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CALCUL DE LA DISTANCE PAR LES SOUS-MOTS (*)

par Jean-Jacques HEBRARD (!) et Maxime CROCHEMORE (?)

Communiqué par J. BERSTEL

Résumé. — Cet article contient deux méthodes de calcul de la longueur du plus court sous-mot
(au sens de sous-suite) permettant de distinguer deux mots différents u et v. L'utilisation d automates
et des structures de données concernant les questions d« union et recherche » conduit a un
algorithme quasi linéaire en la longueur de uv.

Abstract. — This paper gives two methods to compute the shortest subsequence which distinguishes
two different words u and v. The use of automata together with data structures for “*Union-Find”
questions leads to an algorithm almost linear in the length of uv.

Définir des critéres de comparaison entre chaines de caractéres (ou mots)
est un probléme qui apparait fréequemment, dans des domaines aussi divers
que la biochimie, la reconnaissance de la parole, I'informatique (correction
de mots mal orthographiés, recherche d’informations non entiérement spéci-
fiées), la reconnaissance de contours, etc. [SK 83].

Parmi les critéres les plus couramment utilisés on trouve la distance de
Hamming et la distance d’édition [Mo 70, Se 74, WF 74, MP 80]. Ces deux
distances sont fondamentalement différentes : la premiére n’est qu'une stricte
comparaison, caractére a caractére, des deux mots, alors que la seconde prend
en compte de fagon essentielle, les similitudes entre leurs sous-mots (un
sous-mot d’un mot est obtenu en supprimant dans ce dernier un certain
nombre de caractéres).

11 est souvent possible de ramener la comparaison de deux mots u et v a
celle de leurs ensembles respectifs de sous-mots. Les deux indices de proximité
les plus simples sont alors : la longueur maximale L (u, v) d’un sous-mot
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442 1-J. HEBRARD, M. CROCHEMORE

commun, et la « distance par les sous-mots » (d (u, v)) définie & I'aide de la
longueur minimale des mots qui distinguent u et v — c’est-a-dire, des mots
qui ne sont pas des sous-mots communs a u et v.

Le calcul de L (u, v) est traité dans de nombreuses études; citons entre autres
celle de Hirschberg [Hi 77] et Nakatsu, Kambayashi et Yajima [NKY 82] dont
les méthodes sont de complexité maximale quadratique. L’algorithme de
Hunt et Szymanski [HS 77], bien que de complexité maximale O (( | u | +| v | )2
log( | u | +|U | )), est d’une grande efficacité dans certaines situations pratiques;
il est d’ailleurs utilis¢é dans la mise en ceuvre de la commande DIFF de
UNIX.

Les aspects théoriques de I'étude de la « distance par les sous-mots » sont
developpés par 1. Simon dans [Lo 82]. Il en déduit un algorithme linéaire de
calcul de d(u, v) qui est malheureusement trés complexe et malaisé & mettre
en ceuvre [Si 84]. Une analyse directe du probléme est réalisée dans [He 84];
elle conduit & un algorithme linéaire pour un alphabet a deux lettres.

Nous adoptons une autre approche, fondée essentiellement sur le fait que
I'on peut construire en temps linéaire, pour un mot donné u, un automate
& (u) qui reconnait I’ensemble des sous-mots de u. Le calcul de L (u, v) se
reduit alors a la recherche d’un chemin de longueur maximale dans I'automate
produit & (u) x . (v); cet algorithme est de complexité quadratique [He 84].
Nous présentons ici les deux algorithmes que 'on obtient en utilisant 'auto-
mate des sous-mots pour le calcul de d (u, v), Le premier est 'application a
I'automate union % (1) \_ & (v) d’'une méthode de partitionnement; sa comple-
xité en temps est O ((|u|+|v|) Log(|u|+|v|)). Le second consiste & ramener
le calcul a un probléme d’équivalence d’automates; la mise en ceuvre est
immediate et trés efficace : sa complexité est quasi linéaire en temps et lin¢aire
en espace.

1. AUTOMATES ET SOUS-MOTS

1. 1. Deéfinitions générales

Soit (4, =) un alphabet fini totalement ordonné. A* est I'ensemble des
mots formés sur A. On note & le mot vide et |w| la longueur d’'un mot w.

On considére I'ordre généalogique sur 4%, noté = également, et défini de
la fagon suivante : pour tout u, ve A*, u=v si et seulement si :

ou bien |u|<|v];

ou bien |u|=|v|, u=ras, v=rbt, avecr, s, te A*, a, be A et a<bh;

ou bien u=uv.
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Si u<wv, alors soit v est strictement plus long que u, soit u et v sont de
méme longueur et v est plus grand que u pour I'ordre lexicographique.

Soient u=u,...u, (u,e A) et v=v,...v, (v;€ A) deux mots de A* On dit
que v est un sous-mot de u sl existe une application
fAL ...,n}>{1,....,m}  strictement croissante  telle  que

Vye o Up=Up (). . -Up

Exemple :
A={a, b, c}, u=abcabc, v=bhcc.

REMARQUE : Un mot peut étre sous-mot d’un autre de plusieurs maniéres.
Ainsi abc est un sous-mot de abcabe de quatre fagons différentes.

Si v est un sous-mot de u, on dit aussi que v divise u et on note v|u. Si v
ne divise pas u, on note v + u.

Un automate fini déterministe complet est un quadruplet .« =(Q, i, T, t),
ou Q est I'ensemble fini des états, i Iétat initial, T ’ensemble des états
terminaux et ¢ 'application de Q x A dans Q qui définit les transitions de .«#;
t se prolonge en une application de Q x 4* dans Q. On emploie la notation
abregée : VgeQ, Vwed*, g.w=t(g, w).

Le  language reconnu par 'automate ./  est  I'ensemble
| « |={wed*/i.weT}.

1.2. Distance par les sous-mots

Etant donné un mot u et un entier I, on note S(u, I) I'ensemble des
sous-mots w de u tels que |w|=L

S(u, h={weA*/w|uet|w|<I}.
On appelle distance par les sous-mots de deux mots u et v, I'élément de
N U {0}, noté d (u, v), et défini par :
d(u, v)=max {leN/S (u, )=S (v, )} si u#v,
d (u, v) =00 sinon.
Evidemment, d(u, v) nest pas une distance au sens usuel, mais

3(u, v)=2"% v est une distance ultramétrique. On trouve une étuc détaillée
de d(u, v) dans [Lo 82].
On dit qu'un mot w distingue deux mots u et v, sil divise 'un et ne divise

pas l'autre. Si w est un mot de longueur minimale qui distingue u et v alors
d(u, v)=|w|-1.
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Exemple :

u=ababa, v=aabba, S(u, 2)=S (v, 2),
bab |u, bab+r, d(u, v)=2.

1.3. Automate des sous-mots

On peut construire, en temps linéaire, I'automate minimal qui reconnait
I’ensemble des sous-mots d’un mot donné.

Etant donné un mot u=u...u, (4;€A), on note & (u) I'automate fini
déterministe défini par :

‘yj(u):{{os"'sm'l'l}s 05 {Os---sm}a !:},
VaeA, t(m,a)=t(m+1, a)=m+1,

YaeA, Vie{0,...,m—1}, E,()={ke{i+1, ..., m}/u,=a},
3 a)z{min E, () si E,()0#D

m+1, sinon.

Exemple :

A={a, b},  u=abaaba,  m=6.

On a les propriétés suivantes :

(1) Vi, jef{0,...,m+1}, Ywed¥, i<j = t(i, w=t(, w).
(2) Vi, je{0,...,m+1}, i<j = t(, u)<i

PrOPOSITION 1 @ Pour tout u=u;. . .u, (u;€ A), & (u) reconnait I'ensemble
des sous-mots de u.

Démonstration : Pour tout mot w=w,...w, (w,e4) et tout ie{l, ..., p},
soit g ()=t (0, w,...w,). Il suffit de montrer : g(p)<m<>w|u. Si g(p)=m,

Informatique théorique et Applications/Theoretical Informatics and Applications



CALCUL DE LA DISTANCE PAR LES SOUS-MOTS 445

alors g est une application strictement croissante de {1, ..., m} qui fait de w
un sous-mot de u.

Si w|u, alors w=u, ;). ..u; (,), Ou fest une application strictement crois-
sante de {1, ...., p} dans {1, ..., m}. Par définition de & (u), g(1)=f (1) et
pour tout i de {2, ..., p},
gE—-1)sf(-1) = g@i-1)<f@)

= t@i-1,u )= = gO=0
etdonc g(P)<f(p)<m. B

& (u) est appelé 'automate des sous-mots de u. Sa construction est réalisée
par l'algorithme suivant, en un simple parcours de u de droite a gauche.

ALGORITHME 2 :
Entrée : u=u,...u,(u;eA4)
Sortie : t, fonction de transition de & (u)

début
pour chaque lettre a de A @ debut t(m+1, @) «=m+1;t(m, a) —m+1 fin;
ﬂic—m—lgﬁpas—ly— -
début
t(i, ) —i+1;
pour chaque lettre a de ANJ{u, .} faire t (i, a) — 1 (i+ 1, a);
— kvt
fin. B

ProposITION 3 : Pour tout mot u, I'algorithme 2 calcule la fonction de
transition de & (u); sa complexité est O (]A | fu | ).

Démonstration : Ceci est une conséquence de la définition de & (u). B

2. PARTITIONNEMENT

Le calcul de d(u, v) se raméne a la construction d’une suite d’équivalences
R (k) (ke N) sur 'ensemble des états de I"'automate union & (u) | & (v). Pour
tout k, R(k+1) est plus fine que R(k). On montre que d(u, v)=D si et
seulement si D est le plus petit entier tel que les états initiaux de S(u) et
& (v) ne sont pas équivalents pour R(D +1). La construction de la suite R
est réalisée en adaptant lalgorithme de partitionnement de Hopcroft
[AHU 74], le «calcul de d(u,v) est alors effectué en temps
O(|A|(u|+|v])log(|u]|+]|v)).

Considérons les mots u=u, . . . u, (u;€ A), v=0,...v, (v;€ A) et les automa-
tes FW)=({0,...,m+1},0,{0,...,m}, t)et F@w)=({0, ..., n+1}, 0,
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{0, ..., n},t,). Soit ¥ (u) U & (v)=(Q, I, T, t) 'automate union. On convient
de confondre m+1 et n+1 en un seul ¢tat noté « Puits ».

0={0,...,m}U{0, ..., 7} U{Puits},
I={0,0}, T=Q\Puits}.

Cet automate n’est pas déterministe.
Pour tout entier k, R (k) est la relation d’équivalence définie sur Q par :

Vp, qeQ, p=q[R(Kk)]
< (Ywed* |w|Sk=(p.weT<q.weT)).

On note P(k) la partition associée a R(k). Ainsi P (0)={ {Puits},
O \{Puits} }.

La proposition suivante, dont la preuve est une simple transcription des
définitions de d et de la suite d’équivalences R, fournit un moyen de calcul
de d. Elle exprime uniquement que la distance d (u, v) entre deux mots u et v
est le plus grand entier D pour lequel les états initiaux de & (u) et & (v) sont
R (D)-¢quivalents.

ProrosiTioN 4: VYDeN, d(u v)=D<(Nk<D,0=0[R(k)]) et
0£0[R(D+1)).

Démonstration :
VkeN, 0=0[R (k)< (Vwed* |w|Sk=(w|uew|v). B

REMARQUES : (1) Pour tout k, R(k+1) est plus fine que R (k) (on note
R(k)=ZR(k+1)).

(2) Pour tout k, R(k)#R(k+1)<=(@p, qeQ, JacA, p=q[R(k)] et
p-a#q.a[R (k).

(3) Il existe un entier K tel que R(0)>...>R(K) et Vk>K, R(k)=R(K).

(ot R(k)>R (k') <> (R(k)=R (k') et R(k)#R (k"))

Q étant fini, 'ensemble E={keN/R(k)=R (k)=R(k+1)} est non vide, et
K=min E.

(4) R(K) est I'équivalence la plus grossiére qui soit a la fois plus fine que
R (0) et compatible avec ¢ :

Vp, qeQ, Vaed, p=q[R(K)] = p.a=q.a[R(K)]

Le calcul de R (K) est un probléme de partitionnement qui peut étre résolu
en utilisant I'algorithme de Hopcroft [AHU 74]. Cependant celui-ci ne permet
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pas de construire effectivement la suite R. Aussi emploierons-nous une
méthode dérivée, définie dans [CC 82] pour le partitionnement d'un graphe.
NOTATIONS :

— VqeQ,VaeA, qa '={peQ/p.a=q}.
— YBcQ,VacA, Ba '=1\J qa '

ge B
— P={B,, ..., B,} étant une partition de Q, on note By, ..., B,] I'équi-
valence associée.

— L’intersection de deux équivalences est une opération associative; soient
R, et R, deux équivalences sur Q, on a :

v p, geQ, p=q[R;NR,] <= (p=q[R,]et p=4q[R,]).

Pour toute partition P de Q et toute partie T de 2 (Q), on note PAT la
partition associée a I’équivalence R définie par :
Vp, qeQ, p=q[R] <« (VBeP,
YCeTU{Q}, peBNC<=qeBNC).
Une premiére construction de la suite R (k) (k€ N) est donnée par la :
PROPOSITION 5 : Pour tout k, R(k+1)= (N [Ba ! Q\Ba ']

BeP(k)
agAd

Démonstration : Soit

E= N [Ba ! Q\Ba™']
BeP (k)
aeAd

Vp, qeQ, p=q[E] < VaeAd, p.a=q.a[R(k)]
< p=qg[R(k+1)]. B

On améliore cette méthode en distinguant les petites et les grandes classes.
Soient

k>0, P(k)={B,,...,B} et Pk—1)={B,, ..., B}

toute classe B; suivant R (k — 1) est union de classes suivant R (k). On définit
une application g qui permet d’associer a toute classe B; de P(k—1) une
classe de P (k) qu’elle contient et qui est de cardinal maximal,

g:P(k—1)—P(k), Vie{l,..., h'}, g(B))< B
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et
VBeP(k), BcB] = |B|<|g(B).

Les classes qui sont dans I'image de g sont appelées les grandes classes, les
autres les petites classes. On note Pt (k) I'ensemble des petites classes de P (k).
On a Pt (0)={{Puits)}.

La proposition suivante montre qu’il n’est pas nécessaire d’utiliser toutes
les classes de R (k) pour calculer R (k + 1), les petites classes suffisent.

ProrosiTiON 6 : Pour tout k,

R(k+1)=R(k)N( N [Ba™', Q\Ba™').
B e Pt (k)
aed
Démonstration : EE=R(k)N( N [Ba ', Q\Ba']).
Be Pt (k)
ae A

Si k=0, Pt(k)={{Puits}}; Vp, qe Q, p=q[E]<>VaeA, p.a=q.a[R(0)].
Sik>0, R(k)= N [Ca™*, Q\Ca '] (prop. 5):

CePik—1)
aed

P(k—1DAPt(k)=P (k),
donc
E= N [Ba!',Q"\Ba '1=R(k+1). B

BeP k)
ae A

REMARQUE : Pour tout k, on a: Pt(k)=F<R(k)=R((k—1).
L’algorithme de calcul de d (u, v) est décrit par le schéma suivant :

ALGoriTHME 7. — Fonction d (u, v)

début
F=0: R(K) « [{Puits), O\ (Puits]]; Pt(k) — {{Puits));
tant que 0=0[R (k)] et Pt (k) faire

début R(k+1)—R()N( N [Ba !, Q\Ba ')
BePiik)
aeg A

ke—k+1
fin;
si 0#0[R (k)] alors retour (k—1)
sinon retour (o)
fin

ProposiTion 8 : L’algorithme 7 effectue le calcul de d(u, v) en temps
O(|A|(Ju|+|v])log(|u]+]|v]).
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Démonstration : On peut mettre en ceuvre la construction de la suite R (k)
(keN) de fagon que le temps d’exécution soit proportionnel au nombre
d’opérations ga ™' effectuées (geQ, ae A) [CC 82]. Soit o ce nombre pour ¢
et a fixés. L’opération ga ' est effectuée a chaque fois que I’état ¢ se trouve
dans une petite classe. Ceci se produit au plus log, |Q | fois — en effet, pour
toute petite classe B de R (k) contenue dans une classe B’ de R(k—1) on a:
| B|<|B’|/2. Par conséquent a.<log,|Q|,

Exemple :

A={a, b, c}, u=cabach,  v=bhacabc.
Suw: @ ¢c © a @ b ® a @ ¢ ® b ®
Puits
FW): @ b ©® a @ ¢ ® a @ b ® ¢ ®
P(0)={{0,1,2,3,4,56,0,1; 2 3,4,5,6}, {Puits} },
Pt (0)={ {Puits} },

{Puits} a~'={4,5,6,375,6, Puits},  {Puits}b=*={6, 3, 6, Puits),
rPlli[S}f‘_J'={5 6, 6, Puits}.
P(1)={{0,1,2,3,0,1,2 3}, {4, 4}, {5}, {5}, {6, 6}, {Puits}}
PL()= {14, 3}, 5}, (5}, 6.8)

{45 4} a_l={2, 3, j, g}, {4 4}b ) 6, {4, z} c_1=®,
{5}0_1=QL 5} b— ] {5} {l's 25 394}3

Sta7'=g, {3} bp71={], 1 4, {Sjct=g,
{6.6}a7'=, {6,8b7'={3,4,5, {66}c'={3 37}
P@)={{0, 0}, {1}, {1}, {2}, {2}, {3}, { },
{4}, {4}, {5}, {3}, {6, &}, {Puits}}
Pe(y={{1}, {1}, {2}, {2}, {3}, {3}, {4}}
{Bal=g, {}b'=, {1}c'={0}
{Ta™'=g. @b7'={0, {LJc'=g
Ba'={0,1}, {Qbl=g, (P l=
Za'=(0,T), &b '=g =g,
(3}al=g, (3}b71={0,1,2}, {c =g
3ta'=g, (Gib'=g, (3}c'={0,1,2
{4} a“‘={2, % {4 b7 =g, {4} cl=0
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PE)={{0}, {0}, {1}, {1}, {2}, {2}, {3}, {3},
{4}, {4}, {5}, {5}, {6}, {Puits}

0£0[R(3)] et d (u, v)=2.

3. UN ALGORITHME QUASI LINEAIRE

Le calcul de la distance par les sous-mots est un probléme voisin de celui
de I'équivalence de deux automates [AHU 74]. En effet, le test d’équivalence
de & (u) et & (v), et le calcul de d(u, v), conduisent tous les deux a I'étude
de la différence symétrique A de | & (u)| et | # (v)|. Dans un cas on teste si
A est vide, dans 'autre on calcule la longueur minimale des mots de A. En
fait, la méthode que nous présentons est plus précise encore : il s’agit de
déterminer le mot h de A le plus petit pour I'ordre généalogique; on a alors
d(u, v)= t h | — 1. Ceci est obtenu en générant une suite de mots finie, croissante
et contenant nécessairement le mot h s’il existe. Naturellement, le calcul est
d’autant plus rapide que la suite comporte moins d’¢léments. Nous considé-
rons successivement deux suites. La premiére, qui donne un algorithme
quadratique, correspond au parcours en largeur du graphe de I'automate
produit .# (u) x (v). La construction de la seconde, sous-suite de la précédente,
se rameéne a un probléme de type « UNION-FIND » pour lequel il existe une
solution simple et de complexité optimale [AHU 74]; elle permet d’effectuer le
calcul de d (u, v) en temps quasi linéaire.

Considérons les deux mots u=u,...u, (;eA), v=v,...v, (v;€A) et les
automates

Fw)y=(0, ..., m+1},0,
FL0)={0,...,n+1}, 0, {

e

0,...m}t,),

* Tu

| s b B

=1

Soient
Z={weA*/NxeA* (0.w, 0.w)=(0.x, 0.x)=>w<x},
et
I=card (Z) (< (m+2) (n+2)).

Soit z(i) (1 £i=1) la suite obtenue en ordonnant, de fagon croissante pour
I'ordre généalogique les éléments de Z.
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On remarque que Z est clos par préfixe :

Vx, yed* xyeZ = xelZ.

Il est alors facile de construire z a I'aide d’une file f. La construction fait
appel aux opérations suivantes :

INITIALISER (f): procédure qui vide f.

AJOUTER (w, f) :  procédure qui ajoute I'élément w 4 la fin de f.

TETE (/) : fonction dont le résultat est le premier élément de f.

SUPRIMER (f):  procédure qui supprime le premier élément de f.

MARQUER (p, q) : procédure qui permet de marquer un élément (p, q) de
0,....,m+1}x{0,...,n+1}.

Construction de z

début
T+ 1; z(i) « & INITIALISER ( f); AJOUTER (g, f);
tant que f+#file vide faire

début

w « TETE(f); SUPPRIMER ( f);
pour a variant de la premiére 4 la derniére lettre de A faire

si (0.wa, 0. wa) n’est pas marqué alors
début i« i+1; z(i) « wa; AJOUTER (wa, f);
MARQUER (0.wa, 0.wa)

fin
fin {tant que}
fin {construction}

La suite z permet de calculer d(u, v). En effet, si usv, il est clair que Z
contient le mot le plus petit pour I'ordre généalogique qui distingue u et v.

Pratiquement on utilise la suite ¢ d’éléments de {0,...,m+1}x
{0, ..., n+1} définie par t (i))=(0.z(i), 0.z (i) (1<i<1). Cette suite est celle
que I'on obtiendrait en effectuant un parcours en largeur du graphe de
'automate produit & (u) x & (v), les sommets adjacents d’un sommet s donné
¢tant examinés dans 'ordre des étiquettes des fléches issues de s.

Soit D={0,...,m}x{n+1} U{m+1}x{0,..., n}. z(i) distingue u et v
si et seulement si ¢ (i)e D. L'algorithme 9 calcule d (u, v), il utilise une file F
d’élements de la forme (p, g, k) ot (p, @)=t (i), k=|z ()| (1<i=1).

ALGORITHME 9 : Fonction d (u, v).

Début
T INITIALISER (F); AJOUTER ((0, 0, 0), F);
tantque F#file vide faire
début i
~ (p. 4 k)« TETE(F); SUPPRIMER (F):
pour a variant de la premicére & la derniére lettre de A faire
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si (p.a, g.a) n'est pas marqué alors

début
si(p.a, g.a)e D alors retour (k);
AJOUTER ((p.a, 3.a, k+1), F);
MARQUER (p.a, q.a)

fin {si}

fin; {tant que}
retour (oo)

fin {fonction}

PropositioNn  10: La complexité maximale de [I'algorithme 9 est
O(|Al[ul[o]).

Démonstration : Le test (p.a, g.a)eD et les opérations AJOUTER et
MARQUER se font en temps constant. Le temps d’exécution est donc
proportionnel au nombre d’¢léments placés dans file; celui-ci est inférieur a
(Jul+2)(Jv]+2). =

Améliorer 'algorithme 9 : d(u, v) est plus rapidement calculée en utilisant
une sous-suite de z.

Soient z’ (i) (1=iZ!’) une suite de mots et G(i)=(S, A(i)) (1=i=ZI') une
suite de graphes non orientés, définies de la fagon suivante:
§={0,...,m+1}U{0,..., n+1} est 'ensemble des sommets de G (i), 4 (i)
I'ensemble des arétes; z' (1)=¢ et A (1)=(J; supposons connus les éléments

Z(1),...,20), A(),... AQ),

et soit
E(i)={xeA*/z’(()Sx et C;(0.x)#C;(0.x)}
ou C;(p)(peS) est la composante connexe de p dans G (i); si E (i)=& alors
I'=1, sinon
z'(i+1)=min E (i)
et
AG{+D=A@G)U{0.2/(i+1), 0.2 (i+1)}}.

L’ensemble Z'={z'(i)/1 i<’} est clos par préfixe :

Vx, yed* xyeZ' = xelZ’.

Le schéma suivant décrit la construction de la suite z’. COMPOSANTE (p)

(peS) désigne la composante connexe de p dans le graphe courant et UNION

(p, 9@) (p, qeS) est une procédure qui effectue I'ajout de I'aréte {p, g}; f est
une file de mots.
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Construction de z’

début
T+ 1; z' (i) « & INITIALISER ( f); AJOUTER (g, f);
tant que f#file vide faire

début

w+ TETE( f); SUPPRIMER ( f);
pour a variant de la premicre a la derniére lettre de A faire
si COMPOSANTE (0. wa) s COMPOSANTE (0. wa) alors
début i« i+1; 2’ (i) « wa; AJOUTER (wa, f);

UNION (0.wa, 0.wa)

fin

fin {tant que}
fin (construction}

La proposition suivante montre que la suite z’ permet de calculer d (u, v).

ProrosiTioN 11 @ Si u#v et si h est le plus petit mot (pour 'ordre généalo-
gique) qui distingue u et v, alors il existe ie {1, ..., I'} tel que z’ (i)=h.

Démonstration :  Si |h|=1, Cest évident. Supposons |h|=2. Soit
k=max {i/z’ ()<h et C;(0.h)#C;(0.h)}; k existe car |h|=2. E(k)# car
heE(k); donc k<l Si h#min E(k) alors z'(k+1)<h, et
Crt1(0.h)#C, ., 0.h) [en effet, 'un des deux états 0.h et 0.h est final
et l'autre pas, par conséquent, I'égalité C,.,(0.h)=C,,, (0.h) impliquerait
Iexistence d’un entier j<k+1 tel que I'un des deux états 0.z (j) et 0.z (j)
soit final et I'autre pas, z’(j) distinguerait alors u et v, ce qui contredirait la
minimalité de h]. Ceci est impossible, k étant maximal, donc h=z"(k+1) et
k+1<l' ®

On en déduit I'algorithme 12. 11 effectue le calcul de d (u, v) en utilisant la
suite ¢'(i)=(0.z"(i), 0.2 (i)) (1<i<I). F est une file d’éléments de la forme
(P, a, k), ot (p, @=1"(), k=|z' ()| A <i<).

ALGORITHME 12 : Fonction d (u, v)
Début
INITIALISER (F); AJOUTER ((0, 0, 0), F);
tant que F#file vide faire
début
(p, 4. k) « TETE(F); SUPPRIMER (F);
pour a variant de la premiére a la derniére lettre de A faire
si COMPOSANTE (p. a) # COMPOSANTE (7. a) alors
deébut
si (p.a, g.a)eD alors retour (k);

AJOUTER ((p.a, q.a, k+1), F).
UNION (p.a, q.a)
fin {si}

fin; {tant que}_
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retour (o0)
fin {fonction}

REMARQUE : Si 'on souhaite obtenir effectivement h, le mot le plus petit
qui distingue u et v, il suffit de définir un tableau PERE et d’effectuer PERE
[p.a, 4.a) < (p, ¢, a) & chaque fois que I'élément (p.a, q.a, k+1) est placé
dans la file. On peut alors facilement construire h a partir de PERE.

Exemple :

A={a, b, c}, u=cabach, v=bacabc
Fu: @ ¢ ©® a @ b ® a @ ¢c ® b ® O
@ b © a ©@c ®a @b O c ® O

Graphe

File

(0.0, 0)
220611030
GLD(ML3LDA32352632)
(1,3, 104,3%23,352(6532422652)

44,2 (3,523,224 2,2)(6, 525, 6,2
3.5 063002062015 620, 1.3)
(5,3,2 (422635256273
0 4 k=03,3,2, 3.a=4, 3.a=7
4, NeD = d(u,v)=2

PERE

h=aba
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On remarque que, par exemple, (2, 4, 2) n’a pas été placé dans la file car
2 et 4 étaient déja dans la méme composante connexe.

Mise en euvre : On connait une méthode optimale pour mettre en ceuvre
les opérations UNION et COMPOSANTE (¢f. [AHU 74]). Elle permet
d’effectuer une suite de O (|Z]) opérations UNION et COMPOSANTE en
temps O (| S |o(|S])), ot & est une fonction dont la croissance est extréme-
ment faible : pour tout entier n, o (n) est le plus petit entier k tel que F(k)=n,
avec

F(0)=1 et F@=2F¢"1

pour i>0 (x(n) <5 pour tout n<2°%33%). En outre, la complexité spatiale de
la méthode est linéaire.

ProrosiTiON 13. — Soient u et v deux mots de A*. Le calcul de d(u, v) par
Palgorithme 12 est effectué en temps

O (| A|(Jul+[o]ya(|u]+[o]),
sa complexité en espace est O (| A|(|u|+]|v|)).

Démonstration : Soit N, et N, respectivement le nombre d’opérations
UNION et COMPOSANTE effectuées par [l'algorithme. L’opération
UNION provoque I'ajout d’une aréte entre deux sommets dont les composan-
tes connexes sont distinctes, elle est donc réalisée au plus |S.|—1 fois. Par
conséquent, le nombre d’éléments placés dans la file est inférieur ou égal a
|S|—1.Ona

N, Z|S|-1 et N,=2|A[(S|=1). |S|=|u|+|v|+4,

d’ou le résultat. W
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Lo 82.

Mo 70.

MP 80.

NKY 82.

Se 74.

Si 84.

SK 83.

WF 74.
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