GEOMGRAPHS: Algorithms and Combinatorics of Geometric
Graphs
MPRI 2025-2026

Arnaud de Mesmay

These are the lecture notes for my half of the course GEOMGRAPHS. The other half is
taught by Luca Castelli Aleardi and the slides and exercise sheets for his half are available on
the course’s webpage.

Some practicalities:

e The course is on Thursdays, from 8:45 to 11:45, in Sophie Germain room 1002.
e There is an exercise session in the middle of each lecture, after the half-time break.
e The class will be graded with a final written exam.

e There will be two optional exercise sheets, with points contributing extra credits for the
final grade.

This aim of this course is to provide an overview of the combiantorial, geometric and al-
gorithmic properties of embedded graphs: we start with planar graphs and then move on
to surface-embedded graphs. These are graphs that can be drawn without crossings in the
plane or on more complicated surfaces, see Figure Therefore they form a combinatorial
object with a topological constraint. The objective of the course is to explore how topology
interacts with combinatorics and algorithms on this very natural class of objects. Some
questions we will explore are:

1. What are the combinatorial consequences of being planar? Are there combinatorial char-
acterizations?

2. How to test algorithmically whether a graph is planar? If yes, how to draw the graph?

3. Can one exploit planarity to design better algorithms for planar graphs than for general
graphs?

4. How do the previous answers generalize to graphs embedded in these more complicated
surfaces?

5. How to solve certain topological questions algorithmically on surfaces?

While the focus of the course stays very theoretical (e.g., mostly with a theorem, lemma,
proof structure), embedded graphs are of great interest for the practically-oriented mind, as
they appear everywhere, for example in road networks (where underpasses and bridges can be
modeled using additional topological features), chip design or the meshes that are ubiquitous
in computer graphics or computer aided design. In all these applications, there is a strong need

Figure 1: Graphs embedded in the plane, the torus, and the three-holed torus.

for a theoretical understanding of embedded graphs, as well as algorithmic primitives related
to their topological features. Additionally, embedded graphs are an important lens to study
graphs in general, since any graph can be embedded on some surface. This is especially the case
in graph minor theory, where embedded graphs play an absolutely central role (but we barely
touch on this topic).

The class is taught alternatively by Luca and myself: his class focuses on combinatorial
aspects and graph-drawing questions, while my half covers algorithmic questions and topological
aspects of surface-embedded graphs.

These lecture notes follow quite closely the material taught in my half of the class. This
is actually their point, as in my experience lecture notes with too much content can easily get
overwhelming (especially when one misses a class). Thus we refrain from (too many) digressions
and heavy references. The tone aims to be conversational. 1 will do my best however to add
each week the missing details for the proofs which may have been a bit handwavy during the
lectures. The content has a strong overlap with the lecture notes of a previous iteration of the
class (by Eric Colin de Verdiere), and with those for a course on Computational Topology I
co-taught with Francis Lazarus in 2016-2018, and we refer to, and strongly recommend those
for the missing digressions and references.

http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf
http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf
http://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

1 Planar Graphs

1.1 A partial recap of the first lecture

A planar graph is a graph that can be embedded, i.e., drawn without crossings, in the plane,
or equivalently the sphere. Throughout this course, it is quite important that we allow graphs to
have multiple edges and loops, which is handled seamlessly by the previous definition. A graph
without multiple edges nor loops is called a simple graph. A plane graph is an embedding
of a planar graph, and two plane graphs are considered equivalent if there is a homeomorphism
of the plane sending one to the other one (or intuitively, if one can continuously deform one
into the other without adding crossings). Note that a planar graph can correspond to multiple
different plane graphs: think for example of a graph with a single vertex and multiple loops.

Compared to just a general graph, a plane graph has an additional combinatorial structure:
there are now faces, which are the connected components of the complement R? \ G. This
additional structure interacts with the initial graph in multiple ways:

e The Fuler characteristic stipulates that for any connected plane graph, we have v —
e+ f =2, where v, e and f are respectively the number of vertices, edges and faces.

e This implies that planar graphs are sparse: for v > 3, e < 3v — 6 (and in general e < 3v.
So planar graphs are very particular compared to general graphs.

e To any plane graph GG we can associate a dual graph G*, whose vertices are the faces of
G and whose edges connect adjacent faces of G (with multiplicity and loops if needed).
Note that the dual of a simple graph is in general not simple, and that the dual of graph
depends on the embedding.

e The combinatorial data of the faces is actually all that is needed to encode a plane graph.
There are various data structures one can use to do that. In these notes, we will simply
consider that we have such a data structure that allows us to do “intuitive” operations in
the natural time: for example moving from an edge incident to a vertex to the next edge
in the circular order in constant time, or listing the k edges adjacent to a face in time

O(k), etc.

All of the properties of planar and plane graphs boil down to “intuitive” (but hard to prove)
topological properties of the plane: the Jordan curve theorem shows that any simple (i.e.,
non self-intersecting) closed curve in the plane separates it into two components, one bounded
and one unbounded. The Jordan Schoenflies theorem shows that the bounded component
is homeomorphic to a disk. These theorems are hard to prove because simple closed curves in
the plane can be very complicated, as pictured in Figure [2] If one restricts our attention, say,
to polygonal curves, then the proofs become much easier. This leaves us with two alternatives
for the class: either we define all our graphs to have edges as polygonal segments, and then all
the intuitive facts are easy to prove (there is such a proof for the Jordan curve theorem in my
older lecture notes), or we take the general definition and then trust these hard theorems that
everything works. I leave you to choose your preferred option.

In particular, all the bounded faces of a connected plane graph are (homeomorphic to) a
disk. We say that such a graph is cellularly embedded (this definition is quite useless for
plane graphs but will become useful on other surfaces). We will see later on that the failure of
such nice topological properties for more complicated surfaces leads to interesting topological
questions.

https://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf
https://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

A i
ﬁ‘?i . joN
;%Z&} d 32" %:’;@ﬂw‘i;
o % sa g
M O LT T
£) ;Qé»-k “ I: %) 35,
\. wit 3 ‘Xe- Q@ 5{‘ ‘\
| ES RN J
5 Naotd N el g
‘;\E‘E wg;\?ﬁ - v }?\‘\‘5}" wﬂdﬁz
2 2GS & 5%, NG
o, F NS
415 AN
ar 5/

Figure 2: Three simple closed curves in the plane

We also recall the famous theorem of Kuratowski, which will not be proved in this class (nor
in Luca’s) (you can find a proof in my older lecture notes)).

Theorem 1.1 (Kuratowski, 1929). A graph is planar if and only if it does not contain a
subdivision of K5 or K33 as a subgraph.

Finally, the Fary theorem shows that every plane graph can be realized with edges drawn
as straight lines. This is proved in Luca’s half as a corollary of the Tutte embedding theorem
(there are also easier direct proofs).

1.2 Coloring

The sparsity has the following nice implication. A k-(vertex) coloring of a simple graph is an
assignment of k colors to the vertices so that no two adjacent vertices share a common color.

Proposition 1.2. Simple planar graphs are 6-colorable.

Proof. We prove the result by induction on the number of vertices. For low values, this is
immediate. For the induction step, pick a vertex z of degree less than 6 which exists because
of the sparsity, and color inductively G'\ z. Then the five neighbors have at most 5 different
colors, and we can color z with one of the remaining colors. O

The following improvement is on the exercise sheet, and relies on more than just the Euler
characteristic and the sparsity.

Ezercise 1.3. Prove that simple planar graphs are 5-colorable. Hint: look at paths connecting
non-adjacent neighbors of a degree 5 vertex.

As is well-known, planar graphs are actually 4-colorable, and we will not prove this in the
course.

1.3 The crossing lemma

A drawing of a graph if just a continuous map f : G — R?, that is, a drawing of the graph on
the plane where crossings are allowed. We will only consider drawings in general position:
that means that vertices must be mapped to distinct points, edges do not intersect vertices
except at their endpoints, edges only intersect transversely and at most two edges intersect at
each point. Note that such a drawing in general position induces a plane graph, where every
crossing has been replaced by a vertex of degree 4. As we said earlier, via Fary’s theorem, such
a plane graph can be assumed to have its edges realized as straight lines. So without loss of

https://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

generality, we can and we will assume that this is the case in all our drawings: this implies that
all the edges are drawn as polygonal segments (which may bend at crossings).

The crossing number cr(G) of a graph is the minimal number of crossings over all the
possible drawings in general position of G. For instance, cr(G) = 0 if and only if G is planar.
The crossing number inequality provides the following lower bound on the crossing number.

Theorem 1.4. cr(G) > if |E| > 4|V].

|EJ?
64]V 2
The proof is a surprising application of (basic) probabilistic tools. There is a nice and much
more indepth discussion of this proof available on Terry Tao’s blog.

Proof. Starting with a drawing of G with the minimal number of crossings, define a new graph
G’ obtained by removing one edge for each crossing. This graph is planar since we removed all
the crossings, and it has at least |E| — cr(G) edges, so we obtain that |E| — cr(G) < 3|V| (Note
that we removed the -6 to obtain an inequality valid for any number of vertices). This gives in
turn

er(G) > |E| - 3|V]|.

This can be amplified in the following way. Starting from G, define another graph by
removing vertices (and the edges adjacent to them) at random with some probability 1 —p < 1,
and denote by G” the resulting graph. Taking the previous inequality with expectations, we
obtain E(cr(G")) > E(|E”|) — 3E(|V"]). Since vertices are removed with probability 1 — p, we
have E(|V"”]) = p|V|. An edge survives if and only if both its endpoints survives, so E(|E"|) =
p?|E|. Finally a crossing survives if an only if the four adjacent vertices surviveﬂ The resulting
drawing might not be crossing-minimal but it does imply that E(cr(G") < pier(G), which is
the inequality we will need. So we obtain

cr(G) = p~*| Bl = 3p~° |V,
and taking p = 4|V|/|E| (which is less than 1 if |E| > 4|V|) gives the result. O

In particular, applying this inequality to dense graphs, and in particular to complete graphs
K,, shows that any drawing of the complete graph K, has Q(n*) crossings. Finding the correct
constants is notoriously difficult though, even for that very specific-looking case of complete
graphs: the Hill conjecture posits that

1ln, n-1 n-2 n-3 1 4

er(En) = 7SI I ~ ot

but the best known lower bound is quite far oﬂﬂ at about cr(Ky,) > 0.85946%1714 for sufficiently
large n. Likewise, the correct constant is unknown for complete bipartite graphs, and in general
there are tons of simple-looking open problems on crossing numbers (see this exhaustive survey
by Marcus Schaefer).

!There may be less than four adjacent vertices in general, but not in the drawing minimizing the crossing
number, since drawings where there is a crossing forming an « shape can be simplified by removing one crossing.
So in a crossing-minimal drawing, they do not happen

2Note that the fact that 1/64 also appears in Theorem is a red herring: the number of edges in a complete
graph is (g), so a blind application of the crossing lemma only gives cr(K,) > 64%714.

https://terrytao.wordpress.com/2007/09/18/the-crossing-number-inequality/
https://www.combinatorics.org/DS21
https://www.combinatorics.org/DS21

1.4 The Hanani-Tutte theorem

Another interesting result of planar drawings is the following surprising (to me at least) theorem.
Two edges of a graph are independent if they are not incident to a common vertex.

Theorem 1.5 (Strong Hanani-Tutte theorem, 1934). Any drawing in general position of a
non-planar graph contains two independent edges that cross an odd number of times.

Conversely, if one can draw a graph so that all independent edges cross an even number of
times, then the graph is planar (!)

Proof. We first claim that it suffices to prove the theorem for K5 and K33. Indeed, let G be
a non-planar graph. By Kuratowski’s theorem, it contains a subdivision of K5 or K33. If the
theorem is proved for K5 and K3 3, then we can find a pair of disjoint paths in our graph G that
cross an odd number of times. This means that there exists a pair of independent edges that
cross an odd number of times. Indeed, otherwise, summing all the even number of crossings
among all pairs of edges in the pair of paths would give an even number of crossings for the
pair of paths.

In order to prove the theorem for K5 and K33, we prove the stronger result that in any
drawing of these two graphs, the sum of the number of crossings over all independent pairs of
edges is odd. The reason is that this quantity mod 2 does not actually depend on the drawing:

Claim 1.6. For G = K5 or K33 and any two drawings G1 and G2 in general position of the
graph G, the quantity

Z cr(e,e’) mod 2

e.e’

independent edges

is the same.

Proof. We first describe a general way to deform any (1 into any Go, and then prove that the
target quantity is invariant throughout this deformation.

As we said earlier, we can assume that in the drawings G; and Gg, the edges are polygonal
segments. We first move the vertices of G; one by one so that they coincide with the respectives
vertices of Go. This can be done by choosing, for every vertex v in GG, a polyogonal path p,
between its position v; in (G1 and its position vy in G9. This path can clearly be chosen so that
it avoids vertices of G; and G9 and so that it intersects their edges transversely and outside of
existing crossings. Then we move v; along p, dragging all the incident edges along the way, as
pictured in Figure [3] top.

In a second step, we inductively straigthen the edges in G; and in Ga: we focus on Gy, the
case of Gy being identical. Each edge of G is a polygonal path e = (q1,. .., qx), where the points
g; and g;41 are connected with straight segments. We can straighten such a polygonal path by
replacing the triangle q1, g2, g3 by the straight segment ¢iq3: this is done by moving one tip of
the triangle to the opposite edge. Here again, one can do so along a path that avoids all the
vertices of G1 and G2 and intersects their edges transversely and outside of existing crossings,
see Figure [3, middle.. We then go on inductively so that every edge in G is a straight line
between its endpoints, and likewise in G2. Since the vertices coincide, the drawings are now
identical.

Let us now analyze how the crossings evolve as we do these deformations. By our choice
of deformation paths, such evolutions only happen at discrete moments: in the first step this
will be when a vertex passes through an edge (Figure |3} (a)), and in the second step this will
be when a point g; crosses an edge (Figure |3, (b)), when one of the two incident straight lines

U1

q2

q1

q2

(d) ()

Figure 3: Deforming drawings.

passes through a vertex or a crossing (Figure (3| (c) and (d)), or when two edges switch their
order around a vertex (Figure 3 (e)). Note that outside of these discrete events, the crossings
do not change: actually the homeomorphism class of the drawing (viewed as a plane graph)
does not change. Also note that the events of type (b), (d) and (e) do change the drawing but
do not change the parity of crossings of independent edges.

There remains events (a) and (c) which both feature, in slightly different ways, a vertex v
passing through an edge e. If v is incident to e , the changes in crossings only involve non-
independent edges and are thus irrelevant to our count. If G = K33, the degree of every vertex
is 3, but for any vertex v not incident to e, exactly two of the edges incident to v are independent
with e (look at Figure . So the count of independent crossings changes by 2, an even amount.
If G = K5, every vertex v in K5 has degree exactly four, and for any fixed e not incident to v,
exactly two of the edges incident to v are independent with e (look again at Figure . So here
again the count of independent crossings changes by 2, an even amount. J

We conclude the proof by exhbiting drawings of K5 and K33 where this sum is odd, as done
in Figure |4] (note that the proof implies that any drawing will work). O

This theorem and its proof provide a polynomial-time algorithm to test whether a graph
is planar. It is not as efficient as other more standard approaches, but is simple conceptually
and, with a lot of work, can be generalized to higher dimensions. Let G be a graph of which

Figure 4: The graphs K5 and K3 3.
e

Figure 5: A finger move for a pair p = (e, v).

we want to test planarity. Let us consider the vector space S over the field with 2 elements Fy
whose basis consists of pairs of independent edges (e, f) in G.

1. Start with any drawing of the graph G. Write down the vector 2(D) € S of the number
of crossings mod 2 of independent edges.

2. For every pair p = (v,e) in the graph G, define a vector u(p) = Zf incident to o (fs€) €S-
it contains a 1 for each pair of edges (f,e) such that f is incident to e, and 0 otherwise.

3. Denote by U the subspace spanned by the family u(p). Test whether z(D) belongs to U.
If yes, output that the graph is planar, otherwise, output that it is not planar.

Lemma 1.7. This algorithm is correct and has polynomial complexity.

Proof. The reason why this algorithm is correct follows from (the proof of) Theorem Indeed,
starting from any drawing D of G, one can change its vector (D) by exactly u(p) by applying
a finger move (see Figure |5)) from the edge e around the vertex p. If x(D) belongs to U,
there exists a sequence of finger moves that brings the vector of crossings z(D) to zero mod 2.
Then by Theorem the graph is planar. Conversely, if the graph is planar, starting from
any drawing we can deform it similarly to the proof of Theorem until there are no crossings
remaining, and this morphing gives a sequence of finger moves, and thus a family of vectors
u(p) showing that x(D) belongs to U.

The third step can be solved by Gaussian elimination in cubic time (or there are faster
algorithms, even more so since the underlying field is Fy). Since S has size O(|E|?) = O(|V|?)
(if the graph is not sparse, we can reject it straight away), this yields a complexity O(|V[6). O

For the algebraic-minded reader, this algorithm actually amounts to computing an obstruc-

tion class in the equivariant cohomology of the deleted product (ask me in class if you are
interested about what these words mean).

1.5 Efficient algorithms for planar graphs

Many algorithmic problems can be solved faster when the input graph is planar. This includes
some problems which are NP-hard in general but can be solved in polynomial time in the planar

case: for example MAX-CuUT, (uniform) SPARSEST CUT, FEEDBACK ARC SET, or computing
the BRANCH-WIDTH of a graph. Similarly, testing for GRAPH ISOMORPHISM is (probably) not
NP-hard but no polynomial-time algorithm is known in general, while it can be solved efficiently
on planar graphs (take a look at Exercise 3 in the Exercise Sheet accompanying Lecture 4). We
will not study any of those (choices have to be made). Instead, we will look at a few problems
where planarity allows for faster and conceptually simpler algorithms than in the general case.
At the risk of overly simplifying things, there are in my opinion three main reasons as to why
planar graphs tend to be easier to handle algorithmically than general graphs. The first reason
is sparsity, which has strong combinatorial and algorithmic consequences, as we have seen earlier
for colouring problems. The second reason is duality: sometimes a problem that is not easy to
solve in the primal graph becomes much easier to solve in the dual graph. Sometimes juggling
between both the primal and the dual setting allows to make good progress. The third reason
is the existence of small separators, which will be proved in Lucas’s half, and which allows
for efficient divide and conquer approaches for a lot of problems. Famously, a clever use of
(iterated) small separators yields the following theorem, showing that shortest paths, which are
arguably the most important algorithmic primitive, can be computed in linear time on planar
graphs. This is to be compared with Dijkstra’s algorithm which runs in time O(nlogn) in
sparse graphs. (But note that for unweighted graphs, a breadth-first search tree from a vertex
is a shortest path tree, so in that case, we can also compute shortest paths in time O(n)).

Theorem 1.8 (Henzinger, Klein, Rao, Subramanian 1997). On an edge-weighted planar graph,
a shortest path tree from any given vertex can be computed in linear time.

1.5.1 Minimum spanning trees

Let G be a graph with a weight function w : E — RT. A minimum spanning tree of a
graph G = (V, E) is a tree T = (V, E’) with E' C E that spans all the vertices of G (this was
actually already implied by the notations of the vertices) and such that it has minimal total
weight) . w(e) among all the spanning trees. Computing a minimum spanning tree is a
fundamental primitive in algorithm design, and also an important practical problem in its own
right: think about an electric company wanting to wire all the houses in a neighborhood at a
minimal cost. For general graphs with n vertices and m edges, classical algorithms (e.g., Prim’s
or Kruskal’s) run in time O(mlogn) (note that in the sparse case, m = O(n), but this is still
not linear). Using some very fancy data structures, one can do better, but there is no known
deterministic algorithm running in linear time.

In contrast, for planar graphs, one can compute a minimum spanning tree very easily in
linear time. The key is the use of duality:

Theorem 1.9. If G is a planar graph with n vertices, one can compute a minimum spanning
tree in time O(n).

We start with exploring how spanning trees interact with duality, as illustrated in Figure [6]

Lemma 1.10. Let G be a planar graph and G* be its dual graph. Then if T = (V,E') and
E' C F is a spanning tree, then T* = (F*,(E \ E')*) is also a spanning tree, called the co-tree.
If one is minimal, the other is maximal.

Proof. If T is a spanning tree, it does not contain any cycle, which happens if and only if its
complement R?\ E’ is connected, by the Jordan curve theorem. But R?\ E’ is connected if and
only if T* is connected. Indeed, any two points in R? \ E’ are in faces of G, and thus can be
connected without crossing edges of E’ if and only if those faces can be connected in the dual

https://monge.univ-mlv.fr/~demesma/Exercises2.pdf

Figure 6: A spanning tree and the spanning co-tree. These are sometimes called interdigitat-
ing trees.

graph where one removed the edges dual to those of E’. Since T and T’ are both connected,
they are both acyclic and thus are both trees. If one of them, say T, is minimal, then 7™ is
maximal, since otherwise one could increase the weight of T* which would mechanically decrease
the weight of T O

Observe that when we contract an edge in a graph, the corresponding edge in the dual graph
gets removed, and vice-versa.

The following is an easy consequence of Euler’s formula.

Lemma 1.11. In a planar graph G, there is either a verter of degree at most 3, or a face of
degree at most 3.

Proof. Assume otherwise. Then we can double count edges in two different ways and get
4v < 2e, and 4f < 2e. Then v — e+ f < 0 contradicting Euler’s formula. O

We now have all the tools to describe our algorithm.

Proof of Theorem[1.9 The algorithm is based on alternating actions between the primal and
the dual graph. We initialize the set of edges E’ that we pick at the empty set, and:

e Let v be a vertex of the graph G. If v is only surrounded by loops, then the solution is
the trivial empty tree. Otherwise, at least one non-loop edge is adjacent to v. Among all
these non-loop edges, one of minimal weight e necessarily belongs to the minimal spanning
tree: otherwise, one could add it and remove another edge. So we can take it, add it to
E’ and recurse on G/e.

e Let f be a face of the graph G, and thus a vertex of the dual graph G*. If all the
edges adjacent to f in G* are loops, then G* has a single face, thus G is a tree, and the
spanning tree is G itself. Otherwise, the dual of an edge e of maximal weight incident to

10

f necessarily belongs to the maximal spanning co-tree, and thus e does not belong to the
minimum spanning tree. So we can recurse on G \ e.

Each of these two actions removes an edge in one way or another from the graph that we
consider, so the number of recursions is O(n). For each of the two actions, the cost of finding
which edge to contract or remove is of the order of the degree of the vertex or the face that we
consider. So if we always pick a vertex or an edge of degree at most 3 (provided by Lemma,
this will take constant time. Note that contracting (respectively removing) an edge adjacent to a
vertex (respectively a face) of constant degree means updating O(1) flags in the representation,
so the recursive call can be made in constant time.

So there remains to explain how to find the vertex or face of low degree provided by
Lemma [I.11] in constant time. We will amortize this search, i.e., we will prove that the to-
tal time spent looking for these is O(n), and thus it is O(1) in average per round. In order to
do that, we first compute a list L containing all the vertices and the faces of degree 3 of the
initial graph. This takes linear time by traversing both the primal and the dual. The list L
will be updated throughout the algorithm so that it always contains the list of vertices or faces
that may have degree at most 3. When contracting or removing an edge, the degree of the four
adjacent vertices and faces can change, so we add them all to the list L. Since there are O(n)
iterations, this process adds O(n) elements to the list L throughout the algorithm.

Now, whenever we want to take an action, we look at the first element of the list L. If it
does not exist anymore, or if it has degree more than 3, we remove it from the list, and continue.
By Lemma we always end up finding a vertex or a face. Since O(n) vertices and faces were
added to the list, we remove O(n) of those throughout the algorithm. So in total, the search
procedure takes O(n) time, which proves our amortized complexity and finishes the proof of the
algorithm. O

Note that this algorithm crucially relies on the fact that we work with non-simple graphs
(even if the initial graph is simple, it becomes non-simple after contractions). This is why we
rely on Lemma [[.11] and duality and not merely sparsity.

1.6 Minimum cut

Our second foray into algorithms for planar graphs concerns the computation of a minimum
cut: given two vertices s and ¢, called terminals, on a planar graph G = (V, E), we want to
compute the minimum set of edges X so that removing X from E separates s and t.

Theorem 1.12. Let G = (V, E) be a connected edge-weighted planar graph, and s and t be two
distinct vertices of G. Then the problem of computing a minimum s — t-cut of G can be solved
in O(nlog?n) time, and even O(nlogn) time if one uses Theorem .

The basic idea of an efficient algorithm for min-cut on planar graphs is to look at it through
the lens of duality: a cut on the primal graph separating s and t dualizes to a cycle in the dual
graph separating the faces dual to s and t.

Proposition 1.13. X C E is an (s,t)-cut in G if and only if X* contains the edge set of some
cycle of G* separating s and t.

This proposition is considered obvious pretty much anywhere, but we will prove it, if only
to emphasize that it does not hold on other surfaces (as usual, we will use the Jordan curve
theorem).

11

Proof. The reverse direction is straightforward: if X* contains a cycle of G* separating s and
t, then any path in G between s and ¢ must cross this cycle, and thus X is an (s, t)-cut.

For the forward direction, we take X an (s,t)-cut in G, and choose C' to be an inclusionwise
minimal subset of X that is also an (s,t)-cut in G. We show that C* is a cycle separating s
and t. By minimality of C, each vertex of G’ can be connected to either s or ¢t without taking
edges of C, and the two cases are exclusive. We label vertices with “S” or “T” depending on
which one they are connected to. Moreover, for any edge in C, its two endpoints cannot have
the same label, and for any other edge, its endpoints have the same label. So if we look at a
face f of G adjacent to an edge of C, the labels on the facial walk on the face alternate only
when the edge is in C, and thus there is an even number of edges of C' adjacent to f. So C* is
an Fulerian subgraph of G*, that is, a subgraph where each vertex has even degree. Pick any
cycle in that subgraph. By the Jordan curve theorem, it is separating, and since the faces on
each side of each edge are labelled “S” and “T”, it separates s and t. By minimality, C* is that
cycle.]

This proposition transforms a combinatorial problem into a topological one, namely, finding
in the dual graph the shortest cycle enclosing a given face and not another given one. Even
more topologically, if we remove the faces s* and t* from the dual graph, we obtain a surface
homeomorphic to an annulus, and we look for the shortest cycle that goes around this annulus.
However, this runs into an interesting technical issue: is s* and t* are adjacent, then removing
s* and t* does not actually yield an annulus. Morally, this should not pose a problem: we just
want to add an infinitesimally small buffer between s* and t* and we will be fine. One way to
do this is to enlarge a tiny bit the set of curves that we look at. When working on the primal
graph, we generally work with walks on the primal graph. When working on the dual graph,
we work with walks on the dual graph, which correspond by duality to closed curves that are
in general position with respect to G, i.e., they do not meet the vertices of G and cross the
edges of G transversely. So our solution is to directly work in this setting of curves in general
position with respect to G. The length of such a curve is defined to be the number of edges of
G that it crosses. Note that this is a bit more general than just looking at walks on the dual
graph: now we can define a pair of small curves in general position around s and t that are
disjoint, even if s and ¢ are adjacent in G. Yet from an algorithmic perspective, all the curves
in general position can be pushed on the dual graph in a way that does not change the length,
so any computation, for example shortest paths, can be made in the dual graph. In this new
setting, Proposition [I.13] becomes:

Proposition 1.14. Let v be a simple closed curve in general position with respect to G, that
separates s from t and that has minimal length among all such curves. Then the set of edges
crossed by 7y is a minimum (s,t)-cut in G.

Recall that a simple closed curve on a sphere is an injective map ~ : S' — S2..

Proof. Any path connecting s to t in G crosses =, thus the set of edges crossed by ~ is an
(s,t)-cut. Conversely, a minimum (s, ¢)-cut dualizes to a cycle in G* separating s and ¢, which
corresponds to a simple closed curve v in general position with respect to G, that separates s
from ¢. O

Now, we remove a small disk around s and t, getting an annulus A, and a portion of the
graph G embedded on this annulus as in Figure [7]] How do we compute a shortest closed curve
that goes around the annulus A? We can fix one point on each boundary, and compute a
shortest path between these two points, and call it p. Then we show that some shortest closed
curve does not cross p more than once, and thus can be found by a shortest path computation.

12

Figure 7: The annulus obtained after removing a small disk around s and ¢.

Lemma 1.15. Some shortest closed curve separating the two boundaries of A is simple and
crosses p exactly once.

Proof. This is illustrated in the left of Figure[8] Let be such a curve. If we cut A along p, we
obtain a topological disk B, where the path p got cut into two paths p’ and p” on the boundary.
The curve ~, once cut on B, contains a simple path ¢ connecting p’ to p”, otherwise v would
not separate s from t. Now we reglue B along p, and connect the two endpoints ¢; and g2 of ¢
by running parallel to p. We obtain a closed curve that is simple, crosses p exactly once and is
no longer than v since v was connecting q; to go as well. O

From this we get a naive quadratic algorithm. We compute the shortest path p, which has
some length k. We pick points vy, . .., vg on this path such that the subpath [v;, v;11] has length
one. Then, cutting along p, each vertex v; gets duplicated into v} and v, and we compute all
shortest paths between each v; and v. Following all the lemmas, one of them is the dual of a
minimal cut. Since shortest paths in the dual graph can be computed in time O(nlogn), this

takes O(n?logn) time.

We can speed this up doing some divide-and-conquering.

Lemma 1.16. Let (x,y,z) be points on p, appearing in this order. When cutting A along p,
these get duplicated into (z',y',2") and (2",y",2"). If v» and v, are disjoint shortest paths
between ' and x”, respectively z' and 2", then some shortest path between y and vy does not
CT08S 7Yz MOT .

Proof. This is illustrated in the right of Figure [8l Say that <y, crosses v,, then it crosses it in
at least two points. Let a and b be the first and the last crossing points when going from v/
to y”. Then we can replace whatever v, was doing between a and b with the subpath of 7,
between a and b (or more precisely, some shortest paths infinitesimally close to it). Since 7, is

13

z Z z
v ! v
- ;A (g SN

Figure 8: The two shortcutting arguments of Lemma and Lemma|1.16

a shortest path, the new curve is at most as along as 7,. Doing the same for the crossings with
v, concludes the proof. O

This suggest the following recursive approach. Having computed our shortest path p of
length k between the two boundaries of A, if k > 2,

1. we pick a vertex v := v| /9|, cut along p and compute on B a shortest path p between the
two vertices v’ and v” corresponding to v,

2. we reglue B into A, and the shortest path p is a simple closed curve . We cut A along ~y
and get two annuli A; and As.

3. we recurse on A1 and A, and output the shortest of the two solutions.

We stop the recursion when we reach one of the following two base cases for the recursion:
(1) when k& < 2, we can compute the shortest closed curve by brute forcing the problem in O(n)
time as in the quadratic algorithm, and (2) if there exists a face adjacent to both boundaries,
we can compute a shortest cycle going through that face directly in time O(nlogn).

Here again, this algorithm would be quite a bit more annoying to describe purely in the dual
graph, as the shortest path p might be following the boundary of an annulus, and thus when
cutting along ~ in step 2 we do not obtain annuli. This can be dealt with by appropriately
subdividing in the correct places, which, when thinking about it, is exactly what this algorithm
does — but I believe that the description using curves in general position is more transparent
(this “cross-metric” perspective is directly taken from Eric Colin de Verdiere’s notes).

To conclude the proof of the theorem, we establish the correctness and the complexity
analysis:

Proof of Theorem[1.13. The algorithm terminates in O(logn) recursion levels since the length
of the path p in the recursive calls shrinks by a half at each recursive call. The correctness
follows from Proposition [I.14] Lemmas [I.15] and [I.16] since they prove that some minimal cut
will be dual to the shortest cycle that our recursive calls will find.

The proof of correctness is not as immediate as one could expect, as recursive calls share a
lot of structure with their parent: for example it looks like the same edge of G might be cut
several times by the shortest paths in the recursion, and thus appear in several of the annuli.
But note that if an edge e is cut into subedges ey, ..., ey, then in all the recursive calls involving
the annulus between e; and e; 1, the recursion stops directly, since there is a face adjacent to
both sides of the annulus. Therefore, only e; and e, actually lead to recursive subcalls, and
thus at each level of the recursion, throughout all branches of the recursion tree, each edge only
appears a constant number of times.

Therefore, at each level of the recursion, the annulus A is cut into & subannuli A U...U Ag
of total complexity O(n), and thus solving the shortest path computations in all of them takes
O(nlogn) time (because the map = — xlog z is concave).

14

https://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf

Each computation in steps 1 and 2 of the algorithm takes time linear in the complexity of
the annulus at this stage. There are O(logn) levels, and by the previous observations, each
them costs O(nlogn) time in total, so the total complexity is O(nlog?n). Using linear-time

shortest paths, this improve to O(nlogn). O

15

	Planar Graphs
	A partial recap of the first lecture
	Coloring
	The crossing lemma
	The Hanani-Tutte theorem
	Efficient algorithms for planar graphs
	Minimum spanning trees

	Minimum cut

