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Phylogenetic Trees - Motivation

Motivation

- study relation between species

- evolution of characteristics

- co-evolution (host-parasite)

- geological migration

- genetic development of viruses/diseases

Evolution

genetic material changes over time

 new species “branch off”

 “tree of life”
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Rooted Phylogenetic Trees

evolution of species over time,

leaves extant,

hypothetical ancestors

possibly branch lengths (time)

Notation

taxon, cluster, triplet

“Polytomies”

history not clear  “soft”

known “fan out”  “hard”
Exercise:

use xy|z ↔ LCA(xy)<LCA(xz)=LCA(xyz) to prove ab|c + bc|d → ac|d

Exercise

Time
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Unrooted Phylogenetic Trees

similarity between genomes,

leaves extant,

internal vertices have no meaning

possibly branch lengths (amount of change)

Notation

taxon, split, quartet
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Reconstructing Phylogenetic Trees

Group Species By...

- morphology

- behavior

- geography

- distance of sequences

- “genetic distance”

- etc.

Diptera = two wings
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Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Reconstructing Phylogenetic Trees

Vertebrata

has backbone

Tetrapoda

has 4 legs

Mammalia

breast feeding

Salientia

can leap

Elephantidae

elephants

Elephas maximus

Asian Elephant

Loxodonta africana

African Elephant

Keep in Mind

Automatic reconstruction should be

- fast

(deal with tons of species & genes)

- consistent

(optimal data  correct tree)

- non-arbitrary

6/31



Distance-Based Reconstruction
Idea: cluster hierarchically

Idea: merge closest clusters

update matrix

dX∪Y ,Z =
|X |dX,Z+|Y |dY ,Z

|X |+|Y |

branch lengths ??

assume molecular clock

 ultrametric

2 2

1
3

33

5/3
5/3

Unweighted Pair Group Method w/ Avg.

- find “closest pair”

- “join” them

- update distances & recurse

- only accurate if ultrametric

1 1

2

2 5
3

1

6

Exercise

Time
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Distance-Based Reconstruction

Problem: correct pairs may not be closest

B 9

C 11 8

D 9 12 10

A B C

What about unrooted trees? No root  no molecular clock. . .
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Problem: correct pairs may not be closest

B 9

C 11 8

D 9 12 10

A B C

A

B

C

D

2

6

3

3

7

Neighbor Joining (unrooted)

- build eccentricity matrix:

QX ,Y =
∑

Z (dX ,Z + dY ,Z − dX ,Y ) + 2dX ,Y

- find max in Q
- join them

- update distances & recurse

7

7 6

5 8 8

6 3 5 7

2

1
1

3

23

2
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Parsimony Reconstructing

fu
r

A
U
S

po
uc
h

la
n
d

11011111000001011001

Small Parsimony
Input: character state matrix M,

rooted tree T

Task: assign characters to internal

nodes minimizing total cost

 O(nm) time [Fitch’71]

Large Parsimony
Input: character state matrix M

Task: find tree T & assign

characters to internal nodes

minimizing total cost

 NP-hard

Note: alignment is crucial!

sum “distance” of endpoints of each edge  cost 6 (Hamming)

Algo (simple DFS):backtrack from v :if v is leaf:
 R(v)=label(v)else if R(u)∩R(w) = ∅: R(v) = R(u) ∪ R(w)else:

 R(v) = R(u) ∩ R(w)
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Maximum Likelihood Reconstruction

Idea: find a tree (with branch lengths) under which evolution is

most likely to have produced the observed characters/genomes

 need model of evolution

Jukes & Cantor Model

- each base evolves individually

- each base occurs with equal frequency in the genome

- constant rate µ of mutation

- each base is equally likely to be result of mutation

Generalized Time Reversible Model

- each base evolves individually

- each base X has a frequency πX to occur in the genome

- each base-substitution has its own rate of occurance

compute likelihood, given tree & parameters  O(mn) time

find best tree & parameters  NP-hard

 local search in the tree space
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ML Reconstruction - Tree Spaces

Observe: a tree and a rearrangement operation span a space

Nearest Neighbor Interchange

change any configuration

of 4 (3) “neighboring”

subtrees into another

Subtree Prune & Regraft

break any edge uv &

connect v to any edge of

the component of u

Tree Bisection & Reconnection

break any edge &

insert a new

reconnecting edge

“between” any 2 edges
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ML Reconstruction - Tree Spaces

Exercise

Time

Exercise: turn into (any) caterpillar:

0 1

2

345

6

7

8 9

Exercise: how are the distances related?

13 /31



Checking Robustness – Bootstrap Method

suppose: method X yields tree T from n×m character-state matrix M

repeat k times the following experiment:

1. draw m columns from M (with repetition)

2. use X to compute Ti

Finally, for each branch of T, check how often it occurs in the Ti

 “bootstrap value” measures robustness (“support”) of each branch

14 /31



Reconstruction by Gene Trees

A Common Method For Reconstructing Trees

1. get genomes of multiple species

2. extract “genes” using START & STOP codons

3. cluster genes in “families” of similar genes

4. within each family, infer a “gene tree” using dissimilarities

5. build a consensus among the gene trees  “species tree”

(Note: species tree may differ significantly from individual gene trees)

6. reconcile all gene trees with the species tree to learn the

evolution of those genes

15 /31
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Supertrees - “Build” Algorithm

Idea: find root partition & recurse (as long as there are ≥3 taxa)

efbca

cda b

a

cb

d

e f

a, b, c , d e, f

e f

b
a, c , d

c

a d

Note: always works if trees are compatible

incompatible?

- largest compatible subset

 NP-hard (even for triplets)

- voting schemes

(each tree votes for their clades)

- reinterpret clades as characters,

combine into matrix & reconstruct

Algo
[Aho et al’81]

1. build graph G with edge

uv ⇔ ∃uv |x
2. recurse for each com-

ponent of G

3. plug subtrees to root

16 /31
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Consensi of Non-Agreeing Trees

strict consensus consensus subtree majority consensus

17 /31



Reconstruction by Gene Trees

A Common Method For Reconstructing Trees

1. get genomes of multiple species

2. extract “genes” using START & STOP codons

3. cluster genes in “families” of similar genes

4. within each family, infer a “gene tree” using dissimilarities

5. build a consensus among the gene trees  “species tree”

(Note: species tree may differ significantly from individual gene trees)

6. reconcile all gene trees with the species tree to learn the

evolution of those genes
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The History of a Gene Family

Recall

gene = “functional element” of DNA, clustered into gene-families

each family yields a tree depicting its history  “gene tree”

consensus of the gene trees yields “species tree”

But: what did really happen???

Mouse Bat Dog Rat

× ×× ×

Mouse BatDog Rat
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Reconciliation

A B C
b′ cba a′

Embedding Rules

gene tree G , species tree S
- mapping ρ : V (G )→ V (S)
- ` is leaf in G  ρ(`) “corresponds” to ` (a→ A, a′ → A, etc.)

- u ∈ V (G ) is called duplication if ρ(u) = ρ(c) for any child c of u in G
- all non-leaves of G that not duplications are called speciations

- each edge uv of G incurs a loss-cost equal to the number of

edges in the ρ(u)-ρ(v)-path in S minus 1 if v is a speciation or 0

if v is a duplication
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Reconciliation

A B C
b′ cba a′

×

×

a a′ b b′ c

DL-model
= speciation

(0)

= duplication

(δ)

× = loss

(λ)
= transfer

(τ)
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Reconciliation

Goal: embed gene tree into species tree

(extant genes must map to their species)

Max. Likelihood

find most probable embedding

(computationally expensive)

Parsimony

find embedding minimizing

#events (possibly weighted)

×

×

a a′ b b′ c

DL-model
= speciation

(0)

= duplication

(δ)

× = loss

(λ)
= transfer

(τ)
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Reconciliation

Parsimonious Reconciliation
Input: species tree S , gene tree G , δ, λ ∈ N
Task: embed G in S , minimizing the weighted sum of events

Result: LCA-assignment solves this optimally in O(|S|+|G|)

T events only between co-existing species  time constraints  NP-hard

Idea: take dated species tree  O(|S|2|G|) time [Doyon et al.’10]
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Time
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Comparing Phylogenetic Trees

Distance Measures

- Nearest Neighbor Interchange

- Subtree Prune & Regraft

- Tree Bisection & Reconnection

- now: via agreement-forests

- Robinson-Foulds distance

- quartet/triplet distance
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Agreement Forests

Definition

A forest F is called agreement forest of trees T1 and T2 if F can

be obtained from T1 and T2 by removing edges.
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Agreement Forests

Definition

A forest F is called agreement forest of trees T1 and T2 if F can

be obtained from T1 and T2 by removing edges.

Theorem [Allen & Steel, ’01]

TBR-distance(T1, T2) = #trees in smallest agreement forest - 1

NP-hard to compute

Theorem [Bordewich & Semple, ’04]

rSPR-distance(T1, T2) = #trees in smallest rooted agreement forest - 1

NP-hard to compute
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Robinson-Foulds Distance

Definition

RF(T1,T2) = #splits/clusters occuring in exactly one of T1 and T2
= edge-contraction distance a common tree

Note: observe relation to NNI: RF(T1,T2) ≤ 2 NNI(T1,T2)

Note: splits correspond to clusters when rooted at last leaf
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RF(T1,T2) = #splits/clusters occuring in exactly one of T1 and T2
= edge-contraction distance a common tree

Note: observe relation to NNI: RF(T1,T2) ≤ 2 NNI(T1,T2)

Note: splits correspond to clusters when rooted at last leaf

(C) Leonardo de Oliveira Martins
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= edge-contraction distance a common tree

Note: observe relation to NNI: RF(T1,T2) ≤ 2 NNI(T1,T2)

Note: splits correspond to clusters when rooted at last leaf

Day’s Algorithm (common clusters in O(n)) [Day’85]

1. relabel all leaves such that leaves continuous in T1
2. each node in T1 knows:

L = smallest leaf in cluster & R = largest leaf in cluster

 note T1’s clusters in hash-set

3. each node in T2 knows: L, R , and size N of its cluster

4. each node in T2 checks [L,R] in table only if R − L = N − 1
(lookup in T1’s cluster-set in O(1) (average) time)
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Quartet/Triplet Distance

Definition

Q/T(T1,T2) = #quartets/triplets occur. in exactly one of T1 and T2

computing Q-distance (binary trees) [Bryant et al.’00]

1. each edge uv has 4 sets (2 clusters for each of u & v)
2. quartet AB|CD “belongs” to edge e if e splits AB|CD and

e touches AB-path  each quartet is owned exactly once

3. ∀ uv ∈ T1 & qr ∈ T2 : intersect 4 sets of uv with split of qr in T2

4. sizes of intersections can be precomputed bottom-up in O(n2) time

State of the Art

count conflict quartets/triplets  O(n log n) time [Brodal et al.’13]

enumerate conflict quartets  O(n2 + d) time [Bryant et al.’00]

enumerate conflict triplets  O(n + d) time [Weller’17]
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Phylogenetic Networks

Observation

Trees cannot capture hybridization

 phylogenetic network

25/31



Phylogenetic Networks

Observation

Trees cannot capture hybridization  phylogenetic network

25/31



Phylogenetic Networks

Observation

Trees cannot capture hybridization  phylogenetic network

Definition

evolutionary network N = rooted DAG, leaves labeled (taxa)

reticulations R = vertices of in-degree ≥ 2

binary = all inner vertices degree 3

block = maximal biconnected component

display T = subdivision of T is a subgraph
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Split Networks

split = bipartition of set of taxa

splits A|B & X|Y incompatible if both A & B intersect both X & Y

Convex Hull Algorithm [Holland et al.,’04]
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c.f.: Neighbor Net [Bryant & Moulton,’03]

(for circular splits)
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Consensus Split Networks

Strategy

1. list all splits of all input trees

2. extend splits to full taxa using “Z-closure”

3. build consensus

Experimental Study – 106 gene trees (yeast)

[Rokas et al.’03, Holland et al.’04]
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Rooted Network Reconstruction

Observation

rooted network: cluster of u ⊆ cluster of v ⇔ u ≤ v

 rooted network is hasse diagram of its clusters
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Example

{a,b,c,d},{c,d,e,f,g,h}, {c,d,e,f,g}, {e,f,g,h}, {c,d,e}, {e,f,g}, {a,b}, {c,d}, {f,g}

hgfedcba

c,d,e,f,g,h

e,f,g,h

c,d,e,f,g

e,f,g

f,g

c,d,e

c,d

a,b,c,d

a,b

c.f. “cluster popping” [Huson & Rupp,’08]

Exercise

Time
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Rooted Network Reconstruction

Observation

rooted network: cluster of u ⊆ cluster of v ⇔ u ≤ v

 rooted network is hasse diagram of its clusters

Problem

may produce more reticulations than necessary to explain the data

Hybridization Number
Input: set of trees T , int k

Question: Is there a network with ≤ k reticulations displaying all

trees in T ?

 NP-hard for 2 trees [Bordewich & Semple,’07]

Note: HN(T1,T2) = max. acyclic agreement forest - 1 [Baroni et al.,’05]
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Networks Display Trees
Observation

A network may display up to 2|R| trees.

But: how to decide if a given tree is

displayed?
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Networks Display Trees

Tree Containment
Input: a network N, a tree T

Question: Does N display T?

 NP-hard (from Disjoint Paths) [Kanj et al.’08]

Note: linear time on reticulation visible N [Gunawan,’18][Weller,’18]
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see it?
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Small Taxonomy of Network Classes

c.f. “Who is Who in Phylogenetic Networks” (http://phylnet.univ-mlv.fr/)
30/31
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Thanks

& Enjoy

Part III
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