). A straightforward adaption of the
Knuth, Morris and Pratt’s string-matching algorithm
[5] also allows to solve the problem, but in time
o(Ix1%).

Main and Lorentz have given an O(|x|log, |xI)
algorithm to find one square in a word x. Their meth-
od cannot be directly extended to solve the present
problem since they eliminate many repetitions when
they are guaranteed to find another one later in the
search.

Our algorithm uses an improved version of the well-

known partitioning technique [1] for refinements of
equivalence relations. This version has already been
fruitful in a problem concerning partitions on graphs
[2].

The optimality of the algorithm is proved by
showing that there exist words which have indeed
O(Ixllog, Ix1) repetitions. These particular words are
Fibonacci words.

With a slight modification, the algorithm gives the
maximal repetitions of a word. This algorithm is also
optimal since it computes all the O(Ix| log, Ix[)
maximal repetitions of a Fibonacci word x in time
O(Ix! log, Ix).
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1. Repetitions in words

Let A be a finite alphabet and A" be the free
monoid generated by A.

The length of a word x in A* is denoted by [x.
Let x =x,x, - x, be a word (x; € A). A position of
X is, as in [4], any integerin {1,2,...,n}.

A word u of length p is said to oceur at position i
in x if
itp—1<n and U=XXj " Xisp_g-

As usual, a word is said to be primitive if it cannot
be written v¢ with vE A” and e = 2.

Then, a repetition in X is a non trivial power of a
primitive word which occurs in x.

More accurately, a repetition in X is defined to be a
triple (i, p, e) so that, setting u = X; * X1, _;, one has:
u® occurs at positioniin x.
u®*! does not occur at position i in x.

u is primitive.

The integers p and e are called respectively the
period and the exponent of the repetition (i, p, e).

For instance, (1, 3, 2),(3,1,2), (4, 2,2) and
(5, 2, 2) are repetitions in abaababa.

Maximal repetitions are also considered and defined
by: a repetition (i, p, e) in X is maximal if i —p <0 or
XiXj+1 " Xj+p—1 does not occur at position i — p.

The algorithm given in this paper computes, for a
word x in A®| its set of repetitions or only its set of
maximal repetitions.
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2. Equivalences on positions

A sequence (E,), > of equivalences on the posi-
tions in a word is defined as follows:

Letx € A", n= Ix| and p > 1; then (i, j) €E, iff
itp—1<n,j+p—1<nandX; = Xj4p_1 =
X K ap_1e

So, two positions in X are equivalent according to
E, when the factors of x of length p and starting at i
and j are equal.

For each p = 1, is also defined a function on the
positions of x, which gives, for a position i, its differ-
ence to the least position in the same equivalence
class:

the least integer k >0
D, (i) = st (i 1k E,,

e if there is no such k.

Then, repetitions in x are characterized in term of
differences Dy,:

Lemma 1. (i, p, e) is a repetition iff
Dp(i) =Dp(i+p) =+ =Dy(i+ (e —2)p) =p
and

Dpi+(e—1p)#p.

Maximal repetitions are characterized in the same
way: -

Lemma 2. (i, p, e) is a maximal repetition iff (i, p, e)
is a repetition and i —p <0 or D(i —p) #p.

Proof of Lemma 1. Of course, the conditions are suf-
ficient. Now, if (i, p, €) is a repetition we have:

Vi€ {i,i+p,..,i+(-2)p} Dy()<p,
and
Dy(i+ (e — 1)p) #p.

Suppose that Dp(j) = p’ < p for one j. The word
U = Xj ** Xj4p_q OCCUIS also at positions j + p’ and
j+p. In such a situation, denoting by v the word
Xj *** Xjip'—1 and by w the word Xj,pr * Xjep_q it
can easily be seen that u = vw = wv, In thiscase uis a
power of a word in A* [6] that contradicts the fact
that u is primitive.
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3. The basic lemma for computing the equivalences

One can easily check that any equivalence E; is
a refinement of E,(E, = Ep4,); furthermore, there
clearly exists a smallest integer N, 1 <N < n, so that

El >E2>"'>EN,

and Ey = Ey+q = - is the equality relation on
{1, 0k

The computation of the equivalences E;, may be
done by the classical Moore’s algorithm which com-
putes successively E,, E,, ..., En. It is based on the
relation:

G,) €Ep

and

iff (i, )) € Ep_y,

(L yrlel, ;.

Exploiting this relation directly leads to an O(n?)
algorithm to compute the equivalences.

The other classical partitioning algorithm,
Hopcroft’s one [1], does not work for this problem
since it computes Ey via other equivalences than the
E, s.

The method retained here was used in [2] to par-
tition graphs. It leads to an O(n log, n) algorithm.

Let us consider two consecutive values of the
equivalences, E,_; and E,,. Let {C;, ..., Cy} be the
equivalence classes according to E;, (Ej-classes) and
{C}, ..., Cq'} the E,_, -classes. E, being a refinement
of E,_,each E,_;-class is a union of E-classes.

A choice function is a function

f: {th eey C:,]'} =% {Cl} neey Cq}s

with the properties: for any C'in {C}, ..., Cg'}
[f(C") € C' and for any Cin {Cy, ...,C;} CCC' =
[Cl < If(CHI].

So, f associates to each E,,_;-class one of its E,,-
subclasses of maximal size.

Given a choice function f, each E,-class f(C) is
called a big class; the others are called small classes.
Of course, there are as many big Ep-classes than
E,_j-classes. In particular, E, = E,_, iff there is no
small E,-class. By definition, all the E,-classes are
small.

Now, a new sequence (S,)p=; of equivalences on
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the positions of x are defined:

(,j) € E; or,
G,j)es, iff :

both i and j are in big E-classes.
Equivalently we have:
(,))€Ss,
ieC iffjec.

iff for any small E,-class C,

Lemma 3. Forany p = 1, (i,j) € Ep4, iff (i, j) €Ep
and (i+1,j+1)€E€S,.

Denoting by §p the equivalence:
G,j)€S, iff@+1,j+1)ES,,

Lemma 3 asserts that Epﬂ = Ep N §p.

Proof. E;, being a refinement of S, we have E; 4 C
E, N S,. Letiand j be two positions such that

(,j))€E, and (i+1,j+1)ES,.

If i+ 1is in a small E-class then j + 1 is in the same
E-class; s0, (i, j) € Ep+y. If i + 1 is in a big Epclass,
so it is for j + 1. From (i, j) € E, we deduce
(i+1,j+1)€E,_y, which proves thati+ 1 and j+1
must be in the same big E -class. Thus, we have again
(ia ]) € Ep+1'

4. Outline of the algorithm .

A schema of the algorithm is drawn in Fig. 1. From.

the word x, E; and D, are computed and their values
put in E and D. The indices of the E,-classes (which
are all small) are put in SMALL. Then, in the “while”
loop, the successive values of E are computed using
Lemma 3. The difference function D is updated at the
same time, and the new small E-classes are determined
and memorized in SMALL. At the beginning of each
execution of the loop, the new repetitions are calcu-
lated as stated in Lemma 1.

It is shown in the next section how to implement
steps 5 and 6 efficiently, with a time complexity

O(E

| E-class sl),
s=SMALL

that is, with a complexity proportional to the union
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of small classes. Thus, the cost of all executions of
steps 5 and 6 is

c=p§)( 2

|Ep-class s I),
=1 \sindex of a small Ep-class

where N is the first integer such that Ey = Eyn4q or
equivalently such that Ey,; has no small equivalence
class.

Lemma 4. C <nlog,(n — m + 1) where m is the num-
ber of distinct letters in x.

Proof. Consider a position i in a small Ej-class C, and
let C' be its E;,_; -class. By definition of the small
classes (and choice functions) |CI< [C'l/2. Thus, a
position i cannot belong to a small class more than
log,(n — m + 1), since the E, -class of i has a cardi-
nality less than n —m + 1. As there are n positions,
C<nlogy(n —m+1).

5. The algorithm

The algorithm that gives in R the repetitions in a
word x is given in Fig. 2 as a procedure named REP,
It parallels the schema in Fig. 1.

The data structures used to implement the algo-
rithm are now described.

The equivalence E is represented twice: an array E
gives for each position the index of its E-class; a
double-linked list ECLASS gives for each equivalence
class index the positions in the equivalence class.
Doing so, transferring a position from an E-class to
another is realized in constant time. To each E-class
is associated its number of elements.

A stack NEWINDEX contains the available indices
of E-classes. This stack may be seen as a ‘garbage col-
lection’. An index k is available when Eclass(k) is
empty.

The difference function D is realized by an array;
simultaneously a double-linked list DCLASS is main-
tained and gives for each period p the set of positions
i satisfying D(i) = p. The function D together with the
list DCLASS permit a search of the repetitions of
period p linear in their number.

Steps 5.1 and 5.2 realize step 5 in Fig. 1. First, in
step 5.1, the small E-classes are copied in a queue
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procedure REP(x)

INFORMATION PROCESSING LETTERS

13 October 1981

(1) define E to be E; on the word x; define D to be Dy;
p+ 1; make R empty; SMALL « {indices of E-classes ]-;
(2) while SMALL # @ do
(3) begin add to R the repetitions of period p (Lemma 1);
4) p<p+1;if p> IxI/2 then return R;
5 E<EnS (Lemma 3); update D from the value of E,
(6) SMALL « {indices of small E-classes };
end;
return R.

Fig. 1. Schema of the repetition-searching algorithm.

QUEUE in order to preserve the increasing order on
the positions in each small class. At the same time the
set, SPLIT, of E-classes submitted to the ‘splitting
instruction’ 5.2 is created. For each E-class k in
SPLIT, a set SUBCLASS(k) is initialized to contain its
subclass indices, together with a variable LAST-
SMALL(k). This indicator gives in step 5.2 the last
small class s that has been used to split the E-class k.

During step 5.2 the equivalence classes are split.
One position at a time is transferred to a new class k,
from the E-class k. Let us assume that i’ is the last
position in ECLASS(k) that has been transferred to a
class k', using a small class s'; in this case LAST-
SMALL(k) =s';if s" is used again to transfer i into
ECLASS(k) then i and i’ are equivalent according to
the value of E being computed and k is defined to be
k. If not, a new index is extracted from NEWINDEX
to define k, and LASTSMALL(k) is set to be s.

While a position is transferred, D and DCLASS are
updated. The computation of D use heavily the fact
that positions in equivalence classes are in increasing
order.

At step 6, a new value of SMALL is calculated. The
array that gives the number of elements in each E-
class allows to find the small classes efficiently.

Theorem 5. The procedure REP in Fig. 2 computes
all the repetitions in a word x.

Proof. It is easy to see that the algorithm stops. The
computation of a new value of the equivalence E is
done in steps 5.1 and 5.2 exactly as stated in Lemma
3. If we assume that D is correctly calculated, then
from Lemma 1 it can be shown that all the repetitions
of period p are added to R at step 3.

It remains to prove that D is well updated. At each

execution of the while loop 5.2 exactly one position i
is transferred from its equivalence class k to another
k. If i’ is the position that preceeds i in ECLASS(k)
then the value of Dp(i’) after i has been extracted
from ECLASS(k) is D,,_4(i") + D,,_ (i) since positions
in ECLASS(k) are in increasing order. When i is added
to ECLASS(k) its predecessor i” in ECLASS(k) must
satisfy

D, (") =i-1i",

since the positions in the small classes (copied in
QUEUE) are in increasing order. Furthermore, i being
the greatest position in ECLASS(k), we have Dy (i) =
oo, These three points correspond to what is done
during step 3.2.

The procedure REP may be immediately modified
to calculate maximal repetitions in the word x. Re-
garding Lemma 2 we have only to move the instruc-
tion 3.1 after the step 3.2. Let this new procedure be
called REPMAX.

Theorem 6. The procedure REPMAX computes all the
maximal repetitions of a word x.

Theorem 7. The time complexity of procedure REP
(or REPMAX) is O(Ix!log, IxI+ [Allx]).

Proof. Step 1 in Fig. 2 contributes to O(mix|) in the
total complexity, where m is the number of distinct
letters in the word x. This is bounded by O(lAl [xI).

Next, we discuss the complexity of the “while”
loop 2. All the executions of step 3 take a time
proportional to the number of repetitions in the word
x. This number is bounded by |x|log, Ix| [6].

The cost of the executions of steps 5.1, 5.2 and 6
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procedure REP(x)
for k « 2n step 1 until 1 do begin push k onto NEWINDEX; make ECLASS(k) empty;
end;
(D for i+« 1 until n do begin if (x; already occurs at j) then k < E(j)
else pop k from NEWINDEX; E(i) < k; add i at the end of ECLASS(k);
end;
define D; put in same DCLASS the positions that have same values of D; p + 1; make R, QUEUE, SPLIT empty;
SMALL « {indices of the E-classes};

(2) while SMALL # ¢ do
begin comment computation of the repetitions of period p:
(3) while DCLASS(p) # (i do

begin i+ a position in DCLASS(p);
repeati<— i+ puntil D(i) # p;e« 1;
repeat begini<i—pie<e+1;

(3.1) add (i, p, e) to R;erase i from DCLASS(p):
end;
until i —p<0orD{-p)#p)
(3.2) comment see computation of maximal repetitions;
end;
4) p+« p+ 1;if p > n/2 then return R;
' comment copy of small classes in QUEUE;
(5.1) while SMALL # {} do

begin extract s from SMALL;
for j from the first to the last element of ECLASS(s) do
begin if j # 1 then
begin add (j, s) at the end of QUEUE; k « E(j — 1);
if k ¢ SPLIT then
begin add k to SPLIT; set SUBCLASS(k) = {k }; LASTSMALL(k) = 0;
end;
end;
end
comment computation of the new values of E and D;
(5.2) while QUEUE = ) do
begin (j, s) = the first pair in QUEUE;i<=j — 1;k < E(i);
if LASTSMALL(k) # s then
begin LASTSMALL(K) « s; pop NI from NEWINDEX ; add NI to SUBCLASS(k);
end;
k « the last index put in SUBCLASS(k);
if (i has a predecessor i’ in ECLASS(K)) then
begin D(i") « D(i") + D(i); transfer i’ to DCLASS(D(i");
end;
transfer i at the end of ECLASS(K); E(i) < k; D(i) « o transfer i to DCLASS(=);
if (i has a predecessor i’ in ECLASS(k)) then
begin D(i') «+ i — 1'; transfer i’ to DCLASS(D(i"));
end;
end;
comment determination of the small classes;
while SPLIT # ¢} do
begin extract k from SPLIT;
if IECLASS(k)| = 0 then
begin push k onto NEW INDEX;; erase k from SUBCLASS(k);
end;
add to SMALL all the indices in SUBCLASS(k) but one, corresponding to a greatest E-class;
end;
end;
return R.

Fig. 2. Searching repetitions in a word x.

248



Volume 12, number 5

is proportional to the length of QUEUE which is

27 |ECLASS(s)l.

s index of
a small E-class

Thus, applying Lemma 4, the aggregate cost of all the
executions of steps 5.1, 5.2 and 6 is O(Ix|log, IxI).

6. Optimality

Theorem 8. The procedure REP is optimal in the
class of algorithms computing all the repetitions of a
word.

The proof is a direct consequence of Lemma 10 on
the number of squares in Fibonacci words. Observing
that Fibonacci words do not contain repetition of
exponent 4, together with Lemma 10, we obtain also
the optimality of the procedure REPMAX:

Theorem 9. The procedure REPMAX is optimal in the
class of algorithms computing all the maximal repeti-
tions of a word.

Lemma 10. Let us define the sequence of Fibonacci
words by: fo = b, f; =aand f4; = f;f;_;q integer

>1. Then, the number R, of squares (repetition of
exponent 2) in f, satisfy, for any q = 5:

R, >3!fy | log, Ifyl.
Proof. The property can be checked for q = 5 and 6.

We proceed by induction on q. Suppose q = 6 and
consider word fg ,; which is f4fy_;. Then

q+l Rq'|"Rq 1+Iq+1,

where 14y is the number of squares in fqﬂ s A
that are neither squares in f; norin fy_,, i.e. squares

that overlap over the border line between fy and fy_;.

By induction hypothesis, we have:
Rq+l “‘lf |10g21f |+l|f lllogglf 1J+Iq+]_
To get the results, it suffices to prove:

LUy 1logy 1 i+ L 16,y 1logy g4 | + 14y >

>%|fq+1|log2 Ifq+1|,
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or
, i il
I'q+19g?|fq|1082 | ] ‘|‘alf lllogg | l,
q -1
using the relation Ifgqq = 1fgl+ [f,_4l.

It is well known that Fibonacci words satisfy, for
q=4

IAVRIAMEIAVEIAES S
So it remains to prove that
rqe1 Z 50,1+ 1£,_41)log, §,
or (1)
Iq+1 =5 gl
First, we prove that f,; contains [f;_3|+1

squares of period |f;_,I;so, these squares contribute
to 1g+1. We have successively:

for1 =fqfq1 =fq_1fq_2fq_2fg_3

=fq-1fq—2fg-3fq-afq-3
= fq—lfq—l fq_4 fq_3

The square fy_;f,_; is then a prefix of ;.
Forq =6, f;_3 is a prefix of f;_4f;_3 since:

Y SN I A

= fq_4fq_5fq_6fq_5
-3 fq—ﬁfq—s

The word f;_3 being also a prefix of f;_; we get
Ify—3! other squares of period If,_, .

Secondly, fy,; may be written fq_;f,_,fq_of_3.
Analogously, we get [f;_31+ 1 squares which con-
tributes to 1y, since f;_3 is a prefix of f_,.

So, for q = 6, we have 1g4+y > 21f,_31. The result
(1) follows from the inequality:

LA ([
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