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COMPUTING SHORTEST CLOSED CURVES
ON NON-ORIENTABLE SURFACES

Denys Bulavka,∗Éric Colin de Verdière,† and Niloufar Fuladi ‡

Abstract. We initiate the study of computing shortest non-separating simple closed curves
with some given topological properties on non-orientable surfaces. While, for orientable
surfaces, any two non-separating simple closed curves are related by a self-homeomorphism
of the surface, and computing shortest such curves has been vastly studied, for non-orientable
ones the classification of non-separating simple closed curves up to ambient homeomorphism
is subtler, depending on whether the curve is one-sided or two-sided, and whether it is
orienting or not (whether it cuts the surface into an orientable one).

We prove that computing a shortest orienting (weakly) simple closed curve on a non-
orientable combinatorial surface is NP-hard but fixed-parameter tractable in the genus of
the surface. In contrast, we can compute a shortest non-separating non-orienting (weakly)
simple closed curve with given sidedness in gO(1) · n log n time, where g is the genus and n
the size of the surface.

For these algorithms, we develop tools that can be of independent interest, to com-
pute a variation on canonical systems of loops for non-orientable surfaces based on the
computation of an orienting curve, and some covering spaces that are essentially quotients
of homology covers.

1 Introduction

In computational topology of graphs on surfaces, much effort has been devoted to comput-
ing shortest closed curves with prescribed topological properties on a given surface. Most
notably, the computation of shortest non-contractible, or shortest non-separating, closed
curves on a combinatorial surface has been studied, under various scenarios, in at least a
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dozen papers in the last twenty years [11, Table 23.2]. Also, algorithms have been given to
compute shortest splitting closed curves [7], shortest essential closed curves [20], shortest
closed curves within some non-trivial homotopy class [6], and shortest closed curves within
a given homotopy class [12]. In all these cases, the purpose is to compute a shortest closed
curve in a given equivalence class, for various notions of equivalence.

Identifying two closed curves on a given surface whenever there is a self-homeomor-
phism of the surface mapping one to the other is certainly one of the most natural equivalence
relations. In particular, this is the most refined relation if we are only given the input surface,
and it is relevant in particular in the context of mapping class groups [21, Section 1.3.1].
Under this notion, on an orientable surface, any two simple non-separating closed curves
are equivalent: Any non-separating simple closed curve cuts the surface into an orientable
surface that has (oriented) genus one less than the original surface and with two boundary
components. However, for non-orientable surfaces, it turns out that the classification is
subtler: Excluding some low-genus surfaces, a non-separating simple closed curve can be
two-sided (have a neighborhood homeomorphic to an annulus) or one-sided (in which case
it has a neighborhood homeomorphic to a Möbius band); furthermore it can be orienting
(when cutting along it yields an orientable surface with boundary) or not.

In this paper, we study the complexity of computing shortest non-separating simple
closed curves in non-orientable surfaces, under the constraint of being either one-sided or
two-sided, either orienting or not, developing, in passing, tools to handle non-orientable
surfaces algorithmically. Before describing our results in detail, we survey previous works.

1.1 Previous Works

One of the most basic and studied questions in topological algorithms for graphs on surfaces
is that of computing a shortest non-contractible or non-separating closed curve (the length
of such a curve is called edge-width in topological graph theory [1] or systole in Rieman-
nian geometry [25]). Algorithmically, the simplest setup for graphs on surfaces is that of
combinatorial surfaces: On a surface S, one is given an embedding of a graph G that is
cellular (all faces are homeomorphic to open disks); each edge of the graph has a positive
weight. The goal is to compute a shortest closed walk in G that is non-trivial on S either
in homotopy or in homology. It turns out that such closed walks are simple, so they are,
respectively, a shortest cycle that does not bound a disk on S, or that does not separate S.

Algorithms for computing shortest non-contractible or non-separating closed curves
on surfaces have been developed since the early 1990s [35]. The current fastest algorithm in
terms of the size of the input, the number n of vertices, edges, and faces of G, due to Erickson
and Har-Peled [17], runs in O(n2 log n) time. However, it is typical to view the genus g of
the surface as a small parameter, and under this perspective it is worth mentioning the
algorithms by Cabello, Chambers, and Erickson [5], which runs in O(g2n log n) for generic
weights, and Fox [22], which runs in 2O(g) · n log logn, but for orientable surfaces only. We
refer to a survey [11, Table 23.2] for many other results.

Other topological properties have also been considered. Chambers, Colin de Verdière,
Erickson, Lazarus, and Whittlesey [7] study the complexity of computing a shortest “simple”
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closed curve that splits the (orientable) surface into two pieces, neither of which is a disk.
Erickson and Worah [20] give a near-quadratic time algorithm to compute a shortest essential
“simple” closed curve on an orientable surface with boundary. Cabello, DeVos, Erickson,
and Mohar [6] provide a near-linear time algorithm (for fixed genus) to compute a shortest
“simple” closed curve within some (unspecified) non-trivial homotopy class. In all these
problems, one cannot expect in general the output closed curve to be a simple cycle in the
input graph G: It sometimes has to repeat vertices and edges of G, but it is weakly simple [9]
in the sense that it can be made simple by an arbitrary perturbation of the curve on the
surface. In order to store weakly simple curves, both for the output and at intermediate
steps of the algorithm, it is convenient to use the dual framework of cross-metric surface
setting [12], in which these curves are really simple.

Very few works devote tools specifically to non-orientable surfaces. On the combi-
natorial side, Matoušek, Sedgwick, Tancer, and Wagner [30] carefully describe the result of
cutting a non-orientable surface along a simple arc or closed curve, and in particular em-
phasize that there are various flavors of non-separating simple closed curves. Very recently,
Fuladi, Hubard, and de Mesmay [23] prove the existence of a canonical system of loops on
a non-orientable surface in which each loop has multiplicity O(1), and show that such a
system of loops can be computed in polynomial time. There are some good reasons not to
neglect non-orientable surfaces [23, Introduction]: Random surfaces are almost surely non-
orientable; graphs embeddable on an orientable surface of Euler genus 2g are embeddable on
a non-orientable surface of genus 2g + 1, while graphs embeddable on the projective plane
can have arbitrarily large orientable genus; non-orientable surfaces appear naturally, e.g., in
the graph structure theorem of Robertson and Seymour [32].

1.2 Our Results

We obtain the following results on orienting (simple) closed curves on non-orientable surfaces:

Theorem 1. It is NP-hard to decide, given a cross-metric surface (S, G∗) and an integer k,
whether a shortest orienting closed curve on (S, G∗) has length at most k.

Theorem 2. Given a non-orientable cross-metric surface (S, G∗) of genus g and size n,
we can compute a shortest orienting closed curve in (S, G∗) in 2O(g) · n log n time. Such a
shortest closed curve has multiplicity at most two.

It turns out that orienting curves are always non-separating, and that their sidedness
is prescribed by the genus of the surface (see Lemma 3 below). In contrast, computing
shortest non-orienting (simple) closed curves can be done in polynomial time:

Theorem 3. Given a non-orientable cross-metric surface (S, G∗) of genus g and size n,
we can compute a shortest non-separating non-orienting one-sided (respectively, two-sided)
closed curve in (S, G∗) in O(poly(g)n log n) time. More precisely:

• We can compute a shortest non-separating non-orienting one-sided closed curve in
O(g3n log n) time if g is even, and in O(g4n log n) time if g is odd;
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• we can compute a shortest non-separating non-orienting two-sided closed curve in
O(g4n log n) time if g is odd, and in O(g5n log n) time if g is even.

Such shortest closed curves have multiplicity at most two.

These results implicitly assume that such curves exist (equivalently, g ≥ 2 in the first
case and g ≥ 3 in the second one; see Lemma 3). They are stated in the cross-metric surface
model, but their outputs immediately translate to shortest weakly simple closed curves in
the dual combinatorial surface (S, G).

In passing, we develop tools of independent interest for non-orientable surfaces. First,
we give an algorithm to compute an orienting curve in linear time (Proposition 1), refin-
ing a construction given by Matoušek, Sedgwick, Tancer, and Wagner [30]. Second, we
introduce an analog of canonical systems of loops for non-orientable surfaces with a new
combinatorial pattern, the standard systems of loops, and show that we can compute one in
asymptotically the same amount of time as canonical systems of loops on orientable surfaces
(Proposition 2); we remark that Fuladi, Hubard, and de Mesmay [23] compute a canonical
system of loops in polynomial time, but they do not provide a precise estimate on the run-
ning time, which is likely higher than ours. Such standard systems of loops can be used to
compute homeomorphisms between non-orientable surfaces; moreover, some algorithms for
surface-embedded graphs rely on canonical systems of loops in the orientable case [24, 30],
and for non-orientable surfaces they could use standard systems of loops instead. Third,
we introduce subhomology covers, more compact than the homology covers of Chambers,
Erickson, Fox, and Nayyeri [8]1, but capturing exactly the topological information that we
need to classify orienting/non-orienting, one-sided/two-sided closed curves (Section 7).

1.3 Techniques and Organization of the Paper

After the preliminaries (Section 2), we first show that our two algorithmic results (Theo-
rems 2 and 3) follow from a single common statement (Theorem 4). In short, the topological
properties that we are considering are homological: Knowing the homology class of a closed
curve is enough to decide whether it is separating or not, one-sided or two-sided, orienting
or not. Moreover, the non-separating non-orienting curves with given sidedness are char-
acterized by the fact that they belong to the union of poly(g) affine subspaces of small
codimension in the homology group. The rest of the paper is devoted to the proof of The-
orem 4. In Section 4, we give a linear-time algorithm to compute an orienting curve. This
serves as a first step to compute a standard system of loops in Section 5. Section 6 provides
a way to convert homology from a canonical basis to a standard one. At this point, given
a closed curve, we are able to decide whether it has the desired topological properties effi-
ciently. In Section 7, we introduce subhomology covers, and then show how to compute a
shortest path in the subhomology cover that, when projected, will become the desired closed
curve on the surface (Section 8); this uses a third kind of system of loops, the shortest system
of loops [19, 10]. Section 9 concludes the algorithm. The NP-hardness proof (Theorem 1)

1The article by Chambers, Erickson, Fox, and Nayyeri [8] combines several conference abstracts, including
one by Erickson and Nayyeri [18]; the material that we use from [8] appeared first in [18].
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is a reduction from the Hamiltonian cycle problem in grid graphs, in the same spirit as the
NP-hardness proof of computing a shortest splitting closed curve by Chambers, Colin de
Verdière, Erickson, Lazarus, and Whittlesey [7]; it is presented in Section 10.

2 Preliminaries

2.1 Curves and Graphs on Surfaces

We use standard terminology of topology of surfaces and graphs drawn on them; see, e.g.,
Armstrong [2] or, for a more algorithmic perspective, Colin de Verdière [11]. In this paper,
the genus of a surface denotes its Euler genus (which equals twice the standard genus for
orientable surfaces). Unless specified otherwise, surfaces are without boundary.

A simple closed curve on a surface S is two-sided if it has a neighborhood home-
omorphic to the annulus. Otherwise, it has a closed neighborhood homeomorphic to the
Möbius band and it is called one-sided . A simple closed curve is called non-separating if
the surface (with boundary) we obtain by cutting along it is connected; otherwise the curve
is separating . Note that a separating curve is two-sided. A simple closed curve on a non-
orientable surface is called orienting if by cutting along it, we obtain an orientable surface
(with boundary).

A homotopy between two closed curves is a continuous family of closed curves be-
tween them. A closed curve is contractible if it is homotopic to a constant closed curve.

Finally, a covering space of S is a topological space S̃ with a continuous map π : S̃ →
S satisfying the local homeomorphism property, i.e., for every point x in S there exists an
open neighborhood U of x in S and pairwise disjoint open sets U1, . . . , Ud in S̃ such that⋃d

i=1 Ui = π−1(U) and π restricted to each Ui is a homeomorphism with U . A lift of a
path p on S is a path p̃ on S̃ such that π ◦ p̃ = p.

2.2 Combinatorial and Cross-Metric Surfaces

A combinatorial surface (S, G) is the data of a surface S together with a positively edge-
weighted graph G cellularly embedded on S; in this model, the curves (or the edges of the
graphs) considered later are restricted to be walks in G. The length of a curve c is the sum
of the weights of the edges of G used by c, counted with multiplicity. A closed curve (or
a graph) on a combinatorial surface is simple if it is actually weakly simple; namely, if it
admits an arbitrarily small perturbation on S that turns it into a simple closed curve (or
graph) on S.

Weakly simple closed curves and graphs can traverse the same edge of G or visit the
same vertex of G more than once. To keep track of these multiplicities, it is often useful
to use the concept of cross-metric surface [12, Section 1.2], which refines the notion of
combinatorial surface in dual form. A cross-metric surface (S, G∗) is the data of a surface S
together with a positively edge-weighted graph G∗ cellularly embedded on S; in this model,
the graphs and curves considered later are in general position with respect to G∗. The length
of a path p is the sum of the weights of the edges of G∗ crossed by p, with multiplicity. The
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multiplicity of a path or closed curve on (S, G∗) is the maximum number of times it crosses
a given edge of G∗. Every (weakly) simple closed curve on the combinatorial surface (S, G)
corresponds to a simple closed curve of the same length on the cross-metric surface (S, G∗),
and conversely.

One can represent cellular graph embeddings on (possibly non-orientable) surfaces
using, e.g., graph-encoded maps [29, 14]. We represent a graph embedded in the cross-metric
surface (S, G∗) by storing its overlay (or arrangement) with G∗, and our algorithms work
on this representation. The size of a combinatorial or cross-metric surface is the number of
vertices, edges, and faces of the underlying graph.

2.3 Shortest and Canonical Systems of Loops

A system of loops of a surface S is a one-vertex graph L embedded on S that has a single
face, which is homeomorphic to an open disk. By Euler’s formula, L has exactly g loops,
where g is the (Euler) genus of S. Cutting S along L results in a 2g-gon, its polygonal
schema, with edges of its boundary identified in pairs. The following result follows from
earlier works.

Lemma 1 ([19, 10]). Let (S, G) be a combinatorial surface, orientable or not, of Euler
genus g and size n. We can compute a set of 2g shortest paths on G such that each non-
contractible closed walk in G intersects at least one of these shortest paths, in O(gn+n log n)
time.

Proof. We use the following result proved by Erickson and Whittlesey [19] and later extended
by Colin de Verdière [10]: Let (S, G∗) be a cross-metric surface of Euler genus g and let b
be a point of S not on G∗. We can compute, in O(gn+ n log n) time, a shortest system of
loops based at b in (S, G∗). Moreover, each loop is the concatenation of two shortest paths
with endpoint b, together with a path that crosses a single edge of G∗.

Let (S, G∗) be the cross-metric surface naturally associated to the combinatorial
surface (S, G); thus, G∗ is the graph dual to G. Let b be an arbitrary point of S not on the
image of G∗. We apply the above result to (S, G∗) and b, obtaining a set of g pairwise disjoint
simple loops L based at b cutting S into a disk. Moreover, the set of faces of G∗ visited
by the loops is included in the set of faces of G∗ visited by 2g shortest paths in (S, G∗), or
dually the set of vertices of G visited by the loops is included in the union of 2g shortest
paths in G. Moreover, any non-contractible closed curve in G must cross at least one loop
in L, since every closed curve in a disk is contractible.

One can describe a polygonal schema (see Figures 1 and 2) by assigning a symbol
and an orientation to each loop in L, and listing the symbols corresponding to the loops
encountered along the boundary of the polygonal schema, in clockwise order say, indicating
a loop by a bar when encountered with the opposite orientation. A canonical system of loops
for an orientable surface of Euler genus 2g is a system of loops L such that the polygonal
schema associated to L has the form a1b1ā1b̄1 . . . agbgāg b̄g (Figure 1). A canonical system
of loops for a non-orientable surface of genus g is a system of one-sided loops L such that
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Figure 1: Two equivalent views of a canonical system of loops of an orientable surface of Euler
genus 6. Left: A polygonal schema of the form a1b1ā1b̄1a2b2ā2b̄2a3b3ā3b̄3. To reconstruct
the surface, one identifies the edges of the polygon in pairs, respecting the orientations of
the arrows. Right: By gluing together the corners of the polygonal schema, we see that all
the vertices of the polygon get actually identified into a single vertex on the surface. The
“half-arrows” indicate one side of each loop: In the present case, all loops are two-sided,
which is reflected by the fact that the right side of a loop when leaving the vertex is still the
right side of the loop when it comes back to the vertex.
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Figure 2: Two equivalent views of a canonical system of loops of a non-orientable surface of
Euler genus 3. Left: A polygonal schema of the form a1a1a2a2a3a3 with its top (visible) face
blue and its bottom (hidden) face white. Right: The cyclic ordering of the edges around the
vertex after identifying the edges of the polygonal schema. All loops are one-sided, which
is reflected by the fact that the right side of each loop when leaving the vertex becomes the
left side of that loop when it comes back to the vertex. The colors of the corners indicate
the side of the polygon.
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the polygonal schema associated to L has the form a1a1a2a2 · · · agag (Figure 2). We will use
the following result by Lazarus, Pocchiola, Vegter, and Verroust [28] to compute a canonical
system of loops of an orientable surface:

Lemma 2 ([28]). Let (S, G∗) be an orientable cross-metric surface with genus g and size n,
and let b be an arbitrary point in (S, G∗). We can compute a canonical system of loops of
(S, G∗) based at b in O(gn) time, such that each loop has multiplicity at most four.

2.4 Topological Characterizations via Signatures

Let L = (ℓ1, . . . , ℓg) be any system of loops and let p be a path on S in general position
with respect to L. The signature σ(p, L) of p with respect to L is the vector in Zg

2 whose ith
component is the modulo-2 number of crossings of p with ℓi. (Although we will not use this,
we remark that σ(p, L) expresses the homology of p in the homology basis dual to L [8].)

The following lemma relates the topological type of a curve on a non-orientable
surface to its signature with respect to a canonical system of loops.

Lemma 3 (Schaefer and Štefankovič [33]). Let L be a canonical system of loops on a non-
orientable surface and γ a simple closed curve in general position with respect to L.

1. γ is one-sided if and only if σ(γ, L) has an odd number of 1 elements;

2. γ is orienting if and only if all the elements in σ(γ, L) are 1;

3. γ is separating if and only if all the elements in σ(γ, L) are 0.

Proof. Given a non-orientable surface S of genus g, a crosscap decomposition is a system of
simple disjoint one-sided closed curves on S such that when S is cut along them we obtain
the sphere with g boundary components. This was first introduced by Mohar and is called
a planarizing system of disjoint one-sided curves, abbreviated as PD1S-system in [31]. One
can turn a canonical decomposition L to a cross-cap decomposition by splitting the loops
from the vertex; this can be done close to the vertex such that the crossings between γ and
the curves in the system do not change after splitting.

Let P denote the polygonal schema associated to L.

1. By definition of a canonical system of loops (Figure 2), any loop crossing L exactly once
is one-sided, in the sense that moving along it exactly once reverses the orientation
(Figure 3). Thus, a simple closed curve γ in general position with respect to L is
one-sided if and only if it crosses L an odd number of times.

2. Let Θ be a canonical decomposition we obtain from L as described above. It is sufficient
to show that γ crosses each curve in Θ an odd number of times. By [33, Lemma 4], we
know that a closed curve is orienting if and only if it crosses each curve in a crosscap
decomposition an odd number of times. This finishes the proof.
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Figure 3: Left: A two-sided curve crossing the canonical system of loops an even number of
times. Right: A one-sided curve crossing the canonical system of loops an odd number of
times.

3. The proof follows the same approach as in the previous case and using [33, Lemma 3]
which states that a closed curve is separating if and only if it crosses each curve in a
crosscap decomposition an even number of times.

As a side note, this statement is true if we replaced L by any system of loops. This is
due to the fact that a curve that crosses each loop in such a system an even number
of times is null-homologous and a simple closed curve is null-homologous if and only
if it is separating.

Hence, orienting curves are non-separating, and their sidedness is prescribed by the
genus.

3 Main Technical Result

All our algorithms will use the following theorem. As a motivation, we first show how
Theorems 2 and 3 follow from it, while postponing its proof until the end of the paper.

Theorem 4. Let (S, G∗) be a cross-metric surface of Euler genus g and size n. Let k be an
integer, ρ : Zg

2 → Zk
2 a linear map, and A ⊆ Zk

2.

Then, for some (unspecified) canonical system of loops L that depends only on (S, G∗),
we can compute in O(g38kkn log n) time a shortest closed curve c on (S, G∗) such that
ρ(σ(c, L)) ∈ A (if such a curve exists). This curve is simple and has multiplicity at most
two.

We emphasize that the canonical system of loops L is not provided in the input of
the algorithm, and is actually never computed explicitly.

Proof of Theorem 2, assuming Theorem 4. Recall that a curve is orienting if and only if it
crosses every loop of a canonical system of loops an odd number of times (Lemma 3). Thus,
to compute a shortest orienting closed curve, we apply Theorem 4 with k = g, ρ the identity,
and A a single vector, the all-ones vector.
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Proof of Theorem 3, assuming Theorem 4. Let L = {ℓ1, . . . , ℓg} be the canonical system of
loops from Theorem 4 (which we know exists, even if we do not compute it). Let c be a
closed curve. A loop ℓi is even (with respect to c) if ℓi and c cross an even number of times.
Similarly, ℓi is odd if ℓi and c cross an odd number of times. The oddity number of c is the
number of odd loops with respect to c. We first consider the problem of computing shortest
(non-separating) non-orienting, one-sided closed curves:

• If g is even, recall from Lemma 3 that a closed curve is non-separating, non-orienting,
and one-sided if and only if its oddity number is odd. To compute a shortest such
curve, it suffices to apply Theorem 4 with k = 1, ρ(c1, . . . , cg) =

∑
i ci, and A = {1}.

• If g is odd, recall from Lemma 3 that a closed curve is non-separating, non-orienting,
and one-sided if and only if its oddity number is odd, but different from g. To compute
a shortest such curve, we do the following. For every i = 1, . . . , g, we apply Theorem 4
with k = 2, ρ(c1, . . . , cg) = (c1+ . . .+ cg, ci), and A = (1, 0). This computes a shortest
closed curve with odd oddity number such that the ith loop of L is even. We return
the shortest curve over all i = 1, . . . , g.

There remains to prove the theorem for non-separating, non-orienting, two-sided closed
curves:

• If g is odd, recall from Lemma 3 that a closed curve is non-separating, non-orienting,
and two-sided if and only if the oddity number is even and positive. To compute a
shortest such curve, we do the following. For every i = 1, . . . , g, we apply Theorem 4
with k = 2, ρ(c1, . . . , cg) = (c1+ . . .+ cg, ci), and A = (0, 1). This computes a shortest
closed curve with even oddity number such that the ith loop of L is odd. We return
the shortest curve over all i = 1, . . . , g.

• If g is even, recall from Lemma 3 that a closed curve is non-separating, non-orienting,
and two-sided if and only if the oddity number is even, positive, and different from g.
To compute a shortest such curve, we do the following. For every i ̸= j ∈ {1, . . . , g},
we apply Theorem 4 with k = 3, ρ(c1, . . . , cg) = (c1+ . . .+ cg, ci, cj), and A = (0, 0, 1).
This computes a shortest closed curve with an even oddity number such that the ith
loop of L is even and the jth loop of L is odd. We return the shortest curve over all
i, j.

4 Computing an Orienting Curve

Proposition 1. Let (S, G∗) be a non-orientable cross-metric surface of size n. We can
compute an orienting curve on (S, G∗) with multiplicity at most two in time O(n).

Matoušek, Sedgwick, Tancer, and Wagner [30, Proposition 5.5] proved the existence
of such curve. We improve on their argument by providing a linear-time algorithm for its
computation. We will use the following lemma (below and in Section 9), which is a variation
of a very classical result: Every connected graph with even degrees has an Eulerian cycle.
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Lemma 4. Let (S, G) be a combinatorial surface of size n. Let E be the set of edges of G.
Let µ : E → Z+ be a map such that (i) for each vertex v of G, the sum of the values of µ(e),
for each e incident to v, is even, and (ii) the subgraph of G induced by the edges e such
that µ(e) ≥ 1 is connected. Then one can compute a simple cycle in the dual cross-metric
surface (S, G∗) such that, for each edge e of G, the cycle crosses the dual edge e∗ exactly
µ(e) times, in time linear in n plus the sum of the values of µ.

We emphasize that, in Condition (ii), the considered subgraph cannot have isolated
vertices, because it is induced by a set of edges, even though G itself may have vertices
incident only to edges e such that µ(e) = 0.

Proof. In the following proof we will use interchangeably the µ-value of an edge and its dual.
The µ-degree of a vertex, as well as of a face, is the sum of the µ-values of its incident edges.

First, without loss of generality we can assume that µ(e) ∈ {0, 1}: Indeed, otherwise,
we subdivide each dual edge e∗ whose µ-value is higher than 1 into µ(e) edges, each with
µ-value equal to 1. Moreover, we can assume that each face of G∗ has µ-degree 0, 2 or 4:
Indeed, otherwise, we iteratively add a diagonal in a face of the dual graph of µ-degree at
least six separating a part with µ-degree three from the rest, and set µ to 1 on the newly
added diagonal; the hypotheses of the lemma still hold.

Within each face in G∗ of µ-degree 0, 2 or 4, we draw 0, 1 or 2 disjoint simple paths,
respectively, connecting the middle of each boundary edge with µ-value 1 in an arbitrary
way. All these paths together form simple, pairwise disjoint cycles on the surface, but not
necessarily a single cycle. To remedy this, we need to merge the cycles. At a high level, we
perform a search in the cycle graph, the graph whose vertices are the cycles, and in which
two vertices are adjacent if the corresponding cycles have a face in the dual graph (of the
overlay of the cycles and G∗) incident to both of them. Then, in a second step, we merge
the cycles together, by reconnecting each non-root cycle c to its parent cycle at the location
where c was discovered.

To see that the cycle graph is connected, note that the edges of G∗ cut the cycles into
pieces. Let two pieces be adjacent if either they are consecutive pieces of the same cycle, or
they share a face in the dual graph of the overlay of the cycles and G∗. By (ii), this graph
is connected.

In more detail, we perform, e.g., a depth-first search rooted at an arbitrary vertex.
To perform the depth-first search, two ingredients are needed: (1) we need to be able to
compute the neighbors of a given cycle c (this is doable in time linear in the number of
crossings of c with G∗), (2) we need to be able to mark cycles as explored or unexplored
(for this purpose, with a linear-time preprocessing step, we make each edge that is a piece
of a cycle c point to a separate data structure representing the cycle). Initially all cycles are
unexplored. We start by exploring the root cycle, and as soon as we discover an unexplored
cycle, we mark it as explored and recursively explore it. This takes linear time. Whenever
a cycle c is discovered, we take note of the dual face of the overlay of G∗ and of the cycles
where this discovery happens.

In the second step, for each of these faces, we reroute c and its parent cycle to merge
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Figure 4: Merging of two disjoint cycles inside a face without increasing the number of
intersections with the graph.

them into a single cycle, see Figure 4. At the end of this process, all cycles are merged into
a single one, which crosses every edge of G∗ exactly once, as desired.

Proof of Proposition 1. Let G be the graph dual to G∗. We first choose an arbitrary orien-
tation of every face of G. Let I be the set of inconsistent edges of G, which bound two faces
of G with inconsistent orientations. If we start traversing the faces incident to a vertex of G
by going around the vertex, in a complete turn, we must change orientations an even number
of times to get back to the orientation of the initial face; this implies that each vertex of
G is incident to an even number of edges in I. Thus the subgraph of G made of the edges
in I has all its vertices of even degree, and cutting the surface along it yields an orientable
surface. Moreover, we can compute I in linear time. See Figure 5. Now, for each edge e
of G, let µ(e) = 1 if e ∈ I and µ(e) = 2 otherwise. We apply Lemma 4 in the combinatorial
surface (S, G) (the hypotheses are obviously satisfied) to compute, in linear time, a simple
cycle c in the cross-metric surface (S, G∗) that crosses each edge e of G∗ exactly µ(e) times.

There remains to prove that c is orienting. For this purpose, it suffices to exhibit
an orientation of each face of the overlay of G∗ and c in such a way that the inconsistent
edges are exactly those arising from c. We do this as follows. We first orient the faces of
the overlay that touch a vertex of G∗ in the same way as the corresponding face of G was
oriented in the beginning of the proof. Let f be a face of G∗. The subfaces of f are the
faces of the overlay of G∗ and c that lie inside it. Starting from an arbitrary subface of f
that is already oriented, we propagate the orientation to all subfaces of f , in such a way
that the subedges of c are inconsistent (see Figure 5, right). There is a unique way to do
this, because the dual of the subfaces of f is a tree, and moreover these orientations are
compatible with the already selected orientations of the subfaces of f touching a vertex of G,
because each edge e∗ of G∗ is crossed an odd number of times by c if and only if e lies in I.
By construction, the subedges of G∗ are consistent.
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Figure 5: Left: G and G∗ with arbitrary orientations of the faces of G and the inconsistent
edges of G (in red, dotted lines); the dual graph G∗ is denoted in black lines. Right: an
example of a cycle passing through all the edges and the derived orientation.

5 Computing a Standard System of Loops

In this section, we introduce standard systems of loops and show that we can compute one
efficiently. We believe that this result can be of independent interest: It would perhaps be
more natural to compute a canonical system of loops; but on non-orientable surfaces it is
only known how to compute one in polynomial time [23] (the precise worst-case running
time is certainly larger than O(gn)). We thus propose this alternate notion of standard
systems of loops, which can be computed as quickly as the canonical systems of loops for
orientable surfaces. In the next section, we show that for our purposes we can convert from
one representation (in terms of parity of crossings) to the other.

A standard system of loops of a non-orientable surface S of genus g is a system of loops
such that the loops appear in the following order around the boundary of the corresponding
polygonal schema (where bar denotes reversal and p = ⌊g−1

2 ⌋): zza1b1ā1b̄1 . . . apbpāpb̄p if g
is odd, and ywȳwa1b1ā1b̄1 . . . apbpāpb̄p if g is even.

Proposition 2. Let (S, G∗) be a non-orientable cross-metric surface of genus g and size n.
In O(gn) time, we can compute a standard system of loops on (S, G∗) such that each loop
has multiplicity at most 100.

Proof. We first compute an orienting simple closed curve c with multiplicity at most two
(Proposition 1). Let S ′ be the orientable surface with boundary obtained by cutting S
along c. We remark that each edge of G∗ corresponds to at most three edges in S ′, and
these edges induce naturally a cross-metric structure on S ′.

Let us first assume that g is odd. Then c is one-sided, and S ′ has a single boundary
component B. Let u be an arbitrary point of B. Let S̄ ′ be the surface obtained by attaching a
disk to the boundary component of S ′. In a first step, in O(gn) time, we compute a canonical
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Figure 6: The proof of Proposition 2, in the case where g is odd. Left: A pictorial view of
the orientable surface S ′. The one-sided curve c is repeated twice on the boundary B of S ′.
Right: On S, the construction of the loop z, which is one-sided because c is one-sided.

system of loops L of S̄ ′, with basepoint v in the face incident with u, that has multiplicity
at most four and does not cross any edge of B. We do this as follows. First, starting
from S ′, we shrink the boundary component B to a point. Then, we apply the algorithm by
Lazarus, Pocchiola, Vegter, and Verroust [28] (Lemma 2), obtaining a canonical system of
loops of the resulting surface based at v. Finally, we expand back the point to the boundary
component B.

Let us now connect u to the basepoint v with a path p that arrives at v at a suitable
corner around v (Figure 6). By this we mean the following: The cyclic ordering of the
edges at v is a1b̄1ā1b1 . . . ag b̄gāgbg (where bar indicates the origin of an edge, and no bar
indicates the target of an edge), see Figure 1; we make p arrive between two consecutive
groups of the form aib̄iāibi. For this purpose, let f be the face containing the basepoint v
of L; it is incident with u. The loops cut f into subfaces; let f ′ be the subface incident
with u. Starting from u in f ′, we draw a path p that goes to a portion of L that lies on the
boundary of f ′, and then runs along L (possibly exiting f) until we get to the basepoint v
at a suitable corner. Because, when running along the boundary of the polygonal schema,
the suitable corners appear regularly, every four corners (see Figure 1), this can be done by
running along at most two loops; each of these loops has multiplicity at most four on S ′,
and thus p has multiplicity at most eight on S ′. This path p is computed in O(n) time.

Finally, the set of loops L, together with the loop z that is the concatenation of the
reversal of p, c, and (a slightly translated copy of) p, is a standard system of loops of S,
which is computed in O(gn) time. Moreover, every edge of G∗ is crossed at most twice by c
and at most 24 times by p, so the multiplicity of each loop is at most 50 with respect to G∗.

There remains to consider the case where g is even; see Figure 7. In that case, S ′

has exactly two boundary components. We choose an arbitrary basepoint u on one of the
boundary components. Let u′ be the unique point on the other boundary component such
that u and u′ are identified on S. We first compute a path q of multiplicity one on S ′

between u and u′. Let S ′′ be the surface obtained from S ′ by cutting along q; it has a
single boundary component. Let u′′ be a point of S ′′ mapping to u or u′ after regluing to
obtain S ′. Then we proceed as in the case where g is odd, using u′′ in place of u. The
final standard system of loops is made (after a small perturbation) of the canonical system
of loops of S ′′, the loop y that is the concatenation of the reversal of p, q, and p (which
is one-sided because the closed curve corresponding to q is one-sided; indeed, because c is
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Figure 7: The proof of Proposition 2, in the case where g is even. Left: A pictorial view of
the orientable surface S ′. The two-sided curve c corresponds to two boundary components
of S ′. Right: On S, the construction of the loops w and y.

two-sided and cuts S into an orientable surface, any closed curve crossing c once must be
one-sided, since otherwise S would be orientable), and the loop w that is the concatenation
of the reversal of p, c, and p (which is two-sided because c is two-sided). The multiplicity of
each loop is at most 100 (because now we have to take into account the path q, which cuts
some edges of S ′ into two subedges).

6 Converting Between Canonical and Standard Signatures

Our next lemma describes a matrix allowing to change the coordinates in homology, from
the standard basis to some canonical one. The motivation is that the topological properties
we need are best expressed in terms of crossings with a canonical system of loops, while we
can more easily compute a standard system of loops.

Lemma 5. Assume L′ is a standard system of loops on a non-orientable surface. There
exists a canonical system of loops L such that, for each path p, we have σ(p, L) = φ(σ(p, L′)),
where φ : Zg

2 → Zg
2 is the invertible linear map described by the following matrices depending

on the parity of g.
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Figure 8: The cut-and-paste process to go from L′ to L1 in the case where g is odd. At
each polygon, the blue diagonal introduces the cut and the red edge denotes the edge along
which we paste. Here, X denotes the loops ā2b̄2a3b3ā3b̄3 . . . apbpāpb̄p.

Aodd =



1 1 0 0 0 0 · · · 0 0 0
1 1 1 0 0 0 · · · 0 0 0
1 0 1 1 0 0 · · · 0 0 0
1 0 1 1 1 0 · · · 0 0 0
1 0 1 0 1 1 · · · 0 0 0
1 0 1 0 1 1 · · · 0 0 0
1 0 1 0 1 0 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
1 0 1 0 1 0 · · · 1 1 1
1 0 1 0 1 0 · · · 1 0 1


Aeven =



1 1 0 0 0 0 · · · 0 0 0
0 1 1 0 0 0 · · · 0 0 0
0 1 1 1 0 0 · · · 0 0 0
0 1 0 1 1 0 · · · 0 0 0
0 1 0 1 1 1 · · · 0 0 0
0 1 0 1 0 1 · · · 0 0 0
0 1 0 1 0 1 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 1 0 1 0 1 · · · 1 1 1
0 1 0 1 0 1 · · · 1 0 1


We remark that we actually never compute the canonical system of loops L.

Proof. The proof uses the cut-and-paste technique used in the proof of the classification of
surfaces. We start with the polygonal schema associated to L′ and at each step we cut along
a diagonal and paste along one of the sides of the polygon. Each diagonal can be seen as a
concatenation of the edges in the polygonal schema and becomes a side in the new polygonal
schema that we obtain after pasting.

This will prove that φ−1 is given by the following matrices, each being the inverse
of the one stated in the lemma, as a simple computation shows.

A−1
odd =



1 1 1 1 1 1 · · · 1 1 1
0 1 1 1 1 1 · · · 1 1 1
1 1 0 0 0 0 · · · 0 0 0
0 0 0 1 1 1 · · · 1 1 1
0 0 1 1 0 0 · · · 0 0 0
0 0 0 0 0 1 · · · 1 1 1
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 · · · 0 1 1
0 0 0 0 0 0 · · · 1 1 0


A−1

even =



1 1 1 1 1 1 · · · 1 1 1
0 1 1 1 1 1 · · · 1 1 1
0 0 1 1 1 1 · · · 1 1 1
0 1 1 0 0 0 · · · 0 0 0
0 0 0 0 1 1 · · · 1 1 1
0 0 0 1 1 0 · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 0 · · · 0 1 1
0 0 0 0 0 0 · · · 1 1 0


First let us consider the case where g = 2p + 1 is odd. We first show that using 4

cut-and-paste moves we can transform the polygonal schema L′ : zza1b1ā1b̄1 . . . apbpāpb̄p to
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Figure 9: The cut-and-paste process to go from Li−1 to Li in the case where g is odd. Here,
X : āi+1b̄i+1 . . . apbpāpb̄p and X ′ : c1c1 . . . c2i−2c2i−2.
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Figure 10: The additional cut-and-paste move in the case where g is even.

L1 : c1c1c2c2z1z1a2b2ā2b̄2 . . . apbpāpb̄p, see Figure 8. We can see that c1 = e + a1 = z + b1
in which u + v denotes the concatenation of two loops u and v, ignoring ordering and
orientation (which is irrelevant as far as crossing numbers are concerned); in other words,
for any path p, we have σ(p, c1) = σ(p, z) + σ(p, b1). Similarly, c2 = e = z + a1 + b1 and
z1 = e + b1 = z + a1. We can see that these cut-and-paste scenarios can be described by
the following matrix: let M1 be a g × g matrix with columns mi for 1 ≤ i ≤ g such that
m1 = (1, 0, 1, 0, . . . , 0) (corresponding to c1), m2 = (1, 1, 1, 0, . . . , 0) (corresponding to c2),
and m3 = (1, 1, 0, 0, . . . , 0) (corresponding to z1). For 4 ≤ i ≤ g, let mi be the g × 1 matrix
with every element 0 except its ith element that is 1. Note that the entries of this matrix
come from Z2, the rows correspond to the elements in L′ and the columns correspond to the
elements in L1.

Let Li−1 denote the polygonal schema c1c1 . . . c2i−2c2i−2zi−1zi−1aibiāib̄i . . . apbp. Mim-
icking the same cut-and-paste moves depicted in Figure 8 for the sides zi−1, ai and bi for i > 1
transforms Li−1 to the polygonal schema Li : c1c1 . . . c2ic2iziziai+1bi+1āi+1b̄i+1 . . . apbpāpb̄p,
see Figure 9. We denote the corresponding matrix by Mi; this matrix changes the basis from
Li to Li−1, keeping all the elements unchanged except zi−1, ai, and bi: c2i−1 = zi−1 + bi,
c2i = zi−1 + ai + bi, and zi = zi−1 + ai. Continuing this process, we obtain the canonical
polygonal schema L with the final matrix being given by A−1

odd = M1M2 · · ·Mp.

In the case where g = 2p is even, we need one additional type of cut to transform
L′ : ywȳwa1b1ā1b̄1 . . . ap−1bp−1āp−1b̄p−1 to L1 : yyzza1b1ā1b̄1 . . . ap−1bp−1āp−1b̄p−1, see Fig-
ure 10. Then we can use the four types of cuts introduced for the case where the genus is
odd to turn L1 to L.
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One can check that in this case the corresponding matrix is the matrix A−1
even.

7 Subhomology Covers

In this section, we introduce subhomology covers, which are covering spaces related to
quotients of the homology group. They generalize cyclic double covers introduced by Er-
ickson [15] and used by Borradaile, Chambers, Fox, and Nayyeri [3] and are inspired from
homology covers by Chambers, Erickson, Fox, and Nayyeri [8], but there are important dif-
ferences with the latter: They can capture not necessarily the homology group, but arbitrary
quotients of the homology group (which allows for faster algorithms), and they are defined
on surfaces without boundary. This tool is not restricted to non-orientable surfaces and we
present it for arbitrary surfaces. Our construction is inspired from the voltage construction
by Gross and Tucker [26, Chapter 4].

Throughout this section, let (S, G) be a combinatorial surface (orientable or not) of
Euler genus g and size n, L a system of loops in general position with respect to G (we
will only need the case where L is the standard system of loops, computed in Proposition 2,
but we do not assume this for the construction). Furthermore, let k be an integer and
ρ : Zg

2 → Zk
2 a linear map. We define α : E → Zk

2 by α(e) = ρ(σ(e, L)).

Lemma 6. The map α satisfies the Kirchhoff voltage law on every face: For every face of
G with boundary edges e1, . . . , em, we have that

∑m
i=1 α(ei) = 0.

Proof. The boundary of a face bounds a disk and consequently is separating. Thus every
loop in L intersects it an even number of times.

We define the graph G̃ as a graph with vertices (v, ν), one for every vertex v in G
and ν in Zk

2. For each edge e in G, connecting the vertices u and v, and every ν in Zk
2,

there is an edge in G̃ connecting (u, ν) and (v, ν + α(e)). We now observe that each facial
cycle in G (which bounds a face of G in S) lifts to a cycle in G̃, by the Kirchhoff voltage
law. By attaching a disk to the lift of each such cycle, we obtain a combinatorial surface
(S̃, G̃), which is naturally a (possibly non-connected) covering space of S and is called the
subhomology cover associated to α. An alternate way to build (S̃, G̃) is to cut S along L,
obtaining a disk D, and to glue together 2k copies of these disks, in such a way that the
copy ν gets attached via a lift of loop ℓi ∈ L to the copy ν + ρ(si), where si ∈ Zg

2 has a
single non-zero entry, the ith one (Figure 11); however, we will not need this equivalence.

Lemma 7. Assume that one is given the combinatorial surface (S, G) together with the
map α. Then, in O(2kkn) time, we can compute the combinatorial surface (S̃, G̃) that is the
subhomology cover of (S, G) associated to α. Moreover, χ(S̃) = 2kχ(S).

Again, the system of loops L is not part of the input; only the map α is specified.

Proof. The vertices of G̃ are given by the lifts of the vertices of G, that is, by pairs (v, ν)
for every vertex v of G and every ν ∈ Zk

2. Every edge e from v to w in G lifts, given ν ∈ Zk
2,
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Figure 11: Left: A non-orientable surface of genus 3 cut along a canonical system of loops.
Right: A non-orientable 4-sheeted covering space of the surface at left with genus 6 given
by ρ : Zk

3 → Zk
2; ρ(s1) = (1, 0), ρ(s2) = (0, 0) and ρ(s3) = (0, 1). The notation lji indicates

the jth lift of the loop li.

to an edge from (v, ν) to (w, ν + α(e)). Finally, each facial cycle in G, incident to vertex v
of G, lifts to 2k faces of G̃ in S̃, each incident to (v, ν) for ν ∈ Zk

2, as explained above.

The combinatorial map of G̃ can thus be computed in O(2kkn) time. A more explicit
construction would depend on the data structure used. For example, in the graph-encoded
map data structure [29, 14], each flag f of G incident to vertex v corresponds to 2k flags
of G̃, denoted

{
(f, ν) | ν ∈ Zk

2

}
where (f, ν) has associated vertex (v, ν), and we can easily

connect the flags via their three involutions, in overall O(2kkn) time.

The last claim follows from the fact that every vertex, edge, and face of G on S
corresponds to 2k vertices, edges, and faces of G̃ on S̃, respectively.

Lemma 8. Let c be a closed walk in G, and c̃ be a lift of c in G̃, with endpoints (v, ν)
and (v, ν ′). Then ρ(σ(c, L)) = ν ′ − ν.

Proof. By construction, if e connects w with w′, then each lift of e connects vertices (w, η)
to (w′, η + α(e)) for some η ∈ Zk

2. Thus ν ′ − ν equals the sum, over all edges e of c, of
α(e) = ρ(σ(e, L)). This, in turn, equals ρ(σ(c, L)).

Although we do not make an explicit use of it here, it is worth mentioning that our
techniques are (co)homological in nature. Indeed, we could have defined the signature map
ρ as a map from the first (co)homology group, over Z2, instead of being from Zg

2. The
difference between these two being that the later assumes a choice of basis, i.e., a system of
loops. Different choices of basis will indeed produce isomorphic covering spaces since this
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p̃i

ℓ̃ ℓ̃′

p̃i
w̃ w̃

Figure 12: Proof of Lemma 9: the construction of c′.

one is uniquely determined by the normal subgroup of the fundamental group induced by
the kernel of the map ρ.

8 Computing Shortest Closed Walks with Restriction on the Signature

Our algorithm will use the subroutine given in the following proposition, which is a variation
on the strategy used earlier by Chambers, Erickson, Fox, and Nayyeri [8, Section 5.2]. It is
a first step towards the proof of Theorem 4; however, instead of computing a simple closed
curve in the cross-metric surface, we only compute a closed walk in the dual combinatorial
surface.

Proposition 3. Let (S, G) be a combinatorial surface, orientable or not, of Euler genus g
and size n. Moreover, let k be an integer, ρ : Zg

2 → Zk
2 a linear map, and A ⊆ Zk

2. Assume
that for each edge e of G, the value of ρ(σ(e, L)) is given, for a fixed system of loops L of S
in general position with respect to G. Given this, we can compute in O(g38kkn log n) time
a shortest closed curve c in G (a shortest closed walk) such that ρ(σ(c, L)) ∈ A.

For the proof, we start by computing the subhomology cover (S̃, G̃) associated to
α(e) = ρ(σ(e, L)) using Lemma 7. We also apply Lemma 1 to compute a set of 2g shortest
paths p1, . . . , p2g in G that intersects every non-contractible closed walk in G.

The following lemma is inspired by Chambers, Erickson, Fox, and Nayyeri [8, Lemma 5.4].

Lemma 9. Some shortest closed curve c in G such that ρ(σ(c, L)) ∈ A has the following
form: It is the projection of a shortest path in (S̃, G̃) that starts with a subpath of a lift of
some pi and is otherwise disjoint from that lift.

Proof. If A contains the zero vector, then any trivial closed curve (reduced to a single vertex)
satisfies the desired property, so the lemma is trivially true. So, henceforth, we assume that
A does not contain the zero vector.

Let c be a shortest closed curve in G such that ρ(σ(c, L)) ∈ A. Because A does not
contain the zero vector, c is non-contractible and must thus meet some path pi. We turn c
into a loop ℓ by basing it at an arbitrary vertex of c∩ pi. Let p̃i be a path in G̃ that is a lift
of pi in the subhomology cover S̃, and let ℓ̃ be a lift of ℓ that starts on p̃i. See Figure 12. Let
w̃ be the last vertex of ℓ̃ ∩ p̃i encountered when traversing ℓ̃. Let ℓ̃′ be the path in G̃ with
the same endpoints as ℓ̃ obtained from ℓ̃ by replacing its part before w̃ with the subpath
of p̃i with the same endpoints. Finally, let ℓ′ be the projection of ℓ̃′ on S, and c′ be the
associated closed curve.
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Since ℓ̃ and ℓ̃′ have the same endpoints, Lemma 8 implies that ρ(σ(c′, L)) = ρ(σ(c, L)),
the latter being in A by hypothesis. Moreover, ℓ̃′ is no longer than ℓ̃, because p̃i is a shortest
path, since any lift of a shortest path is itself a shortest path. Thus, c′ is no longer than c,
and satisfies the desired properties.

We will also need the following immediate consequence of results by Erickson, Fox,
and Lkhamsuren [16] and Cabello, Chambers, and Erickson [5].

Lemma 10. Given a combinatorial surface (S, G), orientable or not, of Euler genus g
and size n, with a distinguished face b, one can, after an O(g2n log n)-time preprocessing,
compute the distance from any given vertex incident with b to any other vertex in O(log n)
time.

Proof. The case where the surface is orientable is precisely the result by Erickson, Fox,
and Lkhamsuren [16, Theorem 5.1]. Moreover, as explained by Cabello, Chambers, and
Erickson [5, Section 4.4], the non-orientable case reduces to the orientable one, by passing
to the orientable double cover.

Proof of Proposition 3. As indicated above, we first compute the subhomology cover (S̃, G̃)
in O(2kkn) time (Lemma 7), and the paths p1, . . . , p2g in O(gn+ n log n) time (Lemma 1).

Fix i = 1, . . . , 2g. We show below how to compute a shortest path in (S̃, G̃) that
starts with a subpath of a lift of pi, is otherwise disjoint from that lift, and projects to a
closed curve c such that ρ(σ(c, L)) ∈ A.

Let p̃i be a lift of pi and let (v0, ν0), (v1, ν1), . . . , (vm, νm) be the sequence of vertices
on p̃i. We consider the combinatorial surface S̃ ′ obtained by cutting S̃ along the path p̃i,
thus forming a boundary, and then attaching a disk b to the resulting boundary component;
each interior vertex (vt, νt) of p̃i, 1 ≤ t ≤ m − 1, now corresponds to two vertices, (vt, νt)+

and (vt, νt)
−; each duplicated edge has the same weight as its original. The vertices (vt, νt)±

(0 ≤ t ≤ m, where for convenience (v0, ν0)
± and (vm, νm)± denote (v0, ν0) and (vm, νm),

respectively) all lie on the boundary of the face b of S̃ ′. By Lemma 8, it suffices to compute
a shortest path, in this combinatorial surface, among all paths from some vertex (vt, νt)

± to
some corresponding vertex in the set {(vt, νt + a) | a ∈ A}. Lemma 10 allows us to do this:
(S̃, G̃) is a combinatorial surface of size O(2kn) and genus O(2kg) (by Lemma 7), and the
same holds for the combinatorial surface in which we perform the computation; moreover,
there are O(2kn) pairs of vertices between which we need to compute the distance. Thus,
the preprocessing step takes O(g223kkn log n) time, and the distance computations take
O(2kkn log n). Once we have computed a shortest distance between these pairs of points,
we can compute an actual shortest path using Dijkstra’s algorithm, without overhead.

Applying this for each i = 1, . . . , 2g, and returning the projection of the overall
shortest path, we obtain the result.

9 Proof of Theorem 4

We will need the following intuitive lemma.
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Lemma 11. On a cross-metric surface (S, G∗), orientable or not, let L be a system of loops
and c1 and c2 be two closed curves that cross each edge of G∗ with the same parity. Then
σ(c1, L) = σ(c2, L).

Proof. The lemma is obvious with homology tools: The assumption implies that c1 and c2
are homologous, so the conclusion holds. Below, we present an alternate, somewhat more
self-contained, proof.

Let G be the dual graph of G∗. For i = 1, 2, we push ci homotopically to the closed
walk c′i in G defined as follows: If ci crosses edges e∗1, . . . , e

∗
k of G∗ in this order, then c′i

traverses the corresponding edges e1, . . . , ek of G in the same order. We have (1) σ(ci, L) =
σ(c′i, L); indeed, it is a folklore result that the parity of the number of crossings between
two closed curves depends only on the homotopy of these closed curves (e.g., because every
homotopy between two multicurves can be realized by Reidemeister moves [13]). Moreover,
for each edge e of G, the curves c′1 and c′2 traverse e with the same parity, which implies (2)
σ(c′1, L) = σ(c′2, L). The result follows from (1) and (2).

Proof of Theorem 4. Let (S, G∗) be our input cross-metric surface, and let G be the dual
graph of G∗. We start by computing, in O(gn) time, a standard system of loops L′ in general
position with respect to G such that each loop crosses each edge of G at most 100 times;
for this purpose, somewhat counterintuitively, we apply Proposition 2 in the cross-metric
surface (S, G). For each edge e of G, we can now compute σ(e, L′), also in O(gn) time.

Let ρ′ := ρ ◦ φ, where φ is the map from Lemma 5. For each edge e of G, we
compute ρ′(σ(e, L′)), which by Lemma 5 equals ρ(σ(e, L)), for some fixed canonical system
of loops L. This takes O(kgn) time (there is no need to precompute the matrix of ρ′ since
its computation takes O(kg2) time). We then apply Proposition 3 in the combinatorial
surface (S, G) with the map ρ′ and the standard system of loops L′: In O(g38kkn log n)
time, we compute a shortest closed walk c in G such that ρ′(σ(c, L′)) ∈ A, or equivalently
ρ(σ(c, L)) ∈ A.

The remaining part of the proof is to turn c into a simple cycle. First, we build
a map µ from the edges of G∗ to {0, 1, 2} based on c, as follows. Let e be an edge of G.
If c does not traverse e, then we set µ(e) = 0. If c traverses e a positive, even number
of times, then we set µ(e) = 2. Otherwise, we set µ(e) = 1. Then, we apply Lemma 4
to (S, G) and µ. This computes in linear time a simple closed curve c′ in the cross-metric
surface (S, G∗) among those that cross each edge e∗ of G∗ exactly µ(e) times. We return c′.
Indeed, by definition of µ, it has multiplicity at most two and it is no longer than c, which
by Lemma 11 implies that it is a shortest closed curve such that ρ(σ(c′, L)) ∈ A.

10 NP-Hardness of Computing a Shortest Orienting Closed Curve

In this section, we prove that it is NP-hard to decide, given a cross-metric surface and an
integer k, whether a shortest orienting closed curve has length at most k (Theorem 1). The
proof is a variation on the proof by Chambers, Colin de Verdière, Erickson, Lazarus, and
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Figure 13: The reduction for the proof of Theorem 1. From left to right: (a) A part of the
original grid graph G, where each vertex is overlaid with cycles of length eight, each denoted
v1, . . . , v8; (b) the attached Möbius band (vertices marked a, b, c, v1, and v5 are identified
in pairs; the boundary of the Möbius band is thus cycle v1, . . . , v8). (c) Part of the system
of loops inside a Möbius band.

Whittlesey [7] that computing the shortest splitting closed curve is NP-hard. For this proof,
it is easier to reason in the realm of combinatorial surfaces.

Theorem 1. It is NP-hard to decide, given a cross-metric surface (S, G∗) and an integer k,
whether a shortest orienting closed curve on (S, G∗) has length at most k.

Proof. A grid graph of size n is a graph induced by a set of n points in the two-dimensional
integer grid. We reduce the problem of deciding whether there exists a Hamiltonian cycle in
grid graphs, which is NP-hard [27], to that of computing a shortest orienting closed curve.

Let G be a grid graph of size n embedded in the sphere and without loss of generality
assume that n ≥ 3. First, we overlay G with n small cycles of length 8 each centered on
a vertex of G; see Figure 13(a). We then remove the interior of these cycles, obtaining a
surface of genus zero with n boundary components. For each of these boundary components
we associate a distinct Möbius band coming from a 4×4-grid as in Figure 13(b). We identify
the boundary of each Möbius band with the associated boundary component2. Let G′ be
the resulting graph, which is embedded in a non-orientable surface S of genus n. We assign
weights to each edge of G′: Each edge in a Möbius band (including those edges in the cycles
of length 8) has weight ε < 1/(12n), and every other edge has weight one. Thus, (S, G′)
is a combinatorial surface with size O(n). We claim that G has a Hamiltonian cycle if and
only if there exists an orienting closed curve of length at most n+ 1/2 in the combinatorial
surface (S, G′). We prove this below, which in turn will conclude the proof.

As an auxiliary tool, we introduce a canonical system of loops L based at an arbitrary
basepoint of S, each loop associated to a given vertex of G. More precisely, for a given vertex
of G let v1, . . . , v8 be the vertices of its corresponding 8-cycle, as in Figure 13(a), then its

2To illustrate this identification, let v1, . . . , v8 denote the vertices of a single boundary component of
the surface as in Figure 13(a) and of the boundary of the associated Möbius band as in Figure 13(b). We
proceed by identifying the edge vivi+1 of the boundary component with the edge vivi+1 of the associated
Möbius band.
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Figure 14: Local modifications at every vertex of a Hamiltonian cycle of G to turn it into a
simple orienting cycle in the combinatorial surface (S, G).

associated loop is a small perturbation of the concatenation of a loop that goes from the
basepoint to v5, goes “through the crosscap” from one copy of v5 to the other copy, and
finally goes back from v5 to the basepoint via the same path, see Figure 13(c).

If G has a Hamiltonian cycle, thus of length n in G, we can easily modify that cycle
(Figure 14) in such a way that it becomes a simple cycle of length at most n+6nε < n+1/2
in G′ crossing each loop in L exactly once, and thus orienting (Lemma 3).

Conversely, any orienting cycle c in (S, G′) of length at most n+1/2 must cross each
loop in L an odd number of times (Lemma 3), and thus pass through each of the n Möbius
bands. Moreover, it uses at most n edges of weight 1 in G′. Thus, it corresponds, in G, to
a Hamiltonian cycle. Indeed, since n ≥ 3, any closed walk without vertex repetition in G is
a Hamiltonian cycle in G.

11 Conclusion

We conclude with several remarks:

• Our main tool, Theorem 4, also holds for orientable surfaces. In that case, the proof is
simpler, bypassing the detour with standard systems of loops: We compute a canonical
system of loops using Lemma 2, compute the signature of every edge with respect to
that system of loops, apply Proposition 3, and conclude as in the non-orientable case.

• There is a variant of our algorithm for non-orientable surfaces in which we can com-
pletely bypass the computation of a standard system of loops. Let us sketch the
algorithm here. First, we compute an arbitrary system of loops L′, in O(gn) time.
Then, we compute the “change of coordinates” matrices between L′ and some canon-
ical system of loops L, as in the statement of Lemma 5; because L′ is not fixed, we
cannot make such matrices explicit, but since our proof is algorithmic (and indeed
follows the proof of the classification theorem by Brahana [4, 34]), we can actually do
this using the same principles, in time polynomial in g (without dependence on n).
We emphasize that, after each cut-and-paste step, it is enough to remember only the
signature vector σ(ℓ, L′) for each loop ℓ in the current system of loops. More precisely,
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L′ is a polygonal schema of size O(g); one can, in O(g2) time, obtain a sequence of
O(g) cut-and-paste operations to transform L′ to L. Each such cut-and-paste opera-
tion replaces a loop, say ℓ1, with a new one, say ℓ2; computing σ(ℓ2, L

′) takes O(g2)
time, because ℓ2 is homotopic to the concatenation of O(g) loops in the current system
of loops, for which we know the signatures with respect to L′. Thus, in O(g3) total
time, one can compute σ(ℓ, L′) for all the loops ℓ ∈ L, and then using matrix inversion
on g× g-matrices one can compute σ(ℓ′, L) for each loop ℓ′ ∈ L′, which are the values
we need in the proof of Theorem 4.

The version presented here, while perhaps a bit longer, has some benefits compared to
the route sketched above: (1) Our Propositions 1 and 2 are of independent interest and
are likely to be reused in future work; (2) having an explicit relation on the homology
bases of the standard and canonical systems of loops is somewhat nicer conceptually.

• Our techniques allow to compute a shortest overall one-sided closed curve in O(g3n log n)
time (without controlling whether it is orienting or not); indeed, just apply Theorem 4
with ρ(c1, . . . , cg) =

∑
i ci and A = {1}.

• Our algorithms run in O(n log n) for fixed genus. It might be possible, in the case of
two-sided curves, to obtain an algorithm with running time O(n log log n), using the
techniques by Chambers, Erickson, Fox, and Nayyeri [8, Section 4.3], though with a
hidden dependence on the genus that is at least exponential.

• Finally, we have only considered non-separating closed curves, and leave open the
complexity of computing a shortest separating closed curve with a given topological
type (specifying the topology of the two surfaces with boundary resulting from cut-
ting along it). Even on orientable surfaces, the following problem is fixed-parameter
tractable in the genus [7, Theorem 6.1] but apparently neither known to be NP-hard
nor polynomial-time solvable: Given an orientable surface S of (orientable) genus g,
compute a shortest simple closed curve that separates S into a surface of (orientable)
genus one and a surface of (orientable) genus g − 1.

Acknowledgments

We would like to thank Arnaud de Mesmay for stimulating discussions, and the anonymous
reviewers for their useful comments.

References

[1] Michael O. Albertson and Joan P. Hutchinson. The independence ratio and genus of a
graph. Trans. Amer. Math. Soc., 226:161–173, 1977. doi:10.2307/1997946.

[2] Mark A. Armstrong. Basic topology. Undergraduate Texts in Mathematics. Springer-
Verlag, New York-Berlin, 1983. doi:10.1007/978-1-4757-1793-8.

http://jocg.org/
https://doi.org/10.2307/1997946
https://doi.org/10.1007/978-1-4757-1793-8
http://creativecommons.org/licenses/by/3.0/


JoCG 16(2), 237–264, 2025 262

Journal of Computational Geometry jocg.org

[3] Glencora Borradaile, Erin W. Chambers, Kyle Fox, and Amir Nayyeri. Minimum cycle
and homology bases of surface-embedded graphs. J. Comput. Geom., 8(2):58–79, 2017.
doi:10.20382/jocg.v8i2a4.

[4] Henry R. Brahana. Systems of circuits on two-dimensional manifolds. Ann. of Math.
(2), 23(2):144–168, 1921. doi:10.2307/1968030.

[5] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-source shortest paths in
embedded graphs. SIAM J. Comput., 42(4):1542–1571, 2013. doi:10.1137/120864271.

[6] Sergio Cabello, Matt Devos, Jeff Erickson, and Bojan Mohar. Finding one tight cycle.
ACM Trans. Algorithms, 6(4):Article 61, 2010. doi:10.1145/1824777.1824781.

[7] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus, and Kim
Whittlesey. Splitting (complicated) surfaces is hard. Comput. Geom., 41(1-2):94–110,
2008. doi:10.1016/j.comgeo.2007.10.010.

[8] Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri. Minimum cuts in
surface graphs. SIAM J. Comput., 52(1):156–195, 2023. doi:10.1137/19M1291820.

[9] Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons.
In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1655–1670. Society for Industrial and Applied Mathematics, 2015.
doi:10.1137/1.9781611973730.110.

[10] Éric Colin de Verdière. Shortest cut graph of a surface with prescribed vertex set. In
Proceedings of the 18th European Symposium on Algorithms (ESA), part 2, volume 6347
of Lecture Notes in Computer Science, pages 100–111. Springer-Verlag, Berlin, 2010.
doi:10.1007/978-3-642-15781-3\_9.

[11] Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Com-
putational Geometry, chapter 23, pages 605–636. CRC Press LLC, third edition, 2018.
doi:10.1201/9781315119601.

[12] Éric Colin de Verdière and Jeff Erickson. Tightening nonsimple paths and cycles on
surfaces. SIAM J. Comput., 39(8):3784–3813, 2010. doi:10.1137/090761653.

[13] Maurits de Graaf and Alexander Schrijver. Making curves minimally crossing by Rei-
demeister moves. J. Combin. Theory Ser. B, 70(1):134–156, 1997. doi:10.1006/jctb.
1997.1754.

[14] David Eppstein. Dynamic generators of topologically embedded graphs. In Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
599–608. Society for Industrial and Applied Mathematics, 2003.

[15] Jeff Erickson. Shortest non-trivial cycles in directed surface graphs. In Proceedings
of the 27th Annual Symposium on Computational Geometry (SOCG), pages 236–243.
Association for Computing Machinery, 2011. doi:10.1145/1998196.1998231.

http://jocg.org/
https://doi.org/10.20382/jocg.v8i2a4
https://doi.org/10.2307/1968030
https://doi.org/10.1137/120864271
https://doi.org/10.1145/1824777.1824781
https://doi.org/10.1016/j.comgeo.2007.10.010
https://doi.org/10.1137/19M1291820
https://doi.org/10.1137/1.9781611973730.110
https://doi.org/10.1007/978-3-642-15781-3_9
https://doi.org/10.1201/9781315119601
https://doi.org/10.1137/090761653
https://doi.org/10.1006/jctb.1997.1754
https://doi.org/10.1006/jctb.1997.1754
https://doi.org/10.1145/1998196.1998231
http://creativecommons.org/licenses/by/3.0/


JoCG 16(2), 237–264, 2025 263

Journal of Computational Geometry jocg.org

[16] Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths
and flows in surface graphs. In Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC), pages 1319–1332. Association for Computing
Machinery, 2018. doi:10.1145/3188745.3188904.

[17] Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete
Comput. Geom., 31(1):37–59, 2004. doi:10.1007/s00454-003-2948-z.

[18] Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-separating cycles via
homology covers. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1166–1176. Society for Industrial and Applied Math-
ematics, 2011.

[19] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology genera-
tors. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1038–1046. Association for Computing Machinery, 2005.

[20] Jeff Erickson and Pratik Worah. Computing the shortest essential cycle. Discrete
Comput. Geom., 44(4):912–930, 2010. doi:10.1007/s00454-010-9241-8.

[21] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of
Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

[22] Kyle Fox. Shortest non-trivial cycles in directed and undirected surface graphs. In Pro-
ceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 352–364. Society for Industrial and Applied Mathematics, 2013.

[23] Niloufar Fuladi, Alfredo Hubard, and Arnaud de Mesmay. Short topological decom-
positions of non-orientable surfaces. Discrete Comput. Geom., 72(2):783–830, 2024.
doi:10.1007/s00454-023-00580-3.

[24] Cyril Gavoille and Claire Hilaire. Minor-universal graph for graphs on surfaces. arXiv
preprint arXiv:2305.06673, 2023. doi:10.48550/arXiv.2305.06673.

[25] Mikhael Gromov. Filling Riemannian manifolds. J. Differential Geom., 18(1):1–147,
1983. doi:10.4310/jdg/1214509283.

[26] Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Wiley-Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York,
1987.

[27] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in
grid graphs. SIAM J. Comput., 11(4):676–686, 1982. doi:10.1137/0211056.

[28] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Computing a
canonical polygonal schema of an orientable triangulated surface. In Proceedings of the
17th Annual Symposium on Computational Geometry (SOCG), pages 80–89. Associa-
tion for Computing Machinery, 2001. doi:10.1145/378583.378630.

http://jocg.org/
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1007/s00454-003-2948-z
https://doi.org/10.1007/s00454-010-9241-8
https://doi.org/10.1007/s00454-023-00580-3
https://doi.org/10.48550/arXiv.2305.06673
https://doi.org/10.4310/jdg/1214509283
https://doi.org/10.1137/0211056
https://doi.org/10.1145/378583.378630
http://creativecommons.org/licenses/by/3.0/


JoCG 16(2), 237–264, 2025 264

Journal of Computational Geometry jocg.org

[29] Sóstenes Lins. Graph-encoded maps. J. Combin. Theory Ser. B, 32(2):171–181, 1982.
doi:10.1016/0095-8956(82)90033-8.

[30] Jiří Matoušek, Eric Sedgwick, Martin Tancer, and Uli Wagner. Untangling two sys-
tems of noncrossing curves. Israel J. Math., 212(1):37–79, 2016. doi:10.1007/
s11856-016-1294-9.

[31] Bojan Mohar. The genus crossing number. Ars Math. Contemp., 2(2):157–162, 2009.
doi:10.26493/1855-3974.21.157.

[32] Neil Robertson and P. D. Seymour. Graph minors. XVI. Excluding a non-planar graph.
J. Combin. Theory Ser. B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)00042-X.

[33] Marcus Schaefer and Daniel Štefankovič. The degenerate crossing number and higher-
genus embeddings. J. Graph Algorithms Appl., 26(1):35–58, 2022. doi:10.7155/jgaa.
00579.

[34] John Stillwell. Classical topology and combinatorial group theory, volume 72 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1993. doi:10.1007/
978-1-4612-4372-4.

[35] Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J.
Combin. Theory Ser. B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

http://jocg.org/
https://doi.org/10.1016/0095-8956(82)90033-8
https://doi.org/10.1007/s11856-016-1294-9
https://doi.org/10.1007/s11856-016-1294-9
https://doi.org/10.26493/1855-3974.21.157
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.7155/jgaa.00579
https://doi.org/10.7155/jgaa.00579
https://doi.org/10.1007/978-1-4612-4372-4
https://doi.org/10.1007/978-1-4612-4372-4
https://doi.org/10.1016/0095-8956(90)90115-G
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Previous Works
	Our Results
	Techniques and Organization of the Paper

	Preliminaries
	Curves and Graphs on Surfaces
	Combinatorial and Cross-Metric Surfaces
	Shortest and Canonical Systems of Loops
	Topological Characterizations via Signatures

	Main Technical Result
	Computing an Orienting Curve
	Computing a Standard System of Loops
	Converting Between Canonical and Standard Signatures
	Subhomology Covers
	Computing Shortest Closed Walks with Restriction on the Signature
	Proof of Theorem 4
	NP-Hardness of Computing a Shortest Orienting Closed Curve
	Conclusion

