Lecture:
Alaorithmic Bioinformatics

Doctoral School, Université Dauphine, 2022

Some slides araciously provided gy Daniel Huson < Celine Scornavacea






Phylogenetic Trees - Motivation

Mortivation
- study relation retween species
- evolution of characteristics

co-evolution (host-parasite)
&eoloaical miaration
aenetic development of viruses/diseases

2./3l



Phylogenetic Trees - Motivation

Motivation
- study relation retween species
- evolution of characteristics
co-evolution (host-parasite)
&eological migration
aenetic development of viruses/diseases

Evolution

aenetic material changes over time
~ New species "Branch ofs"
~ "tree of life"
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Phylogenetic Trees - Motivation
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Phylogenetic Trees - Motivation
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R.ooted Phylogenetic Trees

evolution of species over tiwve,
leaves extant,

hypothetical ancestors
possisly Branch lenaths (time)
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R.ooted Phylogenetic Trees
Exercise

evolution of species over time, Tive
leaves extant,

hypothetical ancestors
possisly Branch lenaths (time)

RCT

. ¥ |

Notation "Polytomies”

taxon, cluster, triplet history not cear ~ "soft
known "fan out" ~ "hard"

AUy

n

Exercise:

use xy|z + LCAKPN<LCAx2I=LCA(xy2) to prove aglc + Bald — acl|d
3/3l



Unrooted Phylocenetic Trees
similarity retween cenomes,
leaves extant,

internal vertices have Nno meaning
possiBly Branch lenaths (amount of chanae)
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Unrooted Phylocenetic Trees
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internal vertices have Nno meaning QJ
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R_econstructing Phylogenetic Trees

Horse Fly

Group Species By..

- morpholoay
- Behavior
- GeoaGraphy

Diptera = two winas
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R econstructing Phylocgenetic Trees

Horse Fly

Group Species By..

- mOorpholoay

- Behavior

- GeoaGraphy

- distance of sequences
- "genetic distance" Diptera = two winas
- eta

— S
-~ Mosquito ™
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R econstructing Phylocgenetic Trees

Verterrata
has rackroONe
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R econstructing Phylocgenetic Trees

Verterrata
has rackroONe

Tetrapoda
has 4 leas

Salientia Manmmalia
can leap Breast feeding

" 4

Elephantidae

elephants

'/

Loxodonta africana Elephas maximus
African Elephant Asian Elephant
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R econstructing Phylocgenetic Trees

Keep in Mind

l Automatic reconstruction should re
Verterrata | - fast
has BackBoONne (deal with tons of species + cenes)
- consistent
(optimal data ~~ correct tree)
- NnoNn-arsitrary

Tetrapoda
has 4 leas

Salientia Manmmalia
can leap Breast feeding

" 4

Elephantidae

elephants

'/

Loxodonta africana Elephas maximus
African Elephant Asian Elephant
Y O\ Y O\
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Distance-Based R.econstruction
ldea: cluster hierarchically

A
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l[dea: cluster hierarchically
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Distance-Based R.econstruction
ldea: cluster hierarchically
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l[dea: merae closest clusters

A

assume Mmolecular clock
~ uHtrametric

Branch lenaths 77 o . L
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Distance-Based R.econstruction
ldea: cluster hierarchically
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ldea: cluster hierarchically
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Distance-Based R.econstruction
ldea: cluster hierarchically

\
? 'ﬂ% 28/3
wf y
§i B
l[dea: merae closest clusters

update matrix ,
_ [ Xldx,z+|Y|dy,z E

dxuy.z = =XET 2 A2 3 A3

Branch lenaths 77

[ ooy
» v R
assume molecular clock A" 7y L. ( N

~ uHtrametric




Distance-Based R.econstruction

|dea: cluster hierarchically
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Distance-Based R.econstruction
ldea: cluster hierarchically

Unweiakted Pair Group Method w/ Ava.
- £ind "closest pair”

~ "join" them

- update distances < recurse
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Distance-Based R.econstruction
ldea: cluster hierarchically

\Ae\ Unweiakted Pair Group Method w/ Ava.
[N - £ind "closest pair"
jo 7512 _ join" them
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Distance-Based R.econstruction
ldea: cluster hierarchically

Unweiakted Pair Group Method w/ Ava.
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Distance-Based R.econstruction
ldea: cluster hierarchically

Unweiakted Pair Group Method w/ Ava.
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Distance-Based R.econstruction
ldea: cluster hierarchically

Unweiakted Pair Group Method w/ Ava.
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Distance-Based R.econstruction

What arout unrooted trees? No root ~~ NoO molecular clock. ..
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest
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What arout unrooted trees? No root ~» NoO molecular clock. ..
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest
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D 9 12 IO
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest

Neigheor Joining (unrooted)
- Ruild eccentricity matrix:

Qx,y =Y., (dx,z +dyz—dxy)+2dxy
- find max in @
- join them
- update distances < recurse
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest

\ o q
'ﬁ 28 Neiahror Joining (unrooted)
? - Ruild eccentricity matrix:
g B Qx,y =Y., (dx,z +dyz—dxy)+2dxy
%\_ 38 28 30 - -Fili\d max in Q
- join them

Q%). 28 3L 32 28 - update distances < recurse

l: r\? .8

Theorem Y
Qx.y Max & any tree T yieldina Q 5 Q|
has "cherry" (X,Y)

L]
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest
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update distances

dxuy,z =Y2(dx z +dy z — dx y) ;

Branch lengths

Qb(X) i Zz(dx,z;jg,zﬁ-dx,v)

1

L,

Neighror Joining (unrooted)

- Ruild eccentricity matrix:
Qx,y =Y., (dx,z +dyz—dxy)+2dxy
- find max in @
- join them
- update distances <« recurse

@
Wewn,

Lo
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L]
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest
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Distance-Based R.econstruction

Proelem: correct pairs may not Be closest
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i Input: character state matrix M,
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Parsimony Reconstructing
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\d rooted tree T
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Parsimony Reconstructing
£ 7 2
v L
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Small Parsimony

i Input: character state matrix M,
\d rooted tree T

UN Task: assian characters to internal
ﬁ Nnodes minimizing total cost
‘ ] ~ Ol time (Frtah T
@y Larae Parsimony

Input: character state matrix M

Task: £ind tree T < assian
characters to internal nodes
MmiNnimizing total cost
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Parsimony Reconstructing
£ 7 2
v L

Q
] > Small Parsimony
i Input: character state matrix M,
\d rooted tree T
UN Task: assian characters to internal
ﬁ Nnodes minimizing total cost
% ~ Olnw) time (Fiton

Larae Parsimony
Input: character state matrix M
Task: £ind tree T < assian
characters to internal nodes
MmiNnimizing total cost

~» NP-hard
Note: alianmwent is crucial!
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Maximum Likelihood R.econstruction

l[dea: £ind a tree (with Branch lenaths) under which evolution is
Most likely to have produced the orserved characters/cenomes
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Maximum Likelihood R.econstruction

ldea: £ind a tree (with Branch lenaths) under which evolution is
Most likely to have produced the orserved characters/cenomes

~ Nneed model of evolution

Jukes ¢ Cantor Model

- each Base evolves individually

- each Base oceurs with equal frequency in the genome
- constant rate u Of mutation

- each Rase is equally likely to Be resutt of mutation

Generalized Time R.eversirle Model

- each BRase evolves individually
- each Rase X has a frequency mx tO occur in the cenome
- each Base-surstitution has its own rate of occurance

compute likelihood, civen tree < parameters ~ Olmn) time
£ind pest tree <« parameters ~ NP-hard
~ |ocal search in the tree space
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ML Reconstruction - Tree Spaces
Oerserve: a tree and a rearranaement operation span a space

Nearest Neighror Interchance

change any configuration
of 4 3 "neighroring"
sugtrees into another
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ML Reconstruction - Tree Spaces
Oerserve: a tree and a rearranaement operation span a space
Nearest Neigheor Interchanae

change any configuration
of 4 3 "neighroring"
sugtrees into another

Surtree Prune < Rearaft

Break any edze uv <
connect v to any edae Of
the component of u

Tree Bisection & R.econnection

Break any edce <
insert a new

reconnecting edce
"Between" any 2 edaes i z
|



ML R.econstruction - Tree Spaces

Exercise: turn into (any) catervpillar:

5 4 3

Exercise: how are the distances related?
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Checking R.orustness — Bootstrap Method

suppose: method M yields tree T £rom Nxm character-state matrix M
repeat k times the following experimentt:

1. draw m columns from M (with repetition)

2. use M to compute T

Finally, for each rranch of T, check how often it occurs in the T

~ "BOOtstrap value"' measures rogustness (‘support™ of each Branch

4/ 3l



R.econstruction By Gene Trees
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R.econstruction By Gene Trees

A Common Method For Reconstructing Trees

. Get genomes Of multiple species

. extract "genes" using START < STOP codons

. duster genes in "families" of similar cenes

. within each £amily, infer a "aene tree" usina dissimilarities

. Build 8 consensus amona the cene trees ~~ "species tree”
(Note: species tree may differ sianificantly from individual cene trees)
6. reconcile all cene trees with the species tree to learn the

evolution of those cenes

a s N
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(Note: species tree may differ sianificantly from individual cene trees)
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R.econstruction By Gene Trees

A Common Method For Re_cor\str'uo'tmc: Trees

4. within each family, infer a "aene tree" usina dissimilarities

5. BuUild 3 cONsensus amona the aene trees ~~ "species tree”
(Note: species tree may differ sianificantly from individual cene trees)

6. reconcile all cene trees with the species tree to learn the
evolution of those cenes
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R.econstruction By Gene Trees

A Common Method For ({eeor\str‘uo)cmc: Trees

5. BuUild 38 cONsensus amona the aene trees ~ "species tree
(Note: species tree may differ sianificantly from individual cene trees)
6. reconcile all cene trees with the species tree to learn the
evolution of those cenes
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Supertrees - "Build" Algorithm

|[dea: £ind root iti
partition < recurse (as long as there are >3
e >3 taxa)

Alao (Aho et a8l
| muild araph G with edae
uv & Juv|x

2. recurse for each com
ponent ot G

3, plua sugtrees +to root
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Supertrees - "Build" Algorithm

|[dea: £ind root iti
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Supertrees - "Build" Algorithm

|dea: $ind root partition = recurse (as long as there are >3 taxa)
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Supertrees - "Build" Algorithm

|dea: $ind root partition = recurse (as long as there are >3 taxa)

a db c
I CE D Note: always works if trees are compatisle

incompatiele?

- largest compatiele sugset
~s NP-hard (even for triplets)

- vOting schemes
(each tree votes for their clades)

- reinterpret clades as characters,
comgine into matrix = reconstruct
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Consensi of Non-Aareeina Trees

chr
Symbiodinium
Prorocentrum
Loxodes
Tetrahymena
Spirostomumum

7 P
e Euplotes
Gruberia

strict consensus
Ochromonas
Symbiodinium
Prorocentrum
Loxodes
Tetrahymena
Tracheloraphis
Spirostomum
Euplotes
Gruberia

(o]

Symbiodinium
Prorocentrum
Loxodes
Tetrahymena
Spirostomumum
Euplotes

Tr P
Gruberia

coNnsensus suitree
Symbiodinium
Prorocentrum
Loxodes
Tetrahymena
Spirostomum
Tracheloraphis
Gruberia
Ochromonas

O
Symbiodinium
Prorocentrum
Loxodes
Tetrahymena
Euplotes
Tachel He

P
Gruberia

majority consensus
O

10 Symbiodinium
Prorocentrum
101 Loxodes
Tetrahymena
Spirostomum
Euplotes

Gruberia
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R.econstruction By Gene Trees

A Common Method For ({eeor\str‘uo)cmc: Trees

5. BuUild 38 cONsensus amona the aene trees ~ "species tree
(Note: species tree may differ sianificantly from individual cene trees)
6. reconcile all cene trees with the species tree to learn the
evolution of those cenes
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R.econstruction By Gene Trees

A Common Method For Reconstructing Trees
. .

CIEENCONIDE

reconcile all cene trees with the species tree to learn the
evolution of those genes

o
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The History of a Gene Family

R ecall
gene = "functional element” of DNA, dustered into aene-families

GGAGCTTGAGCCGGAATAGTAGGAACATCTTTAAGAATTITAATTCGAGC
GGAATCTGAACAGGCTTAGTAGCCACTAGAATAAGACTTTITAATTCGAGC
NG GAATTTGAACAGGTT TAGTAGCCACTAGAATAAGACTCT TAATTCGAGC
NG GAATTTGAACCGGCCTCGTAGCAACAAGAATAAGCTTATTAATCCGTGC

each family yields a tree depicting its history ~ "aene tree"
consensus Of the gene trees yields "species tree"
But: what did really happen?7?

Mouse Bat Doa Rat /<>\

Mouse Doa Bat
19/3l
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R ecall
gene = "functional element” of DNA, dustered into aene-families

GGAGCTTGAGCCGGAATAGTAGGAACATCTTTAAGAATTITAATTCGAGC
GGAATCTGAACAGGCTTAGTAGCCACTAGAATAAGACTTTITAATTCGAGC
NG GAATTTGAACAGGTT TAGTAGCCACTAGAATAAGACTCT TAATTCGAGC
NG GAATTTGAACCGGCCTCGTAGCAACAAGAATAAGCTTATTAATCCGTGC

each family yields a tree depicting its history ~ "aene tree"
consensus Of the gene trees yields "species tree"
But: what did really happen???

_—

Mouse Bat Dog Rat /5&
o x/\x o X/\X

O
Mouse Doa Bat Rat
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R_econciliation

A A A

A B C

-
SR O )
Emredding R ules

aene tree G, species tree S

- mappinG p: V(G) — V(S)

- Lis leat in G ~~ p(¢) "corresponds” to £ (a — A, 3’ — A, ete)

- u € V(G) is called duplication i# p(u) = p(c) for any child c of v in G
- all non-leaves of G that not duplications are called speciations

- each edae uv Of G incurs a |0ss—cost equal tO the numper of

edaes in the p(u)-p(v)-path in S minus | i v is a8 speciation or O
i£ v is a duplication
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R_econciliation

g % D/O\D D/O\

DL-model
O = speciation
A = duplication
X = loss

O

20/3l



R_econciliation

Goal: emped aene tree into species tree
(extantt cenes must map to their species)

Max. Likelihood

£ind most prorarle empeedding
(computationally expensive)

Parsimony

£ind emreddinGg minimizing
dtevents (possiely weichted)

DL-model 1
O = speciation
A = duplication
X = loss
X
a a b b
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R_econciliation

Parsipmonious. R econailiation
e rl\fQPut: species tree %‘, cene tree G, 6, €N

Task: emeed G in S, minimizing the weighted suwv of events

Result: LCA-assianment solves this optimally in O(S|+HGD

DL-model 1
o = speciation (0)
A = duplication ()
x = loss (\)
X
a a b b c
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R_econciliation

Parsimonious.R econailiation
e um: species tree %’, Gcene tree G, 6, \,7 € N

Task: emeed G in S, minimizing the weighted suwv of events

Result: LCA-assianment solves this optimally in O(S|+HGD

{ Exercise
/\<>A d}% O O d}% s
ABCD

a bPaNEeC"d
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R_econciliation

Parsipmonious. R econailiation
e rl\fQPut: species tree %‘, cene tree G, ), \, 7 €N

Task: emeed G in S, minimizing the weighted suwv of events

Result: LCA-assianment solves this optimally in O(S|+HGD
T events only Between co-existing species ~ time constraints ~» NP-hard
ldea: take dated species tree ~ O(S|HG]) time [Doyon et allO]

DTL-model '
o = speciation (0)
A = duplication ()
loss (\)

transter (1)

X
O

20/3l



Comparing Phylogenetic Trees

Distance Measures

- Nearest Neighgor Interchance
- Surtree Prune < Rearaft
- Tree Bisection = R.econnection
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Comparing Phylogenetic Trees

Distance Measures

- Nearest Neighgor Interchance
- Surtree Prune < Rearaft

- Tree Bisection = R.econnection
- NOW: Via aareement-forests

- R.orinson-Foulds distance

- Quartet/triplet distance

2173l



Aareement Forests
Definition

A forest F is called aareement forest of trees T, and T, i£ F can
Be Or’tained from T; and T, By removing edaes.

C
D
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Aareement Forests
Definition

A forest F is called aareement forest of trees T, and T, i£ F can
Be Or’tained from T; and T, By removing edaes.

Theorem taien ¢ Steel, 'Ol

TRBR -distance( Ty, T>) = dktrees in smallest aareement forest - |
NP-hard to compute

Theorem Bordewich ¢ Semple, ‘O]

rSPR -distance( Ty, T2) = Hktrees in smallest rooted aareement forest - |
NP-hard to compute

22./3l



R_.orinson-Foulds Distance
Definition

RF(Ty,T,) = dksplits/clusters occuring in exactly one of T; and T,
= edge—contraction distance a common tree

Note: orserve relation to NNI: RF( T, 75) < 2 NNI(T,75)

ABCDIEE
ABD|CEE
AB|CDEE
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R_.orinson-Foulds Distance
Definition

RF(Ty,T,) = dksplits/clusters occuring in exactly one of T; and T,
= edge—contraction distance a common tree

Note: orserve relation to NNI: RF(T;,75) < 2 NNI(T7,75)

S
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R_orinson-Foulds Distance

Detinition

RF(Ty,T,) = dksplits/clusters occuring in exactly one of T; and T,
= edae—contraction distance a common tree

Note: orserve relation to NNI: RF( T, 75) < 2 NNI(T,75)
Note: splits correspond to clusters when rooted at last leaf

Day's Algorithm (common clusters in O(n)) (Day8S]

1. relarel all leaves such that leaves continuous in T;

2. each Nnode I T; kNowss:
L = smallest leat in cluster - R = largest leat in cluster
~ note Ti's dusters in hash-set

3. each node in T, knowss: L, R, and size N of its cluster

4. each node in T, checks [L,R] intarle onlyif R—L=N-1
(lookup in Ty’s cluster-set in O(1) (averaae) time)

23/3l
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1. relarel all leaves such that leaves continuous in T
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(lookup in Ty’s cluster-set in O(1) (averaae) time) e
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Quartet/ Triplet Distance

Detinition
Q/ T, 1) = #quartets/triplets occur. in exactly one of T; and To

24 /3l



Quartet/ Triplet Distance

Definition
/Ty, T) = Hquartets/triplets ocecur. in exactly one of T; and T,

computing R-distance (BiNary trees) rant et 21001

1. each edae uv has 4 sets (L clusters for each of u < v)
2. auartet AB|CD "Belonas” to edae e if e splits AB|CD and
e touches AB-path ~» each Quartet is owned exactly once
3. Vuv e Ty = gr € Ty intersect 4 sets of uv with split of grin T>
4. sizes Of intersections can Be precomputed BOttom-up in O(nz) timve
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Quartet/ Triplet Distance

Definition
/Ty, T) = Hquartets/triplets ocecur. in exactly one of T; and T,

computing R-distance (BiNary trees) rant et 21001

1. each edae uv has 4 sets (L clusters for each of u < v)
2. auartet AB|CD "Belonas” to edae e if e splits AB|CD and
e touches AB-path ~» each Quartet is owned exactly once
3. Vuv e Ty = gr € Ty intersect 4 sets of uv with split of grin T>
4. sizes Of intersections can Be precomputed BOttom-up in O(nz) timve

State of the Art

count conflict Quartets/triplets ~» O(nlogn) time (Brodal et al'3]
enumerate conflict quartets ~ O(n? + d) time (Bryant et 5’001
enumerate conflict triplets ~ O(n + d) time CWeller'T
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Phylogenetic Networks

Oerservation
Trees cannot capture hyeridization

N
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Phylogenetic Networks

Oerservation
Trees cannot capture hyeridization ~ phylogenetic network

Definition

evolutionary network N = rooted DAG, leaves lareled (taxa)
reticulations R. = vertices of in-dearee > 2

ginary = all inner vertices dearee 3

Block = maximal Biconnected component

display T = surdivision of T is 3 sukaraph
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Split Networks

split = Bipartition of set of taxa

splits A|B = M|¥ incompatiele if Both A = B intersect Both M <
Convex Hull Alcorith LHolland et a0+

oo
wﬁr‘@fb

]

[0

1
\
(&Y

, Y

y< "J

c.f.: Neigheor Net (Bryant ¢+ Mourton 031
(for circular splits)
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R.ooted Network Reconstruction

Orservation

rooted network: cduster of u C duster of v & u < v
~ rooted Nnetwork is hasse diaaram of its custers

Example
{apedlfcdetah}, {cdeba}, {efah}, {cde}, {efa}, {88}, {cd}, {(fa}

5 B o d e £ a N
cf. "cluster poppinG" [Huson = Rupp O8]
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Networks Display Trees
Oeservation

A network may display up to 2% trees.
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Networks Display Trees
Oeservation f<\

A network may display up to 2% trees.

But: how to decide if a3 aiven tree is
displayed? /}/}f:})fj‘&
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Tree Containtent
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Small Taxonomy of Network Classes

y &

(nearly stabIeJ [tree-siblingJ

'
reticulation
-visible

/\ level k
)
stable
galled

Y
level-2

normal level-1

af. "Who is Who in Phylocenetic Networks" (http://phylnet.univ-mlv.fr/)

nearly
tree-child
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