Exercises on embedded graphs, Lecture 4

Arnaud de Mesmay

October 9, 2025

Exercise 1: Let GG be a plane connected graph, where every face is given with a real weight.
Let T be a spanning tree of G (a subgraph of G with the same vertex set as G that is a tree).
Give a linear-time algorithm that computes for all edges e of G not lying in 7', the sum of
the weights of all the faces inside the cycle formed by e and the unique path in 7T joining its
endpoints.

Solution: As in the algorithm to compute minimum spanning trees, recall that the co-tree
T* is a subgraph of G* made of the edges not in T, and it is a tree. Each leaf ¢ of T* therefore
corresponds to a face which is completely enclosed by edges of T" plus the edge e dual to the
edge incident to £. So for these edges e, the sum that we are looking for is exactly weight of the
corresponding leaf in T*.

For other nodes of T%, we can compute the sum of the weights inductively: we root 7™ in
the outer face, set f(¢) = w(¢) for each leaf of T* and define, for any non-leaf node in 7

foy= Y f.

¢ children of v

The entire map f can be computed and stored in an array f in linear time by starting
from the leaves and moving up rootwards: instead of a recursion the formula just looks up at
previously recorded Valuesﬂ

fl= Y. fld

¢ children of v

Exercise 2: Consider a rectangular grid. In each square in the grid, there is either a
diagonal / or an anti-diagonal \. The diagonals connect to the vertices of the rectangular
grid, inducing a plane graph, as in (most of) the picture below. Prove that there always exists
at least one path from the left to the right side of the grid, or from the top to the bottom side
of the grid.

Solution: Let us denote by G the graph where we have put both the / and the _in each
cell of the grid. The graph G is not planar, but it is actually made of two disjoint subgraphs
G1 and Gg: a vertex (i,7) such that i + j is odd is never connected to a vertex (i/,j") such
that i’ + j" is even (since / and _ both preserve that parity). Moreover, both G; and G5 are
planar, and G» is almost the graph dual to G1: they are dual except near the boundary, where
G7 has a single vertex corresponding to the outer face while G has many vertices spread along
the boundary.

Now, let us denote by H the plane graph from the exercise, which is naturally split into
H; C Gy and Hy C Go. We enhance G and Hj into G} and H| by adding a vertex s connected

! This is the premise of dynamic programming, which can arguably be summarized as just replacing parentheses
with brackets: we store the values of f in order to not recompute them each time we need them.

7, A‘&K‘U

10 PRINT CHR$(205.5+RNDC1); : GOTO 18 \

NICK MONTFORT, PATSY BAUDOIN,

JOHN BELL, IAN BOGOST, JEREMY DOUGLASS,
HARK €. HARINO, MICHAEL MATEAS,

CASEY REAS, MARK SAMPLE, NOAH VAWTER

\23\5;\45 :

Figure 1: An entire book written about these mazes, available herel

to all the vertices on the left side of G1 and H7, and likewise we add a vertex ¢t connected to
all the vertices on the right side of Gp. If there is an s-t path in Hj, the goal of the exercise
is achieved. If there is not, since such an s-t path exists in G, it means that C := G} \ H] is
an s-t cut. By cut-cycle duality, there is therefore a cycle C* separating s* and ¢* in G/l* made
of the edges dual to those in C. But as we observed earlier, the edges dual to Gy \ Hy are in
G, and are even in Hs: for any _not present in Hy, / is present in Hs, and for any / not
present in Hy, _is in Hy. So the cycle C* intersects the rectangular grid in edges of H.

Now C* is a closed curve that separates s and ¢t and does not intersect the edges E’' of G
connecting s and t respectively to the left and the right side of the grid. We conclude by showing
that any such closed curve must contain a subpath connecting the top to the bottom on the grid
from within. If C* does not intersect the top side of the grid, then it cannot separate s from ¢
(this is topological: R? \ (E’ U top side of the grid) is homemomorphic to a disk with s and ¢
on its boundary, and no cycle in a disk can separate two points on the boundary). Likewise for
the bottom side. So C* intersects both sides. Now, if there is no path in C* connecting the top
side to the bottom side inside the grid, then any subpath entering the grid from one side, say
the bottom one, must exit it from the same side. Such “bigons” can be rerouted so as to not
intersect the side at all while still separating s and ¢, as in the min-cut algorithm. Iteratively,
we would obtain a rerouting of C* not intersecting the bottom side, which is a contradictiorﬂ

So C* contains a subpath connecting the top and the bottom side inside the grid, where it
consists of edges of Hy and thus of H. This concludes the proof.

Exercise 3: Let G and G2 be two connected plane graphs.
1. Give a quadratic-time algorithm deciding whether G; and G5 are equivalent, i.e., whether
there exists an oriented homeomorphism of R? sending G; to Gs.

2. Deduce a quadratic-time algorithm to decide whether two 3-connected planar graphs are
isomorphic.

3. (Hard) Can you deduce a quadratic-time algorithm to decide whether two 2-connected
planar graphs are isomorphic?

2 At this stage of the proof, we need not specify whether C* and its rerouting lives on H2 or anywhere else:
we showed that *any* closed curve C* not intersecting the top and the bottom sides and E’ cannot separate s
and ¢, and obtain a contradiction with that.

https://10print.org/

4. (Not that hard if you assume you know how to do the 2-connected case) Can you deduce a
quadratic-time algorithm deciding whether two planar graphs G; and G2 are isomorphic?

If you are curious, this can actually be done in linear time, as first proved here.

Hint: If you want to tackle this exercise at home, you might want to look up block-cut trees
for question 4 (which are quite intuitive), and SPQR trees for question 3 (which are quite a bit
less intuitive).

https://dl.acm.org/doi/10.1145/800119.803896
https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/SPQR_tree

