Lecture: Algorithmic Bioinformatics

Doctoral School, Université Dauphine, 2022

Université
Gustave Eiffel

I think

Motivation

- study relation Between species
- evolution of characteristics
- co-evolution (host-parasite)
- geological migration
- genetic development of viruses/diseases

Motivation

- study relation Between species
- evolution of characteristics
- co-evolution (host-parasite)
- geological migration
- genetic development of viruses/diseases

Evolution

Genetic material changes over time

→ new species "Branch off"

"tree of life"

Notation

evolution of species over time, leaves extant, hypothetical ancestors possibly branch lengths (time)

Notation

evolution of species over time, leaves extant, hypothetical ancestors possibly branch lengths (time)

Notation

Notation

Notation

taxon, cluster, triplet

"Polytomies"

history not clear \leadsto "soft" known "fan out" \leadsto "hard"

Exercise:

use xy|z \leftrightarrow LCA(xy)<LCA(xz)=LCA(xyz) to prove ab|c + Bc|d \rightarrow ac|d

similarity between genomes, leaves extant, internal vertices have no meaning possibly branch lengths (amount of change)

Notation

similarity between genomes, leaves extant, internal vertices have no meaning possibly branch lengths (amount of change)

Notation

similarity between genomes, leaves extant, internal vertices have no meaning possibly branch lengths (amount of change)

Notation

similarity between genomes, leaves extant, internal vertices have no meaning possibly branch lengths (amount of change)

Notation

similarity between genomes, leaves extant, internal vertices have no meaning possibly branch lengths (amount of change)

Notation

Group Species By...

- morphology
- Behavior
- geography

Diptera = two wings

Group Species By.

- morphology
- Behavior
- geography
- distance of sequences
- "genetic distance"
- etc.

Diptera = two wings

Idea: cluster hierarchically

Idea: cluster hierarchically

Idea: cluster hierarchically

Idea: merge closest clusters

Idea: cluster hierarchically

Idea: merge closest clusters

Idea: cluster hierarchically

ldea: merge closest clusters

Idea: cluster hierarchically

Idea: merge closest clusters

Branch lengths ??

assume molecular clock ~ ultrametric

Idea: cluster hierarchically

ldea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock
~~ ultrametric

Idea: cluster hierarchically

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock

ultrametric

Idea: cluster hierarchically

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock ~ ultrametric

Idea: cluster hierarchically

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock

w ultrametric

Idea: cluster hierarchically

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock ~ ultrametric

Idea: cluster hierarchically

28/3

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock ~ ultrametric

Idea: cluster hierarchically

28/3

ldea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock w ultrametric

Idea: cluster hierarchically

Unweighted Pair Group Method w/ Avg.

- find "closest pair"
- "join" them
- update distances & recurse

28/3

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock w ultrametric

Idea: cluster hierarchically

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock ~ ultrametric

Unweighted Pair Group Method w/ Avg.

- find "closest pair"
- "join" them
- update distances & recurse

Idea: cluster hierarchically

Unweighted Pair Group Method w/ Avg.

- find "closest pair"
- "join" them
- update distances & recurse

Idea: merge closest clusters

update matrix

 $\overline{d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}}$

Branch lengths ??

assume molecular clock w ultrametric

Idea: cluster hierarchically

Unweighted Pair Group Method w/ Avg.

- find "closest pair"
- "join" them
- update distances ≠ recurse

Idea: merge closest clusters

update matrix

$$d_{X \cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock ~ ultrametric

Idea: cluster hierarchically

Unweighted Pair Group Method w/ Avg.

- find "closest pair"
- "join" them
- update distances ≠ recurse
- only accurate if ultrametric

Idea: merge closest clusters

update matrix

$$d_{X\cup Y,Z} = \frac{|X|d_{X,Z} + |Y|d_{Y,Z}}{|X| + |Y|}$$

Branch lengths ??

assume molecular clock ~ ultrametric

What about unrooted trees? No root who molecular clock...

```
C || 8
D 9 |2 |0
A B C
```

What about unrooted trees? No root -- no molecular clock...

Problem: correct pairs may not be closest

B 9

C | 8

D 9 12 10

ABC

What about unrooted trees? No root \leadsto no molecular clock...

Problem: correct pairs may not be closest

C | 8 D 9 12 9 12 10

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_{Z} (d_{X,Z} + d_{Y,Z} d_{X,Y}) + 2d_{X,Y}$
- find max in Q
- join them
- update distances & recurse

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_Z (d_{X,Z} + d_{Y,Z} d_{X,Y}) + 2d_{X,Y}$ find max in Q
- join them
- update distances & recurse

Problem: correct pairs may not be closest

28 36 32 28

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_{Z} (d_{X,Z} + d_{Y,Z} d_{X,Y}) + 2d_{X,Y}$
- find max in Q
- join them
- update distances & recurse

Theorem

 $Q_{X,Y}$ max \Leftrightarrow any tree T yielding Q has "cherry" (X,Y)

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_Z \left(d_{X,Z} + d_{Y,Z} d_{X,Y} \right) + 2d_{X,Y}$ find max in Q
- join them
- update distances & recurse

update distances

$$d_{X \cup Y,Z} = 1/2 (d_{X,Z} + d_{Y,Z} - d_{X,Y})$$

$$\frac{2b(X) = \frac{\sum_{Z}(d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}}{2b(X) = \frac{\sum_{Z}(d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}}$$

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_{Z} (d_{X,Z} + d_{Y,Z} d_{X,Y}) + 2d_{X,Y}$
- find max in Q - join them
- update distances & recurse

update distances

$$d_{X \cup Y,Z} = 1/2 (d_{X,Z} + d_{Y,Z} - d_{X,Y})$$

$$2b(X) = \frac{\sum_{Z}(d_{X,Z}-d_{Y,Z}+d_{X,Y})}{n-2}$$

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_Z \left(d_{X,Z} + d_{Y,Z} d_{X,Y} \right) + 2d_{X,Y}$ find max in Q
- join them
- update distances ≠ recurse

update distances

$$d_{X \cup Y,Z} = 1/2 (d_{X,Z} + d_{Y,Z} - d_{X,Y})$$

$$\frac{1}{2b(X) = \frac{\sum_{Z}(d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}}$$

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_Z \left(d_{X,Z} + d_{Y,Z} d_{X,Y} \right) + 2d_{X,Y}$ find max in Q
- join them
- update distances & recurse

update distances

$$d_{X \cup Y,Z} = 1/2 (d_{X,Z} + d_{Y,Z} - d_{X,Y})$$

$$\frac{2b(X) = \frac{\sum_{Z}(d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}}{2b(X) = \frac{\sum_{Z}(d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}}$$

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_{Z} (d_{X,Z} + d_{Y,Z} d_{X,Y}) + 2d_{X,Y}$
- find max in Q
- join them
- update distances ≠ recurse

update distances

$$d_{X \cup Y,Z} = 1/2 (d_{X,Z} + d_{Y,Z} - d_{X,Y})$$

$$\frac{1}{2b(X) = \frac{\sum_{Z}(d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}}$$

Problem: correct pairs may not be closest

Neighbor Joining (unrooted) - Build eccentricity matrix:

- Build eccentricity matrix: $Q_{X,Y} = \sum_Z (d_{X,Z} + d_{Y,Z} d_{X,Y}) + 2d_{X,Y}$ find max in Q
- join them
- update distances & recurse

update distances $d_{X \cup Y,Z} = \frac{1}{2} (d_{X,Z} + d_{Y,Z} - d_{X,Y})$ Branch lengths $2b(X) = \frac{\sum_{Z} (d_{X,Z} - d_{Y,Z} + d_{X,Y})}{n-2}$

Problem: correct pairs may not be closest

Neighbor Joining (unrooted)

- Build eccentricity matrix: $Q_{X,Y} = \sum_{Z} \left(d_{X,Z} + d_{Y,Z} d_{X,Y} \right) + 2d_{X,Y}$
- find max in Q
- join them
- update distances ≠ recurse

update distances
$$d_{X \cup Y,Z} = \frac{1}{2} \left(d_{X,Z} + d_{Y,Z} - d_{X,Y} \right)$$
 Branch lengths
$$2b(X) = \frac{\sum_{Z} (d_{X,Z} - d_{Y,Z} + d_{X,Y})}{2}$$

sum "distance" of endpoints of each edge

sum "distance" of endpoints of each edge ~> cost 6 (Hamming)

Small Parsimony Input: character state matrix M, rooted tree T

> Task: assign characters to internal nodes minimizing total cost

Small Parsimony

Input: character state matrix M, rooted tree T

Task: assign characters to internal nodes minimizing total cost

Small Parsimony

Input: character state matrix M, rooted tree T

Task: assign characters to internal nodes minimizing total cost

Small Parsimony

Input: character state matrix M, rooted tree T

Task: assign characters to internal nodes minimizing total cost

~ O(nm) time

[Fitch'71]

Large Parsimon

Input: character state matrix M

Task: find tree T & assign characters to internal nodes minimizing total cost

Algo (simple DFS):
Backtrack from v:
if v is leaf: R(v) = |aBel(v)|else if $R(u) \cap R(w) = \emptyset$: $R(v) = R(u) \cup R(w)$ else: $R(v) = R(u) \cap R(w)$

Small Parsimony

Input: character state matrix M, rooted tree T

Task: assign characters to internal nodes minimizing total cost

~ O(nm) time

[Fitch'71]

Large Parsimon

Input: character state matrix M

Task: find tree T & assign characters to internal nodes minimizing total cost

→ NP-hard

Algo (simple DFS): Backtrack from v: if v is leaf:

else if R(v)=label(v) $R(v) = R(w) = \emptyset$: $R(v) = R(u) \cup R(w)$ else:

 $\rightarrow R(v) = R(u) \cap R(w)$

Small Parsimony

Input: character state matrix M, rooted tree T

Task: assign characters to internal nodes minimizing total cost

→ O(nm) time

[Fitch'71]

Large Parsimon

Input: character state matrix M

Task: find tree T & assign characters to internal nodes minimizing total cost

~ NP-hard

Note: alignment is crucial!

Maximum Likelihood Reconstruction

Idea: find a tree (with Branch lengths) under which evolution is most likely to have produced the observed characters/genomes

Maximum Likelihood Reconstruction

Idea: find a tree (with Branch lengths) under which evolution is most likely to have produced the observed characters/genomes ~ need model of evolution

Maximum Likelihood Reconstruction

dea: find a tree (with Branch lengths) under which evolution is most likely to have produced the observed characters/genomes ~ need model of evolution

Jukes & Cantor Model

- each base evolves individually
- each Base occurs with equal frequency in the Genome
- constant rate μ of mutation
- each base is equally likely to be result of mutation

Jukes & Cantor Model

- each base evolves individually
- each base occurs with equal frequency in the genome
- constant rate μ of mutation
- each base is equally likely to be result of mutation

Generalized Time Reversible Model

- each base evolves individually
- each base X has a frequency π_X to occur in the genome
- each Base-substitution has its own rate of occurance

Jukes & Cantor Model

- each base evolves individually
- each base occurs with equal frequency in the genome
- constant rate μ of mutation
- each base is equally likely to be result of mutation

Generalized Time Reversible Model

- each base evolves individually
- each base X has a frequency π_X to occur in the genome
- each Base-substitution has its own rate of occurance

compute likelihood, given tree & parameters ~> O(mn) time

dea: find a tree (with Branch lengths) under which evolution is most likely to have produced the observed characters/genomes ~ need model of evolution

Jukes & Cantor Model

- each base evolves individually
- each base occurs with equal frequency in the genome
- constant rate μ of mutation
- each base is equally likely to be result of mutation

Generalized Time Reversible Model

- each base evolves individually
- each base X has a frequency π_X to occur in the genome
- each Base-substitution has its own rate of occurance

compute likelihood, given tree \$ parameters \$\infty\$ O(mn) time find Best tree \$ parameters \$\infty\$ NP-hard

dea: find a tree (with Branch lengths) under which evolution is most likely to have produced the observed characters/genomes wheed model of evolution

Jukes & Cantor Model

- each base evolves individually
- each Base occurs with equal frequency in the Genome
- constant rate μ of mutation
- each base is equally likely to be result of mutation

Generalized Time Reversible Model

- each base evolves individually
- each base X has a frequency π_X to occur in the genome
- each Base-substitution has its own rate of occurance

compute likelihood, given tree & parameters \leftrightarrow O(mn) time find Best tree & parameters \leftrightarrow NP-hard \rightsquigarrow local search in the tree space

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Break any edge uv \$
connect v to any edge of
the component of u

Tree Bisection & Reconnection

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Break any edge uv \$
connect v to any edge of
the component of u

Tree Bisection & Reconnection

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Break any edge uv \$
connect v to any edge of
the component of u

Tree Bisection & Reconnection

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Break any edge uv \$
connect v to any edge of
the component of u

Tree Bisection & Reconnection

Observe: a tree and a rearrangement operation span a space Nearest Neighbor Interchange

change any configuration of 4 (3) "neighboring" subtrees into another

Subtree Prune & Regraft

Break any edge uv \$
connect v to any edge of
the component of u

Tree Bisection & Reconnection

Exercise: turn into (any) caterpillar:

Exercise: how are the distances related?

Checking Robustness - Bootstrap Method

suppose: $method \times yields$ tree T from $n \times m$ character-state matrix M repeat k times the following experiment:

- 1. draw m columns from M (with repetition)
- 2. use X to compute Ti

Finally, for each Branch of T, check how often it occurs in the $T_i \leadsto$ "Bootstrap value" measures robustness ("support") of each Branch

- 1. Get Genomes of multiple species
- 2. extract "genes" using START & STOP codons
- 3. cluster genes in "families" of similar genes
- 4. within each family, infer a "gene tree" using dissimilarities
- Build a consensus among the gene trees
 "species tree"
 (Note: species tree may differ significantly from individual gene trees)
- 6. reconcile all gene trees with the species tree to learn the evolution of those genes

- 1. Get Genomes of multiple species
- 2. extract "genes" using START & STOP codons
- 3. cluster genes in "families" of similar genes
- 4. within each family, infer a "gene tree" using dissimilarities
- Build a consensus among the gene trees
 "species tree"
 (Note: species tree may differ significantly from individual gene trees)
- 6. reconcile all gene trees with the species tree to learn the evolution of those genes

- 1. Get Genomes of multiple species
- 2. extract "genes" using START & STOP codons
- 3. cluster genes in "families" of similar genes
- 4. within each family, infer a "gene tree" using dissimilarities
- 5. Build a consensus among the gene trees \leadsto "species tree" (Note: species tree may differ significantly from individual gene trees)
- 6. reconcile all gene trees with the species tree to learn the evolution of those genes

- 1. Get Genomes of multiple species
- 2. extract "genes" using START & STOP codons
- 3. cluster genes in "families" of similar genes
- 4. within each family, infer a "sene tree" using dissimilarities
- 5. Build a consensus among the gene trees \leadsto "species tree" (Note: species tree may differ significantly from individual gene trees)
- 6. reconcile all gene trees with the species tree to learn the evolution of those genes

Idea: find root partition \neq recurse (as long as there are ≥ 3 taxa)

Algo | Each et a|81| | Build Graph G with edge | UV ⇔ ∃UV | X | 2 recurse for each component of G | 3. plug subtrees to root

Idea: find root partition \neq recurse (as long as there are \geq 3 taxa)

b	С
d	а
	f

Algo

[Aho et al'81]

- 1. Build Graph G with edge uv ⇔∃uv|x
- 2. recurse for each component of G
- 3. Plug subtrees to root

Idea: find root partition & recurse (as long as there are >3 taxa)

Algo

[Aho et al'81]

- 1. Build Graph G with edge uv ⇔∃uv|x
- 2. recurse for each component of G
- 3. Plug subtrees to root

Idea: find root partition & recurse (as long as there are >3 taxa)

Algo

[Aho et al'8]

- 1. Build Graph G with edge uv ⇔∃uv|x
- 2. recurse for each component of G
- 3. Plug subtrees to root

Idea: find root partition & recurse (as long as there are >3 taxa)

Algo

[Aho et al'8]

- 1. Build Graph G with edge uv ⇔∃uv|x
- 2. recurse for each component of G
- 3. Plug subtrees to root

Idea: find root partition & recurse (as long as there are >3 taxa)

AIGO

[Aho et al'81]

- 1. Build Graph G with edge uv ⇔∃uv|x
 - 2. recurse for each component of G
 - 3. Plug subtrees to root

Idea: find root partition \neq recurse (as long as there are \geq 3 taxa)

Idea: find root partition & recurse (as long as there are >3 taxa)

AIGO

[Aho et al'81]

- 1. Build Graph G with edge uv ⇔∃uv|x
 - 2. recurse for each component of G
 - 3. Plug subtrees to root

Idea: find root partition \neq recurse (as long as there are \geq 3 taxa)

AIGO

[Aho et al'81]

- 1. Build Graph G with edge uv ⇔∃uv|x
- 2. recurse for each component of G
- 3. Plug subtrees to root

Idea: find root partition \neq recurse (as long as there are ≥ 3 taxa)

Idea: find root partition \neq recurse (as long as there are \geq 3 taxa)

 $\frac{1}{2}$ dea: find root partition $\frac{1}{2}$ recurse (as long as there are ≥ 3 taxa)

Supertrees - "Build" Algorithm

Idea: find root partition \neq recurse (as long as there are \geq 3 taxa)

b c
Note: always works if trees are compatible

incompatible

- largest compatible subset
 NP-hard (even for triplets)
- voting schemes
 (each tree votes for their clades)
- reinterpret clades as characters,
 combine into matrix \(\frac{1}{2} \) reconstruct

Consensi of Non-Agreeing Trees

Ochromonas

Symbiodinium

Prorocentrum

strict consensus

Reconstruction by Gene Trees

A Common Method For Reconstructing Trees

- 1. Get Genomes of multiple species
- 2. extract "genes" using START & STOP codons
- 3. cluster genes in "families" of similar genes
- 4. within each family, infer a "sene tree" using dissimilarities
- 5. Build a consensus among the gene trees \leadsto "species tree" (Note: species tree may differ significantly from individual gene trees)
- 6. reconcile all gene trees with the species tree to learn the evolution of those genes

Reconstruction by Gene Trees

A Common Method For Reconstructing Trees

- 1. Get Genomes of multiple species
- 2. extract "genes" using START & STOP codons
- 3. cluster genes in "families" of similar genes
- 4. within each family, infer a "gene tree" using dissimilarities
- Build a consensus among the gene trees --- "species tree"
 (Note species tree may differ significantly from individual gene trees)
- reconcile all gene trees with the species tree to learn the evolution of those genes

The History of a Gene Family

Recall

gene = "functional element" of DNA, clustered into gene-families

each family yields a tree depicting its history \leftrightarrow "gene tree" consensus of the gene trees yields "species tree" But: what did really happen???

The History of a Gene Family

Recall

gene = "functional element" of DNA, clustered into gene-families

each family yields a tree depicting its history \leftrightarrow "gene tree" consensus of the gene trees yields "species tree" But: what did really happen???

Embedding Rules

gene tree G, species tree 5

- Mapping ho:V(G) o V(S)
- ℓ is leaf in $G \leadsto
 ho(\ell)$ "corresponds" to ℓ (a o A, a' o A, etc.)
- $u \in V(G)$ is called <u>duplication</u> if $\rho(u) = \rho(c)$ for any child c of u in G
- all non-leaves of G that not duplications are called <u>speciations</u>
- each edge uv of G incurs a loss-cost equal to the number of edges in the $\rho(u)$ - $\rho(v)$ -path in S minus I if v is a speciation or O if v is a duplication

Goal: embed gene tree into species tree (extant genes must map to their species)

Max Likelihood

find most probable embedding (computationally expensive)

Parsimony

find embedding minimizing #events (possibly weighted)

Parsimonious Reconciliation Input: species tree S, Gene tree G, $\delta,\lambda\in\mathbb{N}$

Task: embed G in S, minimizing the weighted sum of events

Result: LCA-assignment solves this optimally in O(|S|+|G|)

Parsimonious Reconciliation Input: species tree S, S, A, T $\in \mathbb{N}$

Task: embed G in S, minimizing the weighted sum of events

Result: LCA-assignment solves this optimally in O(|S|+|G|)

Parsimonious Reconciliation input: species tree S, gene tree G, δ , λ , $\tau \in \mathbb{N}$

Task: embed G in S, minimizing the weighted sum of events

Result: LCA-assignment solves this optimally in O(|S|+|G|)

Parsimonious Reconciliation input: species tree S, gene tree G, δ , λ , $\tau \in \mathbb{N}$

Task: embed G in S, minimizing the weighted sum of events

Result: LCA-assignment solves this optimally in O(|S|+|G|)
Tevents only between co-existing species witime constraints which NP-hard

Parsimonious Reconciliation hput: species tree G, δ , λ , $\tau \in \mathbb{N}$

Task: embed G in S, minimizing the weighted sum of events

Result: LCA-assignment solves this optimally in O(|S|+|G|) Tevents only Between co-existing species \leadsto time constraints \leadsto NP-hard ldea: take dated species tree \leadsto O(|S|²|G|) time

Comparing Phylogenetic Trees

Distance Measures

- Nearest Neighbor Interchange
- Subtree Prune & Regraft
- Tree Bisection & Reconnection

Comparing Phylogenetic Trees

Distance Measures

- Nearest Neighbor Interchange
- Subtree Prune & Regraft
- Tree Bisection & Reconnection
- now: via agreement-forests

Comparing Phylogenetic Trees

Distance Measures

- Nearest Neighbor Interchange
- Subtree Prune & Regraft
- Tree Bisection & Reconnection
- now: via agreement-forests
- Robinson-Foulds distance
- quartet/triplet distance

Definition

Definition

Definition

Definition

Definition

A forest F is called agreement forest of trees T_1 and T_2 if F can be obtained from T_1 and T_2 by removing edges.

Theorem [Allen & Steel, 'Ol]

TBR-distance(T_1, T_2) = #trees in smallest agreement forest - | NP-hard to compute

Theorem [Bordewich & Semple, '04]

rSPR-distance(T_1, T_2) = #trees in smallest rooted agreement forest - | NP-hard to compute

Definition

 $RF(T_1,T_2) = \#splits/clusters$ occurring in exactly one of T_1 and T_2 = edge-contraction distance a common tree Note: observe relation to NNI: $RF(T_1,T_2) < 2$ NNI(T_1,T_2)

Definition

 $RF(T_1,T_2) = \#splits/clusters$ occurring in exactly one of T_1 and T_2 = edge-contraction distance a common tree Note: observe relation to NNI: $RF(T_1,T_2) < 2$ NNI(T_1,T_2)

Definition

 $RF(T_1,T_2) = \#splits/clusters$ occurring in exactly one of T_1 and T_2 = edge-contraction distance a common tree Note: observe relation to NNI: $RF(T_1,T_2) < 2$ NNI(T_1,T_2)

Definition

 $RF(T_1,T_2)=\#splits/clusters$ occurring in exactly one of T_1 and T_2 = edge-contraction distance a common tree

Note: observe relation to NNI: $RF(T_1,T_2) \le 2$ NNI (T_1,T_2) Note: splits correspond to clusters when rooted at last leaf

Day's Algorithm (common clusters in O(n))

[Day'85]

- 1. relatel all leaves such that leaves continuous in T_1
- 2. each node in T_1 knows:

L = smallest leaf in cluster $\stackrel{\protect}{\leftarrow} R$ = largest leaf in cluster $\stackrel{\hfill}{\sim}$ note T_1 's clusters in hash-set

- 3. each node in T_2 knows: L, R, and size N of its cluster
- 4. each node in T_2 checks [L,R] in table only if R-L=N-1 (lookup in T_1 's cluster-set in O(1) (average) time)

Day's Algorithm (common clusters in O(n))

[Day'85]

- 1. related all leaves such that leaves continuous in T_1
- 2. each node in T_1 knows:

L = smallest leaf in cluster $\Leftrightarrow R =$ largest leaf in cluster \Leftrightarrow note T_1 's clusters in hash-set

- 3. each node in T_2 knows: L, R, and size N of its cluster
- 4. each node in T_2 checks [L,R] in table only if R-L=N-1 (lookup in T_1 's cluster-set in O(1) (average) time)

Day's Algorithm (common clusters in O(n))

[Day'85]

- 1. relabel all leaves such that leaves continuous in T_1
- 2. each node in T_1 knows:

 $L = \text{smallest leaf in cluster} \Leftrightarrow$ $\sim \text{note } T_1$'s clusters in hash-set R =largest leaf in cluster

- 3. each node in T_2 knows: L, R, and size N of its cluster
- 4. each node in T_2 checks [L,R] in table only if R-L=N-1 (lookup in T_1 's cluster-set in O(1) (average) time)

Day's Algorithm (common clusters in O(n))

[Day'85]

- 1. relabel all leaves such that leaves continuous in T_1
- 2. each node in T_1 knows:

L = smallest leaf in cluster \Rightarrow note T_1 's clusters in hash-set

R =largest leaf in cluster

- 3. each node in T_2 knows: L, R, and size N of its cluster
- 4. each node in T_2 checks [L,R] in table only if R-L=N-1 (lookup in T_1 's cluster-set in O(1) (average) time)

Day's Algorithm (common clusters in O(n))

[Day'85]

- 1. relabel all leaves such that leaves continuous in T_1
- 2. each node in T_1 knows:

L = smallest leaf in cluster $\Leftrightarrow R =$ largest leaf in cluster \Leftrightarrow note T_1 's clusters in hash-set

- 3. each node in T_2 knows: L, R, and size N of its cluster
- 4. each node in T_2 checks [L,R] in table only if R-L=N-1 (lookup in T_1 's cluster-set in O(1) (average) time)

Quartet/Triplet Distance

Definition

 $Q/T(T_1,T_2)=\#$ quartets/triplets occur. in exactly one of T_1 and T_2

Quartet/Triplet Distance

Definition

 $Q/T(T_1,T_2)=\#$ quartets/triplets occur. in exactly one of T_1 and T_2

computing Q-distance (Binary trees) (Bryant et al. 100)

- 1. each edge uv has 4 sets (2 clusters for each of $u \neq v$)
- 2. Quartet AB|CD "Belongs" to edge e if e splits AB|CD and e touches AB-path \leadsto each Quartet is owned exactly once
- 3. $\forall uv \in T_1 \neq qr \in T_2$: intersect + sets of uv with split of qr in T_2
- 4. sizes of intersections can be precomputed bottom-up in $O(n^2)$ time

Quartet/Triplet Distance

Definition

 $Q/T(T_1,T_2)=\#$ quartets/triplets occur. in exactly one of T_1 and T_2

computing Q-distance (Binary trees) (Bryant et al. '00]

- 1. each edge uv has 4 sets (2 clusters for each of $u \neq v$)
- 2. Quartet AB|CD "Belongs" to edge e if e splits AB|CD and e touches AB-path \leadsto each Quartet is owned exactly once
- 3. $\forall uv \in T_1 \neq qr \in T_2$: intersect 4 sets of uv with split of qr in T_2
- 4. sizes of intersections can be precomputed bottom-up in $O(n^2)$ time

State of the Art

count conflict quartets/triplets $\leadsto O(n\log n)$ time enumerate conflict quartets $\leadsto O(n^2+d)$ time enumerate conflict triplets $\leadsto O(n+d)$ time

[Brodal et al.'13] [Bryant et al.'00] [Weller'17]

Phylogenetic Networks

Observation

Trees cannot capture hybridization

Phylogenetic Networks

Observation

Trees cannot capture hybridization ~> phylogenetic network

Phylogenetic Networks

Observation

Trees cannot capture hybridization \leadsto phylogenetic network

Definition

evolutionary network N= rooted DAG, leaves labeled (taxa) reticulations R= vertices of in-degree ≥ 2 ginary = all inner vertices degree 3 glock = maximal biconnected component display T= subdivision of T is a subgraph

Phylogenetic Networks

Observation

Trees cannot capture hybridization \leadsto phylogenetic network

Definition

evolutionary network N= rooted DAG, leaves labeled (taxa) reticulations R= vertices of in-degree ≥ 2 ginary = all inner vertices degree 3 glock = maximal biconnected component display T= subdivision of T is a subgraph

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., 104]

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., O4]

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., O4]

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., 104]

split = Bipartition of set of taxa
splits A|B = X|Y incompatible if Both A = B intersect Both X = Y
Convex Hull Algorithm [Holland et al., O4]

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., '04]

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., 104]

c.f.: Neighbor Net (Bryant & Moulton;03) (for circular splits)

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., O4]

c.f.: Neighbor Net [Bryant & Moulton;03] (for circular splits)

split = Bipartition of set of taxa
splits A|B & X|Y incompatible if Both A & B intersect Both X & Y
Convex Hull Algorithm [Holland et al., 104]

c.f.: Neighbor Net (Bryant & Moulton;03) (for circular splits)

Strategy

- 1. list all splits of all input trees
- 2. extend splits to full taxa using "Z-closure"
- 3. Build consensus

Strategy

- 1. list all splits of all input trees
- 2. extend splits to full taxa using "Z-closure"
- 3. Build consensus

Experimental Study - 106 gene trees (yeast)

S. kudriavzevii
S. paradoxus
S. cerevisiae
S. mikatae
S. bayanus
S. castelli
C. albicans

Strategy

- 1. list all splits of all input trees
- 2. extend splits to full taxa using "Z-closure"
- 3. Build consensus

Experimental Study - 106 Gene trees (yeast)

S. kudriavzevii S. bayanus
S. paradoxus S. castelli
C. albicans
S. cerevisiae
S. mikatae
S. kluyveri

Strategy

- 1. list all splits of all input trees
- 2. extend splits to full taxa using "Z-closure"
- 3. Build consensus

Experimental Study - 106 gene trees (yeast)

[Rokas et al.'03, Holland et al.'04]

S. kudriavzevii S. bayanus

S. paradoxus

S. castelli

S. cerevisiae

S. kluyveri

C. albicans

S. mikatae

Strategy

- 1. list all splits of all input trees
- 2. extend splits to full taxa using "Z-closure"
- 3. Build consensus

Experimental Study - 106 gene trees (yeast)

S. kudriavzevii
S. paradoxus
S. castelli
S. cerevisiae
S. mikatae
S. kluyveri

Observation

rooted network: cluster of $u \subseteq$ cluster of $v \Leftrightarrow u \le v \Rightarrow$ rooted network is hasse diagram of its clusters

Observation

rooted network: cluster of u \subseteq cluster of v \Leftrightarrow u \le v \leadsto rooted network is hasse diagram of its clusters

Example

 $\{abcd\}, \{cdefGh\}, \{cdefG\}, \{efGh\}, \{cde\}, \{efG\}, \{ab\}, \{cd\}, \{fG\}\}\}$

Observation

rooted network: cluster of $u \subseteq cluster$ of $v \Leftrightarrow u \le v \Rightarrow rooted$ network is hasse diagram of its clusters

Example

 $\{abcd\}, \{cdefGh\}, \{cdefG\}, \{efGh\}, \{cde\}, \{efG\}, \{ab\}, \{cd\}, \{fG\}\}\}$

Observation

rooted network: cluster of $u \subseteq$ cluster of $v \Leftrightarrow u \le v \Leftrightarrow$ rooted network is hasse diagram of its clusters

Example

 $\{ab,cd\},\{cde,fgh\},\{cde,fg\},\{e,fgh\},\{cde\},\{e,fg\},\{ab\},\{cd\},\{fg\}\}$

Observation

rooted network: cluster of $u \subseteq$ cluster of $v \Leftrightarrow u \le v \Leftrightarrow$ rooted network is hasse diagram of its clusters

Example

 $\{aB,cd\},\{cde,f,g,h\},\{cde,f,g\},\{e,f,g\},\{cde\},\{e,f,g\},\{cd\},\{f,g\}\}$

c.f. "cluster popping" [Huson & Rupp, '08]

Observation

rooted network: cluster of $u \subseteq cluster$ of $v \Leftrightarrow u \le v \Rightarrow rooted$ network is hasse diagram of its clusters

Problem

may produce more reticulations than necessary to explain the data

Observation

rooted network: cluster of $u \subseteq cluster$ of $v \Leftrightarrow u \le v \Rightarrow rooted$ network is hasse diagram of its clusters

Problem

may produce more reticulations than necessary to explain the data

Hybridization Number Input: set of trees T, int k

Question: Is there a network with $\leq k$ reticulations displaying all trees in \mathcal{T} ?

Observation

rooted network: cluster of $u \subseteq cluster$ of $v \Leftrightarrow u \le v \Rightarrow rooted$ network is hasse diagram of its clusters

Problem

may produce more reticulations than necessary to explain the data

Hybridization Number Input: set of trees T, int k

Question: Is there a network with $\leq k$ reticulations displaying all trees in \mathcal{T} ?

Observation

rooted network: cluster of $u \subseteq cluster$ of $v \Leftrightarrow u \le v \Rightarrow rooted$ network is hasse diagram of its clusters

Problem

may produce more reticulations than necessary to explain the data

Hybridization Number Input: set of trees T, int k

Question: Is there a network with $\leq k$ reticulations displaying all trees in T?

→ NP-hard for 2 trees (Bordewich & Semple, 107)

Note: $HN(T_1,T_2) = \text{max acyclic agreement forest - } I \text{Baroni et al.}051$

Networks Display Trees Observation A network may display up to 2|R| trees.

Networks Display Trees Observation A network may display up to 2|R| trees.

Observation

A network may display up to $2^{|\mathcal{R}|}$ trees. But: how to decide if a given tree is displayed?

Tree Containment Input: a network N, a tree T

Question: Does N display T?

Tree Containment Input: a network N, a tree T

Question: Does N display T?

~> NP-hard (from Disjoint Paths) [kanj et al. '08]

Tree Containment Input: a network N, a tree T

Question: Does N display T?

~ NP-hard (from Disjoint Paths) (Kanj et al: 08]

Note: linear time on reticulation visible N (Gunawan; 18] (Weller; 18]

Tree Containment Input: a network N, a tree T

Question: Does N display T?

→ NP-hard (from Disjoint Paths) [kanj et al: 08]

Note: linear time on reticulation visible N [Gunawan, 18][Weller, 18]

Small Taxonomy of Network Classes

