Linear searching for a square in a word.

Bu?. Furo. AS’SOC. TﬁdoV. Com#Ut. S‘CL‘. 24:44-72/ 168[1

Max CROCHEMORE

Laboratoire d'Informatique
Université de Haute-Normandie
BP 67

76130 MONT-SAINT-AIGNAN
FRANCE

Abstract

Searching for a square in a word may be implemented in time proportio-
nal to the length of the word on a randomm access machine provided the

alphabet is fixed.

Several methods have been developped to find a square in a word x|AP83,
Cr81,ML83] . They share in common an O(lx|.loglx!|) time complexity. In
fact the three algorithms are able to produce all the repetitions in-
side the given word with the same complexity. On an infinite alphabet
or if the alphabet is not known this complexity cannot be improved

even when only one square is searched. We show here that the situation
changes when the alphabet is fixed. In this case the search for a squa-
re can be implemented in linear time. Our algorithm makes use of a re-
sult on concatenation of squarefree words and the fact that suffixes

of a word, on a fixed alphabet, may be lexicographically ordered in
linear time [Mc76,We73] .

1l Definitions

The words that are considered are elements of the free monoid A% gene-
: . o=,
rated by some finite alphabet A. The empty word is denoted by 1, A 1is

A*-{1}] and |x| means the length of a word x in A*.

; ; % . +
A word x of A* is said to contain a square yy if y € A and x may be

written X, YYX, for some Xy and X, in A*. Otherwise x is said to be

square-free. For example, words of length { 1 are square-free. .

When x = yz, y is called a prefix of x and z a suffix of x. To each
such decomposition (y,z) of x is associated its separator denoted by
sep(y,z) : it is the greatest couple of words (v,w) which satisfies
lvl < |yl if w # 1, vw is a prefix of yz and w is a prefix of z. Cou-

ples of words are ordered by the relation :

(v',w') £ (v,w) 1iff |w'| < |w] or (|w'|=|w| and |v'IxIv]).

When (v,w) is the separator of (y,z), w is then the 1longest prefix of
z which appears at least twice in the word yw. The word v marks the

first occurrence of w in yw.

Example 1. If a is a letter which does not occur in y then sep(y,az)=
(1,1). For any word x € A*, sep(l,x) = sep(x,l) = (1,1).m

Example 2. On A = {a,b,c,d| , for the word

X, = abcdbabdcadbcbdbabcabch, we have

0 ,
sep(abcdbabdcadbcbdbabe,abech) = (1,abc).m

Based on the separators of the decompositions of a word x € A* in pre-

fix and suffix is defined the s-factorization of x which is a sequence

(ul,u2, ,uk) of non-empty words such that
X = UgUye .Uy
and which is built iteratively as follows : if Uyre..,u, , are already
. = * H
built and x Uy...u, jaz for a € A and z € A* and if sep(ul...ui_l,
az) = (v,w), then Uy is a or w whether w is empty or not.

The s-factorization of a word is unique and the empty sequence is asso-

ciated to the empty word. We may note that u, the first term of the

1
s-factorization of a non-empty word is its first letter.

Example 2 (continued). The s-factorization of X is
(a,b,c,d,b,ab,d,c,a,db,c,bd,bab,ca,bch).m

We finally introduce two properties on couples of square-free words

which deals with squares in their concatenation.

When u,u' € A*, we say that (u,u') satisfies the property right, deno-

ted by r(u,u') if u and u' are sguare-free and

* = b
3 ul,uz,uB,u4 € A u2u3 #1 , u uju, and u u3u2u3u4.
The property left, denoted by 1l(u,u'), is true for (u,u') exactely when

r(u',u) is true (u and U' are the minor images of u and u' respective-
ly).

Then, r(u,u') = true means that u and u' are squarefree but their con-

catenation uu' contains a square centered at the right of u.

Example 2 (continued)
r (abcdbabdcadbebdbab, cabech) = true

with ul = abcdbabdcadbcbdb,u2=ab,u3=c,u4=b. The word XO contains the

square abcabc.®

2 Main Theorem

Separators alone are not sufficient to caracterize words which contain
a square ; nevertheless they provide a sufficient condition which is
given in the following lemma. With the help of s-factorizations we are
able to give an 'if and only if' condition for words that contain a
square. The result in the next theorem is the base of our linear test

for squarefreeness of words.

Lemma. Let al,...,an be letters of A. If the word al...an satisfies
iie (1,2,...,n) 3v,w € A*

(1) B .
(v,w) = sep(al...ai_l,ai...an) » w # 1 and ay.--a; g prefix of vw

then it contains a square.

Proof : ay-..ay contains two occurrences of w which overlap or are

consecutive and then aj...ay is not square-free.m

Theorem. Let al,...,an be letters of A and (ul,...,uk

rization of ay...a . The word ay-..ay contains a square if and only if

) be the s-facto-

it satisfies (1) or

(2) 3j e(1,...,k-1) l(ui,ui+

l) or r(ui,u. ul"'ui—l’uiui+l)

l+l) or r(

Proof : We have only to prove that if ay..-ay contains a square and

does not satisfy(l), it satisfies (2).

Let XYY be the shortest prefix of ay...a, which contains a square

+ . . .
(Xl € A* , yeA). Let i be the smallest integer such that XYy 1s pre-

fixe of QyUy. ..U Uy . Note that i>»1 , since |u

i+1 | = 1 and then u. is

1 1
square-free.

The definition of i and the fact that ui's are non empty words ensure

that Upe..uy is square-free and is a proper prefix of SRAL
From this, we deduce that Upeeely g (which is empty if i=1) is a proper
prefix of X Y ¢ the contrary wouldcontradict the definition of u. and

particulary the maximality of its length.

It then follows that the second occurrence of y is a factor (neither

prefix nor suffix) of Uy Uy

) = false implies u.u.
iTi

We conclude, noting that l(ui,u.)=

i+l
is squarefree and then d(u,...u

T +1 1 32p ¢

i'Yi+41
uiuin) is true.O
Example 2 (continued)

The word X does not satisfy the condition (1) of theorem but (2)
holds.O

3 Square-freeness test

Following the conditions in the previous theorem, we get a square-free-
ness test that we write as a function named SQUARE which value is true

exactely when the input word contains a square.

function SQUARE (al...an) ;
i«1;
while i ¢ n do
(v,w) «~ sep(a,...a; ,,a;...a) ;
if w =1 then u'«-ai i Je1 ; 1-1i+1
else u«u' ; u'«-w ; _
if (lvw|»i-1 or 1(u,u') or r(u,u') or r(al..aj;l,uu'))

then return (true)

end if ;
J i ; 1eit+|w]
end if

end while

return (false)

end function

The function SQUARE follows the theorem in 2 and takes into account
that fact : if a,...a; , 1s square-free and sep(al...ai_l,ai...an) =

(1,1) , the letter a; does not appear in ay-..a; 4 and then ay...a; is
also square-free.

4 Time complexity

The time complexity of the function SQUARE depends on the time needed

to compute the values of functions sep, 1 and r.

On any finite alphabet, it is possible to find the separators of all

the decompositions (y,z) of a word x(=yz) in linear time adapting the
construction of the suffix tree of x Mc 76 . The suffix tree may be
precomputed, or built during the execution of-"the function SQUARE. In

the latter case the algorithme becomes 'almost on-line '.

It remains to see that all the evaluations of the functions 1 and r is
also linear in the length of the input. word.The Morris and Pratt's al-
gorithm [KMP 77| includes the computation of a function called f which

is useful for this purpose.

For any word u in A+, f(u) is defined to be the longest word distinct
from u which is both a prefix and a suffix of u. Futhermore, the compu-
tations of the f(u)'s, for the non empty prefixes u of a word x, may be

.done in time proportionnal to |x|.

The next proposition gives a base to built algorithms which realize the

functions 1 and r.

Proposition. Let u, u'e€ A* which satisfy r(u,u'), and let psp be the
shortest prefix of u' such that s is a suffix of u (pe A*, seAA+). Then
i- p = f(psp)
ii- if p'vs'p' is a prefix of u'(p' e A*, v, s'eAA+) such that

Ilpspl<lp'vs'p'| ans s' is the longest common suffix of both u and

p'vs', then |psi<max(|p'v],|p'vs'|/2).

To evaluate d(u,u') when u and u' are square-free we proceed as fol-
lows : reading u' from left to right f is first computed ; then from
right to left for a prefix psp of u' such that p = f(psp) it is chec-
ked if s is a suffix ofu. The total number of comparisons between let-
ters during these tries is bounded by 2|u'| as a consequence of part ii

of the proposition which allows to make jumps.

Corollary. When u and u' are square-free words in A*, r(u,u') (resp.
1(u,u')) may be evaluated in time proportionnal to |u'l| (resp. |ul).

Turning back to the total cost of calls to functions 1 and r in the

function SQUARE, the above corollary gives a complexity proportionnal

k-1
to j2£ ,uiui+l! if (ul,...,uk) is the s-factorization of the input
word ay...agy and this is majorate by 2n.

Theorem. On any finite alphabet, searching a word for a square may be

realized in time linear in the length of the input word.

5 Conclusion

The above algorithm gives a positive answer to a question of Main &
Lorentz which were the first to publish an 0(|x|loglx|) algorithm to
test whether a word x is square-free or not. On arbitrary (or infinite)
alphabets our algorithm is still useful : but, in that case, the imple-
mentation could be different using hash tables or search trees to deal
with the distinct letters of the word. The worst case complexity beco-

mes O0([x|log m) where m is the number of distinct letters of x.

The method used here to find a square in a word cannot be directly ap-
plied to cubes or higher power but we conjecture that recognition of

these other patterns may also be realized in linear time.

6 References

AP 83 A. Apostolico & F.P. Préparata.
Optimal off-line detection of repetitions in a string, Theor-
Compt. Sci. 22 (1983) 297-315.

Cr81

KMP77

ML83

Mc76

We73

M. Crochemore

An optimal algorithm for computing the repetitions in a word,

Information Processing Letters, 12 (1981) 244-250.

D.E. Knuth, J.H. Morris & V.R. Pratt.

Fast pattern-matching in strings, SIAM J. Comput. 6 (1977)
323-350.

M. Main & R. Lorentz.

An O(nlogn) algorithm for finding all repetitions in a string,
J. Of algorithms (1983) to appear.

E.M. Mc Creight.

A space-economical suffix tree construction algorithm, J. of
the ACM, 23, 2(1976) 262-272.

P. Weiner.

Linear pattern matching algorithms, in : (proceedings of the

l4th annual symposium on switching and automata theory, 1973)
1-11.

.IIIl-IllI--llIlIII-lIlIlI-......................

@ARTICLE (MCrochemoregf4eatcs,

author = {Maxime Crochemore},

title = {Linear searching for a square in a word-,

journal = {Bul. Euro. Assoc. Theor. Comput. Sci.},

volume = (24},

year = (1984},

pages = 66--72},

note = Presented at ICALP'S4.
Abstract in \textit{Automata, Languages and Programming},
LNCS 172, pp. 137. Springer, Berlin, 1984},

See also:

@ARTICLE (Cro83cras,

author = {Maxime Crochemore},

title = {Recherche lin{\'e}aire d'un carr{\'e} dans un mot},
journal = C. R. Acad. Sc. Paris S\'er. I Math.},

volume {296

number {18},

year = 1983},

pages = {781--784},

	filename-1.pdf
	filename-2
	filename-3
	filename-4
	filename-5
	filename-6
	filename-7

