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Abstract. The goal of this paper is to present a brief survey of a collec-
tion of methods and results from the area of combinatorial search [1,8]
focusing on graph reconstruction using queries of different type. The
study is motivated by applications to genome sequencing.

1 Introduction

1.1 Generic problem and bioinformatics application

Assume we have a set of labeled chemicals and some pairs of chemicals can react.
Assume we have an experimental tool to detect if a reaction occurs when mixing
two or several chemicals together, or a tool that allows us to count how many
reacting pairs there are in the mixture. Our goal is to recover all pairs of reacting
chemicals with as few experiments as possible.

One important application area for such problems is bioinformatics. For ex-
ample, obtaining a whole genomic sequence is a crucial first step in the study of
an organism. A common practical approach to genome sequencing is to obtain a
number of short and possibly overlapping reads from the genomic sequence, that
are then assembled into contigs — contiguous fragments that cover the genome
with possible gaps. The problem is then to determine the relative placement of
contigs on the genome, i.e. to reconstruct their original order. This step is a
accomplished by testing the adjacency of contigs using a so-called Polymerase
Chain Reaction (PCR). Nowadays, PCR is one of the most ubiquitous tools in
molecular biology and can be performed very cheaply, efficiently and almost au-
tomatically (see e.g. [2]). It is based on the idea that any region of the genome
can be described by a pair of primers that can be thought of as short nucleotide
sequences bounding this region. If the primers are proximate (within several
thousands of nucleotides in practice), the region that they delimit is amplified
into a huge number of copies, which can be observed experimentally. Therefore,
by picking primer sequences from both ends of each contig, we can reliably test
if they are adjacent on the original DNA, under the assumption that the gaps
between contigs are of bounded size.

While the basic PCR allows one to test one pair of primers at a time, the
multiplex PCR presents an extension that uses several primers simultaneously



to determine amplified regions. Since several regions can be amplified simulta-
neously, this approach can also provide an information of how many pairs of
primers resulted in an amplification.

In all cases, a very important question in practice is how many reactions are
needed in the worst case and how quickly we can perform all of them. Ideally,
we want to implement as few reactions as possible and run them in parallel. In
this paper we survey some of the results related to such and similar problems.

1.2 Mathematical formulation and main definitions

If chemicals are represented as vertices of a non-oriented graph and a reaction
as an edge, we come up with a problem of reconstructing an unknown graph
of a given class of graphs. Note that we might also consider that a reaction
is triggered by more than two chemicals, which would result in a hypergraph
reconstruction problem.

The multiplex PCR problem can lead to two different mathematical formal-
izations. If the objects (“chemicals”) we are dealing with are contigs (i.e. primers
coming from both ends of a contig are always tested together), the underlying
problem is to reconstruct a Hamiltonian path or a Hamiltonian cycle* on K,
(the complete graph with n vertices, where n is the number of contigs) [11]. If
we are dealing with primers, we face the problem of reconstructing a matching
on K,, (where n is the number of primers).

Graph reconstruction problem. Different kinds of combinatorial search problems
on graphs have been considered in the literature (see [1]): identifying an unknown
edge or vertex in a given graph, reconstructing a hidden graph of a given class,
verifying a property of a hidden graph, and some others. Our interest here will
be the following graph reconstruction problem:

Problem 1 Given a class of graphs G = U, Gy, where G,, contains all the graphs
of G on the set of vertices V. ={1,...,n}, we want to reconstruct a hidden graph
G € G, for a given n, making as few queries as possible. A query is a subset of
V', and the answer we obtain provides us with information about the edges in the
subgraph of G induced by the queried subset. This information depends on the
model under consideration.

In the particular case when only two vertices of V' can be tested at a time,
the query just checks if a specific edge exists in G, and the model is called a
two-vertex model.

Boolean and quantitative models. One type of query is: “For Q C V' is there at
least one edge in the subgraph of G induced by @7”. The possible answers being
true or false, this query model is called boolean.

A natural extension of this model admits queries of the following form: “For
Q CV, how many edges does the subgraph of G induced by @ contain?”. This

4 depending on whether the genome is linear or circular



query model is called quantitative (or additive) since the answer to a query is
an integer ranging between 0 and the number of edges of a G.

In both cases, the complexity of a problem is defined as the minimum number
of queries required to reconstruct a graph of G,, in the worst case. The complexity
depends on n but can also made dependent on other parameters (see [4] for
example).

We will be generally interested in finding upper and lower bounds on the
complexity of a problem. The information theory provides a simple and powerful
method to estimate the lower bound: at least log, |G, | queries must be made in
order to identify a graph from G, , where d is the maximal number of distinct
answers provided by a query.

Adaptive and nonadaptive algorithms: Two main kinds of algorithms must be
distinguished in the area of combinatorial search: in adaptive algorithms, every
query potentially depends on the answers obtained to previous queries while in
nonadaptive algorithms, all queries are independent of each other. A nonadaptive
algorithm can be described as a family of subsets of V' (queries) or as an vertex-
query incidence matrix M (M;; = 1 iff vertex j appears in query i, M;; = 0
otherwise).

Nonadaptive algorithms can be seen as 1-round algorithms, i.e. those in which
all queries can be made in parallel. From this perspective, adaptive algorithms
are multi-round (have an unlimited number of rounds). Intermediate case of
s-round algorithms composed of s successive nonadaptive stages will also be
considered.

In this paper, we present a short survey of different known results on graph
reconstruction. From the application perspective, our main motivation is on
reconstructing Hamiltonian cycles but we also consider other graph classes such
as matchings, stars, cliques, graphs with bounded vertex degree, and others. Two
main query models will be considered: the boolean model (Section 2) and the
quantitative model (Section 3). For each graph class, we will be interested in the
complexity of reconstruction using different types of algorithms.

2 Boolean model

2.1 Hamiltonian cycles

Assume we have to reconstruct an unknown Hamiltonian cycle in the complete
graph K,,. Under the boolean model, the information theory yields the lower
bound log, w = f2(nlogyn) as there are (";1)! Hamiltonian cycles on n
vertices. The following theorem states that this bound can be reached under
particular conditions.

Theorem 1 The 2(nlog, n) lower bound on the complexity of Hamiltonian cy-
cle reconstruction can be reached by an adaptive algorithm.



Note first that if we are restricted to the two-vertex model, any reconstruction
algorithm requires £2(n?) queries, as shown in [1].

An adaptive algorithm reconstructing a Hamiltonian cycle H with 2nlog, n
queries has been described in [11]. An interesting fact is that under the boolean
model, this complexity cannot be achieved by a nonadaptive algorithm. As
showed in [5], £2(n?) queries are necessary for a nonadaptive algorithm to re-
construct a Hamiltonian cycle. The result of [5] is actually more general, and
establishes that £2(n?) queries are necessary for a nonadaptive algorithm to re-
construct a graph in one of the following classes: matchings, perfect matchings,
graphs isomorphic to a fixed bounded degree graph with 2(n) edges, graphs
consisting in the disjoint union of a clique of size n — 3 and a single edge.

This example illustrates the case when adaptive algorithms are strictly more
powerful than nonadaptive algorithms.

2.2 Matchings

A matching is a graph such that each vertex has degree 0 or 1. As mentioned
above, any nonadaptive algorithm reconstructing a matching requires a quadratic
number of queries. More precisely, at least f‘—g’g (’2‘) nonadaptive queries are nec-
essary to reconstruct a matching on K, [5]. The authors of [5] also prove the
upper bound (3 + o(1))(}) using a construction based on the Wilson theorem
[22] on the decomposition of complete graphs into subgraphs isomorphic to a
given graph.

As the enumeration of matchings is an open question, it is difficult to compute
the exact information-theoretic lower bound. However, we can easily compute the

number of perfect matchings® of K, to be QL%Jni'L"J' This provides a lower bound
1z

on the number of general matchings, and implies the following information-

theoretic lower bound on the reconstruction of matchings: log, (2%}171”]') =
EN

(1 +o0(1)) - (§1ogyn). Even though this bound has been computed for perfect
matchings only, it is possible to built an adaptive algorithm reconstructing gen-
eral matchings and achieving this bound within a constant factor.

The algorithm works in two steps. The first one is adaptive and partitions
the set of vertices into Vi W V5 such that no two vertices in the same V; are
adjacent in the matching. This can be done in n queries by processing vertices
one-by-one. The second step can be made nonadaptive. It finds for every v € V
the adjacent vertex to v (if it exists) in V5 using a group testing algorithm to find
one “counterfeit coin” among n (see Section 3.1). This group testing problem
can be solved within [log, n] nonadaptive queries, yielding a total complexity
of (1+0(1)) - (nlogyn) for the entire algorithm. Note that the same algorithm
applied to the reconstruction of perfect matchings has an optimal asymptotic
complexity (1 + o(1)) - (5 logyn).

5 a perfect matching is a graph such that the degree of all vertices except possibly one
is 1.



2.3 Stars and cliques

The reconstruction of stars and cliques on n vertices has been studied in [4].
Following that paper, we define Sy to be the set of all stars with a center,
k leaves and n — k — 1 isolated vertices, and C} to be the set of all cliques
with & vertices and n — k isolated vertices. S = UZ;&S;.C and C' = Up_,C}, are
respectively the set of all stars and all cliques on n vertices, with an arbitrary
number of isolated vertices.

We now examine the information-theoretic lower bound for reconstructing
stars and cliques under the boolean model. To estimate the cardinality of .S,
recall that a star of Si (for & > 2) is defined by a center chosen among the
n vertices and k leaves chosen among the n — 1 remaining vertices. So |S| =

P (MY M) g = (et - 1) - 20l 4y Consequently, we
get the lower bound log, |S| = (1 + o(1)) - n for the complexity of the star
reconstruction problem. For cliques, it is clear that |C| = > 7_ (}) = 2", and
the information theoretic lower bound is then log, |C| = (1 4 o(1)) - n.

For both stars and cliques, the 2(n) bound can be achieved by the following
algorithm composed of two nonadaptive rounds. At the first round, find a starting
vertex from which it becomes easy to reconstruct the whole graph: the center
of the star or a vertex that belongs to the clique. Finding the center of the star
is done through n nonadaptive queries V'\ {i} for 1 < i < n. To find a vertex
of the clique, we simply ask the queries Q; = {1,...,i} for 2 < i < n. At the
second round (nonadaptive as well), finish the reconstruction by determining the
neighbors of the starting vertex. Each round requires a linear number of queries.

While cliques and stars can be easily reconstructed in two nonadaptive rounds,
the situation changes if we are restricted to fully nonadaptive (1-round) algo-
rithms. To reconstruct a star of S with a nonadaptive algorithm, it is necessary,
in the worst case, to query each of the (%) pairs of vertices {u, v} [4], i.e. the most
naive algorithm turns out to be the optimal one in the worst case. In contrast, for
cliques, only §2(nlogn) nonadaptive queries are needed, and [4] showed the ex-
istence of a nonadaptive algorithm reconstructing a clique of C' with O(n log? n)
queries.

3 Quantitative model

We now turn to the quantitative model, much less studied in the literature. We
show that under this model, nonadaptive algorithms get all their power and
often allow to achieve (or to approach) the lower bound. This is due to powerful
combinatorial constructions of (0, 1)-matrices verifying certain properties.

3.1 Hamiltonian cycles

We start again with our initial problem of reconstructing a Hamiltonian cycle
on n vertices. As under the quantitative model there are n + 1 possible answers

to each query ¢ C V, the information-theoretic lower bound is log,, |, ("gl)! =

(1+o(1)) - .




Theorem 2 Under the quantitative model, there exists an algorithm reconstruct-
ing a Hamiltonian cycle in O(n) queries.

One such algorithm has been presented in [11] and is composed of two steps: an
adaptive preparatory step followed by a nonadaptive reconstruction step®. We
now describe this algorithm.

First stage. The goal of the first stage is to reduce the problem to the reconstruc-
tion of bipartite graphs. By processing all the vertices successively, we transform
the Hamiltonian cycle H into a tripartite graph, i.e. we partition the set of ver-
tices V into 3 subsets V7 W V5 W V3 such that two vertices in the same subset are
not adjacent in H. As each vertex has exactly two neighbors, this transforma-
tion can be done in at most 2n queries. We are now dealing with the problem of
reconstruction of a tripartite graph that we view as three bipartite graphs.

Second stage. The second stage reconstructs each of the three bipartite graphs
in O(n) nonadaptive queries. This crucial step is based on two auxiliary con-
structions.

First subproblem. Consider a bipartite graph (C7, Cs; E) with vertex de-
gree bounded by a constant (2 in our case). Assume that we want to determine
the degrees of all vertices of C; by querying subsets of C; together with the
whole set Co. This problem is equivalent to the reconstruction of an unknown
vector v = (v1,...,vy,) with v; € {0,...,d — 1} (d = 3 in our case) by querying
sums of the form Y . | €v;, € € {0,1}. A nonadaptive algorithm solving this
problem corresponds to a (0,1)-matrix M of dimension k x n (k as small as
possible) such that for vectors v € {0,...,d—1}", all products Mv are distinct.
We call such matrix a d-detecting matriz.

The information-theoretic lower bound for & is log4_1,,41 d" = (1 +o(1)) -
( logT; n ) :

For the particular case d = 2, this lower bound can be improved to (2+0(1))-
(%2”), as it was shown in [9] (another proof using Kolmogorov complexity can
be found in [16]). On the other hand, it has been shown in [17,6] that this
bound can be achieved. A decade later, Lindstrom [21] gave a tricky effective
construction of a 2-detecting matrix with (2 + o(1)) - (mgnj) rows using the

Moébius function.

In our case, d = 3 and a 3-detecting matrix with (44o0(1))-( e
effectively constructed as an extension of the Lindstréom construction. Further-
more, for an arbitrary constant d, a d-detecting matrix with (2+0(1))(log d- ;2)
rows can be effectively constructed, and this is also a lower bound [11].

Second subproblem. Consider a bipartite graph (C,Cs; E) and a vertex
i € C1. We want to determine the vertices of Cs adjacent to ¢ by querying i to-
gether with subsets of Cy. In the case of Hamiltonian cycle, there are exactly two

) rows can be

6 as it will follow from Section 3.4, Hamiltonian cycles can be reconstructed in O(n)
fully nonadaptive queries. The two-step construction presented here is for explana-
tory purposes.



such vertices, but to be more general, we assume that their number is bounded
by a constant d. The problem can be viewed as a problem of discovering d coun-
terfeit coins (neighbors of 1) among n coins (vertices Cy) and is well-known in the
area of group testing [8]. We want to solve it in a nonadaptive way (for reasons
that will be clear later) using queries of type “how many counterfeit coins does
a given subset contain?”.

The case of finding one counterfeit among n can be solved by an optimal non-
adaptive set of queries Q; = {j| the i-th bit of j is 1} for 1 <4 < [logyn|. How-
ever, already for two coins the situation gets more complicated: the information-
theoretic lower bound is logs (g) ~ 1.26 - log, n while the best known upper
bound for adaptive algorithms is 1.44 - log, n. For nonadaptive algorithms, the
best known lower and upper bounds are respectively % -logyn and 2 - logyn
[18,20].

For the general problem of finding nonadaptively d counterfeit coins among
n, we need to construct a (0,1)-matrix A of dimension k& x n (k as small as
possible) such that for vectors v € {0,1}™ having at most d 1’s, all products
Av are distinct. We call such a matrix a d-separating matriz. Known upper and
lower bounds for the number of rows in a d-separating matrix are respectively
(4+o0(1))- (ﬁ logn) [11] and (24 0(1)) - (ﬁ logn) [3]. Both are proved using
probabilistic arguments, and thus the upper bound is non-constructive. The best
known explicite nonadaptive construction uses BCH error-correcting codes and
uses O(dlog, n) queries. Note also that no better properly adaptive algorithm is
known.

Combining the subproblems. The two techniques presented above (d-
detecting and d-separating matrices) allow us to solve the problem of recon-
struction of a bipartite graph (Cy,Cq; F) with the degree of each vertex in Cy
bounded by a constant d. Using d-separating matrices, the adjacent vertices of
each ¢ € C can be obtained by querying ¢ against Pi,..., P, C Cs, where
Py, ..., P, do not depend on 4. For each P;, we can determine the degree of
each i € C in P; by querying P; against S1,...,S, C C; using d-detecting ma-
trices. Again, Si,...,S¢ do not depend on P;. Thus, querying all pairs S, U P;
is sufficient to reconstruct the whole graph. The resulting number of queries is
(2+o(1))(log dizz ) (4 + 0(1))(@ logn) = (8 + o(1))dn.

This proves the following

Theorem 3 A (one-sided) d-bounded degree bipartite graph can be reconstructed
within (8 + 0(1)) - dn nonadaptive queries. This matches the lower bound up to
a constant factor.

Turning back to our initial motivation (Theorem 2), a Hamiltonian cycle can

be reconstructed within 2n+3-2log, n- % = O(n) queries asymptotically

by a two-stage algorithm. This matches the lower bound up to a constant factor.

3.2 Matchings

Asin Section 2.2, consider the lower bound on the number of matchings

n!
AN
on n vertices. Note that as the number of edges in a matching on n vertices is



n

at most |5 ], the maximal number of distinct answers to a query is [5] + 1.
Consequently, we can compute an information-theoretic lower bound on the
complexity of the matching reconstruction problem under the quantitative model

to be longﬁl (QL%JH_!LQJ,) = (1 + 0(1)) : %
n )
It is possible to reach this bound, up to a constant factor, by a fully non-

adaptive algorithm. This will follow from Section 3.4 where we describe a general
nonadaptive algorithm for reconstructing graphs of vertex degree bounded by d
within O(dn) queries.

3.3 Stars and cliques

Recall from Section 2.3 that the number of stars and cliques on n vertices are

respectively |S| =n - (2771 —1) — % + 1 and |C] = 2". The information-

theoretic lower bound for reconstructing stars under the quantitative model is
then log,, (n (2nt—1)— @ + 1) = (140(1)) - (=2-) and that for cliques

log, n
is logae_u 4, (27) = (4 +0(1)) - (o)

There exist adaptive algorithms that achieve these bounds within a con-
stant factor. Here we give only a very high-level description of them. Similar
to Section 2.3, the algorithms are divided into two main steps, the first one is
adaptive and the second one nonadaptive. At the first step, we find, in a loga-
rithmic number of adaptive queries, either the center of the star, or one vertex of
the clique. (This can be done using binary search.) (2 + 0(1))$ nonadaptive
queries are then sufficient to reconstruct the neighbors of the vertex found in
the first stage, using 2-detecting matrices introduced in the first subproblem of
Section 3.1 (see [19,13]). For stars, this construction applies immediately and for
cliques, we need to transform each query answer from k + k(k — 1)/2 to k which
is done non-ambiguously.

3.4 Bounded degree graphs

Theorem 3 states that a (one-sided) d-bounded degree bipartite graph can be
reconstructed through O(dn) nonadaptive queries. We now want to use this
technique to reconstruct general bounded degree graphs [13]. The idea is to
consider a bipartite representation of a graph defined as follows. Given a graph
G = (V, E), the bipartite representation of G is G’ = (V, Va; E'), where V; and
Vs are two disjoint copies of V, E C V; x Vo, and (i,7) € E implies (i,5) € E’
and (j,7) € E’. Note that any edge of G produces two edges in G’. Moreover, if
G is d-bounded degree then G’ is d-bounded degree too.

We want to query the binary representation through the following queries:
“Given X C V4 and Y C V5, how many edges are there in G’ connecting ver-
tices of X to vertices of Y 7 7. We define the corresponding query function
P (X, Y) = |E'N(X xY)|. A query pg (X,Y) can be expressed through quan-
titative queries to the initial graph G, i.e. through the query function pug(X) =
|[EN(X xX)|, for X C V. Using elementary set-theoretic considerations, it can be
shown that ¢/ (X,Y) = p((X\Y)U(Y\ X)) —2u(X\Y)—2u(Y\ X))+ pu(X)+u(Y).



By Theorem 3, the binary representation G’ can be reconstructed by O(dn)
nonadaptive queries p/(X,Y). From the observation above, it follows that G’
can be reconstructed by O(dn) nonadaptive queries pu(X).

Theorem 4 A d-bounded degree graph can be reconstructed within O(dn) non-
adaptive queries. This is an asymptotically tight bound.

3.5 General graphs

Under the quantitative model, the information-theoretic lower bound for recon-

. . n(n—1) 2
structing general graphs is log, n(n1) 27T = (% +o(1))- 1022 —. A better lower
2
bound (5 +o(1)) - 1022 — can be obtained using lower bounds for d-detecting ma-

trices (see Section 3.1). As it was shown in [13], this bound can be achieved up to
a constant factor using again the bipartite representation of a graph introduced
in the previous section.

Consider the bipartite representation G’ = (V1,Va; E’) of a general graph
G = (V,E). For each vertex i € Vi, reconstruct its adjacent vertices among
{1,...,4—1} C V5 with (2+0(1))- Tog;7 queries of the form w ({3}, W), W C Vy,
using 2-detecting matrices. Observe that p/({i}, W) = (W U {i}) — u(W \ {i})
which allows us to express each query u/({v}}, W) through two queries to the
original graph G.

The overall complexity of this method for the reconstruction of a general
graph is then > ,(2+0(1)) - logi21' =(2+ o(l))%. This is within the factor
of four from the known lower bound for nonadaptive algorithms.

Theorem 5 A general graph can be reconstructed within (2 + 0(1))107;;” non-

adaptive queries. This matches the lower bound up to a constant factor.

3.6 k-degenerate graphs and trees

The general technique used to reconstruct bounded degree graphs (Section 3.4)
can be further extended to reconstruct more general k-degenerate graphs. An
intuitive definition of k-degenerate graphs is as follows: G is k-degenerate if
there exists a vertex v of G with vertex degree less than or equal to k such
that G'\ {v} has the same property. More formally, a graph G is k-degenerate if
vertices V' can be ordered (vy,vs,- -+ ,v,) such that degg, (v;) < k, where G; is
the subgraph of G induced by the vertices {v;, v;41,- -+, v, }. For example, trees
are 1-degenerate as there exists a leaf of vertex degree 1 and after deleting it
the graph is still a tree. Another example is provided by planar graphs that are
5-degenerate: there is always a vertex of degree at most 5 and deleting it keeps
the graph planar.

Let us first compute the information-theoretic lower bound for the recon-
struction of k-degenerate graphs. The number of edges in a k-degenerate graph
is clearly less than nk. To obtain a lower bound on the number of k-degenerate



graphs, we fix some order on vertices and count number of possibilities to con-

nect vg4¢ t0 V441, -, Un. Since all such choices can be made independently for
. k
all vy, ,vn_g, we have N(n+1,k) > [T, ., (;) > (;ﬁi)k . The corresponding

information-theoretic lower bound is then
nk(logn —logk — 1)

I N 1, k) >
og,, N(n +1,k) = logn + log k

In the case k < n® for some a < 1, this bound can be simplified into 2(nk). For
n sufficiently large, we can prove that this bound is tight, meaning that there
exists an algorithm that reconstructs a graph in the class of k-degenerate graphs
with O(nk) queries.

Theorem 6 k-degenerate graphs on n wvertices can be reconstructed by a non-
adaptive algorithm using O(nk) queries, and this bound is tight.

As in the case of bounded degree graphs (Section 3.4), the algorithm uses the
bipartite representation of k-degenerate graphs and the same general technique
of reconstructing bipartite graphs. While the bipartite representation here is not
of bounded vertex degree, the sum of degrees of all vertices from one side is
bounded by nk. Therefore, instead of using d-detecting matrices (first subprob-
lem in Section 3.1), we consider matrices that solve a more general combinatorial
search problem, namely the reconstruction of d-bounded weight vectors which are
vectors with the sum of entries bounded by d. Formally, define the class of d-
bounded weight vectors by A(n,d) = {(v1,...,vs)|v; € Nand Y1 v; < d}.
A nonadaptive algorithm reconstructing d-bounded weight vectors is specified
by an object-query incidence matrix M such that M - vy # M - vy for all
v1,v2 € A(n,d), v1 # ve. It has been shown in [10] that there exists such a
4min(n,d) log (Clw

log min(n,d)rg;(n’d) ) + 03 10g d, for

matrix with the number of rows k(n, d) <
some constants Cy, Cy and Cs.

Consider now the bipartite representation G’ = (V1, Va; E’) of a k-degenerate
graph G. Assume we are given two families {Q;}7-, and {P;}|_, that solve the
d-bounded weight vector reconstruction problem for d = k£ and d = 2nk re-

spectively. From the bound on k(n,d) above, it follows that m = O(k igg =)

and | = (’)(niggﬁ) when n — oo. It can be shown that the set of queries

{w (P, QJ)}z;llm reconstructs k-degenerate graphs. The proof, given in [10],
combines the ideas of Section 3.1 with an iterative procedure of computing the
answers of queries 1/ (P;, Q;) that would be obtained after deleting all edges in-
cident to a vertex of degree at most k (by definition of k-degenerate graphs, such
a vertex always exists).

The overall complexity of the algorithm is m -1 = O(nk), which proves
Theorem 6.

4 Conclusions and open problems

Through examples of Hamiltonian cycles, matchings, stars and cliques, the quan-
titative model has been shown to be more powerful than the boolean model. The



following table illustrates this difference and provides lower and upper bounds
(for adaptive and nonadaptive algorithms) for the two-vertex, boolean and quan-
titative models, for the case of Hamiltonian cycle that has been our main ap-
plicative motivation.

lower bound| adaptive |nonadaptive
two-vertex model 2(n?) O(n?) O(n?)
boolean model R(nlogn) [O(nlogn)| 2(n?)
quantitative model|  £2(n) O(n) O(n)

Another important conclusion is that nonadaptive algorithms fully benefit
from the quantitative model, and vice versa. Not only the quantitative model
allows faster reconstruction algorithms, but also these algorithms can be made
nonadaptive, or “almost nonadaptive” (having an important nonadaptive com-
ponent). Interestingly, under the quantitative model, nonadaptive algorithms
often reach the asymptotic lower bound and no properly adaptive algorithm is
known to outperform nonadaptive algorithms. This contrasts with the boolean
model, where nonadaptive algorithms are usually strictly less powerful than
adaptive ones.

The power of nonadaptive algorithms under the quantitative model is due to
powerful combinatorial constructions of d-detecting and d-separating matrices
(Section 3.4) and their generalizations (Section 3.6).

As far as open questions are concerned, we would like to mention two of
them here. One concerns an important technical point: the upper bound for d-
separating matrices (Section 3.4). The tight upper bound O(@ logn) has been
proved by a probabilistic nonconstructive argument, and finding an effective
construction of d-separating matrices with O(ﬁ logn) rows remains an impor-
tant open question. Another question is of more general nature: how far can we
go with optimal nonadaptive reconstruction under the quantitative model? For
example, can we reconstruct in O(dn) queries any graph with O(dn) edges?

To conclude, we get back to the applicative side of our study and mention
that many other bioinformatics applications give rise to combinatorial search
problems. Such applications include screening clone libraries [15], the FISH (Flu-
orescent In Situ Hybridization) method for chromosome identification [12], de-
termination of exon-intron boundaries in genes [7], probe selection for DNA
chips [14], and others. Thus, those applications provide a rich source for new
interesting developments of combinatorial search methods in future.
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