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Abstract

This paper studies four combinatorial search models of
reconstructing a fixed unknown Hamiltonian cycle in the
complete graph by means of queries about subgraphs. For
each model, an efficient algorithmis proposed that matches
asymptotically the information-theoretic lower bound. The
problem is motivated by an application to genome physical

mapping.

1. Introduction

1.1. Combinatorial Search

Combinatorial Search can be informally defined as de-
termining an unknown object of a certain class through in-
direct queries about this object. The goal of combinatorial
search is to identify the unknown object with as little cost
as possible. While the cost measure may vary, it is often
defined as the number of queries made by the search algo-
rithm. We refer to [1] for a systematic presentation of the
field.

Group Testing is probably the oldest and most well-
known subfield of combinatorial search. In group testing,
we are given a set of items some of which are “defective”.
We want to determine the defective items by making queries
about subsets of items. The typical allowed form of queries
is “does the subset contain a defective?”, but other types of
queries may be allowed (e.g. on the number of defectives
in the set). In [7], Du and Hwang survey numerous group
testing results. Interestingly, the first systematically treated
group testing problem was motivated by efficiently finding
the contaminated blood samples out of a large collection of

samples, using the possibility of pouring samples together
and testing the mixtures [6]. Another well-known example
of combinatorial search is to identify one or more counter-
feit coins in a set by weighing subsets of coins using scales
of some kind.

More general search problems can be expressed in terms
of graphs. The simplest instance of this class is a search
for an unknown edge in a given graph by testing subgraphs
induced by subsets of vertices. Another type of problem is
to reconstruct an unknown graph of a given class. Here the
allowed queries may be of the form “Does the edge (v1, v2)
belong to the graph?”’ or more generally, “Does the sub-
set of vertices {v1,..., v} contain pairs of adjacent ver-
tices?”, “How many?”, etc. It is this type of problem that
we consider in this paper. Finally, a related but different
type of search problems on graphs consists in checking if
an unknown graph verifies some property without actually
reconstructing the graph. We refer the reader to [1, 7] for an
account of known results on these classes of search prob-
lems.

In combinatorial search, it is important to distinguish
between adaptive (sequential) and non-adaptive (predeter-
mined) algorithms. In adaptive algorithms, a query essen-
tially depends on the results of queries made “so far”. In the
non-adaptive case, all the queries are mutually independent
and can be given before any answer is known. Although
non-adaptive algorithms are obviously less powerful in gen-
eral, they often admit “nicer” mathematical formulations
which allow to use more powerful mathematical methods.
Besides, in many cases (including some cases considered
in this paper) non-adaptive algorithms achieve the power of
adaptiveness, that is reach the lower bound. Note also that
in non-adaptive algorithms all queries can be made in paral-
lel, which is useful in many applications. In practice, an in-
termediate solution is often used: the algorithm performs a
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Figure 1. (a) Placement of contigs on a circular genome, (b) Placement of points on the circle (contigs
are assimilated to points), (c) Hamiltonian cycle in K'g corresponding to the order of points

preliminary “rough” selection in the non-adaptive way and
then finds a final result adaptively, or vice versa. Such an
approach, called two-stage, is used in [11] for example.

Combinatorial search problems occur in numerous appli-
cation areas, such as software engineering, industrial prod-
uct testing, multi-access communication, medicine, etc.
The problem we study in this paper has been motivated by
a problem of molecular biology that we shortly describe be-
low.

1.2. Biological motivation

Combinatorial search problems are often encountered in
genome analysis. A typical example is screening clone li-
braries by hybridization probes [2]. Here groups of clones
(possibly overlapping fragments of the DNA molecule),
called pools, can be tested with a probe, and the aim is
to determine the individual clones containing each probe
through the minimal number of tests. The problem of ef-
ficiently constructing a set of pools is studied in [2, 4, 11],
and [12] briefly surveys related theoretical results and men-
tions several other applications of combinatorial search in
genome analysis.

Combinatorial search problems, including the screen-
ing problem above, occur often in the process of physical
mapping. Physical mapping is the central stage in genome
exploration which basically consists in reconstructing the
relative positions of clones from some partial information
about them (typically, information about occurrences of
some short nucleotide sequences). We refer to [19] for more
information about physical mapping and related mathemat-
ical problems.

The results of this paper are motivated by a particular
scenario of physical mapping proposed in [18]. Its simpli-

fied description is as follows. Assume that we have identi-
fied, using some other methods, a certain number of groups
of overlapping clones, called contigs. Contigs don’t over-
lap and are located on the genome in some unknown order
(see Figure 1(a)). The problem is to reconstruct the mu-
tual placement of the contigs, that is their order and the
lengths of the gaps between them (physical map). The
tool for doing this is the multiplex LA PCR (Long Accu-
rate Polymerase Chain Reaction) hereafter called simply
experiment or reaction. Each clone is characterized by two
primers which are short nucleotide sequences that charac-
terize its ends (see [16]). An input to the experiment is a
set of primers of bounded cardinality (due to technological
restrictions). Whenever this set contains two primers corre-
sponding to the adjacent ends of neighboring contigs (like
primers A and B on Figure 1(a)), this is detected by the re-
action and the distance between them can be determined.
If there are several such pairs in the set, this fact can also
be detected, and several distances can be identified. This
method rises the following combinatorial question: what is
the optimal strategy of conducting experiments in order to
obtain the physical map using minimal number of them?

1.3. Problem formulation

In this paper we study the problem of combinatorial
search of a Hamiltonian cycle in the complete graph:

Let K, be the complete graph with vertices
{1,2,...,n}. Assume that some Hamiltonian
cycle HC' is fixed in K, that is not known to
us. We are allowed to make queries about adja-
cency of some vertices in HC'. Determine HC'
by making as few queries as possible.



Model lower bound algorithm type of algorithm
performance
first stage | second stage
multi-point model Q(nlogn) O(nlogn) adaptive
quantitative multi-point model Q(n) O(n) adaptive non-adaptive
k-point model Q(Z—j) (14 0(1)) Z—z non-adaptive adaptive
quantitative k-point model Q(Z—z) (14 0(1)) Z—z non-adaptive | non-adaptive

Figure 2. Result summary

Obviously, the solution and its complexity will strongly de-
pend on the type of queries we are allowed to make. Let
Ka,,. ) denote the complete graph on the set of vertices
{ai,...an,}. We study the following four query types that
lead to four different combinatorial search models:

Multi-vertex model For a set of vertices {ay, . .
Kia,,...a,,y N HC empty?

Sy @ )18

For a set of vertices
., @ }, what is the number of edges in Ky, 4,1 N

Quantitative multi-vertex model

far, .
HC?

k-vertex model Assume that a constant k is predefined.
For a set of vertices {a1,...,an}, where m < k, is
Kia,,...a,,y N HC empty?

Quantitative k-vertex model For a set of vertices
{ai,...,am}, where m < k, what is the number of edges
in Kig any NHC?

In the multi-vertex model we ask whether at least one
edge from a given set belongs to the Hamiltonian cycle.
However, this set has a special structure — we ask about the
edges of a complete subgraph. The multi-vertex model is
strengthened in the quantitative multi-vertex model. Now
we are allowed to count the number of edges of the Hamilto-
nian cycle in complete subgraphs. This is the most powerful
model. The k-vertex model and quantitative k-vertex model
are restriction of the multi-vertex model and quantitative
multi-vertex model respectively. These models are moti-
vated by practical constraints in biological experiments.

The k-vertex and quantitative k-vertex models are di-
rectly related to the physical mapping problem described
above. The problem can be formalized as the reconstruc-
tion of the order of points, placed on the circle, by means
of queries about the presence (or the number) of adjacent
pairs in a given subset of points (see Figure 1(b); we re-
fer to [8] for more details). Clearly, an order of n points
on the circle can be uniquely associated with a Hamiltonian
cycle in the complete undirected graph K, (we assume that

the direction on the circle is irrelevant). Figure 1(c) illus-
trates the Hamiltonian cycle corresponding to the order of
Figure 1(b).

1.4. Summary of the results

In this paper we study the complexity of each of the four
models above and design asymptotically optimal algorithms
for all of them. The complexity bounds are summarized in
Figure 2. The adaptive nature of the algorithm is indicated
in the last column. For two-stage algorithms, the type of
each stage is shown.

We also discuss the multiplicative constants hidden in
the O-notation, that are of course important for practical
applicability of the algorithms.

All the results hold for a more general problem — recon-
structing an unknown graph with the degree of all vertices
bounded by 2. Such a graph can be represented as a union
of paths and cycles without common vertices.

2. Multi-point model

There are (n — 1)!/2 Hamiltonian cycles in K, . By the
standard information-theoretic argument, the lower bound
log(n —1)!/2 = Q(nlogn) ! can be immediately ob-
tained. Note that the same lower bound holds for the av-
erage complexity since the average length of a branch in a
binary tree with (n — 1)!/2 leaves is in Q(n logn).

Suppose that only two points can be tested at a time, that
is each query tests whether or not an individual edge be-
longs to the Hamiltonian cycle. It is known (see [1, section
3.5, exercise 3.5.5]) that in this case at least n>/4 — n/2 —
1 = Q(n?) queries must be made in the worst case. In
our model, we are able to simultaneously ask about many
edges. However, this set of edges has a special structure —
it is a complete subgraph rather than any subgraph. Recall
that if a subset has been detected to contain adjacent ver-
tices, we have no information about what these vertices are.
Therefore, it is not immediately clear if we can benefit from
the possibility of testing many edges at once.

"Throughout the paper the logarithms are binary unless the base is in-
dicated.



In this section we show that the lower bound 2(n log n)
can be achieved. Below we propose an algorithm that
matches this bound.

Let HC be a Hamiltonian cycle and assume we have
already discovered some of its edges. These edges form a
set of disjoint paths that will be our main data structure.

Definition1 Let HC be a Hamiltonian cycle
in K. A chain ¢ is a sequence of vertices
< ay,...,ae >, t > 1, such thar vy, 1 < 7 <1 -1,
(a;,a;41) € HC. Note that one-vertex chains are allowed.
Fore =< ay,...,a; >, wheret > 2, define left(c) = ay,
right(c) = a;. For ¢ =< a1 >, left(c) = ay,
right(c) = 0. For a set of chains C = {e1,..., ¢4},

define left(C) = {left(c1),... left(ck)} and
right(C) = {right(c1),... ,right(ck)}. A set
of chains is independent if for every c;,c; € C,

the edges (left(c;),left(c;)), (left(e;), right(cy)),
(right(c;), right(c;)) don’t belong to HC'.

The following algorithm solves the problem.

RECONSTRUCT-MULTI(n, HC)

1 C:={<1>}

2 for::=2tondo

3 C' := INSERT-VERTEX(C, ¢)

The function INSERT-VERTEX(C,¢) inserts vertex ¢
into C' maintaining the independent set of chains. Clearly,
when all vertices have been processed, the set C' consists of
the Hamiltonian cycle H C'.

INSERT-VERTEX(C, 1)
query le ft(C) U {¢} and right(C) U {:}
if both answers are no
then add the one-vertex chain < z > to C'
if le ft(C) U {1} yields yes and right(C') U {} yields no
then find in le ft(C') one or two vertices adjacent to ¢
if one such vertex is found
then append : to the corresponding chain
if two such vertices af , a5 are found

O 0 3 N N kAW =

then replace the chains < ai, ... ,a} >,
<af,...,ayu > by the chain
<ay,...,ay,6a), . ah >
10 if right(C) U {i} yields yes and le ft(C') U {1} yields no
11 then proceed symmetrically to the previous case
12 if both le ft(C) U {¢} and right(C) U {7} yields yes
13 then find in le ft(C') a vertex a) adjacent to ¢
14 find in right(C') a vertex a7, adjacent to ¢
15 replace the chains < a, ... ,a} >,
< af,...,a} > by the chain
<af,...,af i,al, ... a4y >
16 return ¢

It remains to estimate the number of queries of steps
5 and 13-14. By simple binary search, step 5 can be
done in [2logn] queries. Similarly, steps 13, 14 can be
done in [logn] each. Thus, INSERT-VERTEX(C| i) makes
at most [2 + 2logn] queries and the whole algorithm
RECONSTRUCT-MULTI(n, HC') makes [(2 + 2logn)n]| =
O(nlogn) queries which matches the lower bound.

3. Quantitative multi-point model

This model extends the multi-point model by the possi-
bility of counting in a query set the number of pairs of ver-
tices adjacent in H C'. The first observation is that this fea-
ture decreases the information-theoretic lower bound. Since
each query has potentially n + 1 distinct answers, at least
log, .1 (n — 1)!/2 = Q(n) queries must be made by any al-
gorithm. In this section we prove that (surprisingly enough)
this bound can be achieved and propose an algorithm that
matches this bound.

The algorithm has two main stages:

RECONSTRUCT-QUANTITATIVE(n, HC')

1 split the set of vertices {1, ... ,n} into three disjoint
subsets such that any two vertices from the same
subset are not adjacentin HC'

2 find all edges of H C' between the subsets

The first stage is easy to accomplish in O(n) queries:

SPLIT(n, HC)

1 initialize three empty sets S1, .52, S

2 for::=2tondo

3 if querying 51 U {s} yields no

4 then add: to S;

5 elseif querying S> U {:} yields no
6 then add: to S

7 else add s to Ss

Clearly, SPLIT(n, HC') makes at most 2n queries.

The second stage deals with three bipartite graphs
formed by the edges of HC' between the vertices of each
of the three subsets. Consider such a graph. It is a bipar-
tite graph in which the degrees of vertices have the values
{0,1,2}. The problem now is to reconstruct this graph by
querying its subgraphs, where the output of a query is the
number of edges in the subgraph.

Let C, C'; be the two independent vertex sets of the bi-
partite graph, each of size n. As the first step, consider the
problem of determining the degree of each vertex in C by
querying different subsets of C; together with the whole set
C'5. This can be trivially done in O(n) steps by querying,
for each i € 'y, the set {i} U C and getting immediately
the degree of 7. However, it is possible to do better.



The problem can be again reformulated as follows: Re-
construct an unknown vector (ai,...,ay), where a; €
{0, 1,2}, by means of querying, for a set of indices I =
{in, .oyt C{L,... n}, forthesum ) . a;.

Consider the problem above where a; € {0, 1}. For this
case, a solution was proposed by Lindstrom [14]. Given n,
ak x n {0, 1}-matrix A is called a detecting matrix for the
set of {0, 1}-vectors of length n, if for any two such vectors
v1,v2, 11 # ve implies Avy # Awvs. In other terms, the
sums of two different subsets of columns of A are differ-
ent. Associating columns to positions and interpreting rows
as incidence vectors of queries, such a matrix provides a
non-adaptive algorithm for the vector reconstruction prob-
lem with a; € {0, 1}, that makes & queries.

Theorem 1 (Lindstrom [14]) A detecting k x n matrix for
the set of {0, 1 }-vectors can be effectively constructed with
k = 2n/logn asymptotically.

Note that the algorithm provided by theorem 1 meets
the information-theoretic lower bound Q(n/logn), which
is easily obtained from the equality (n + 1)* > 2" relating
the number of different column sums and different vectors.

For the case when a; € {0, 1,2}, we obtained the fol-
lowing extension of the Lindstrom’s method.

Theorem 2 A detecting k x n matrix for the set of vectors
with elements {0, 1,2} can be effectively constructed with
k = 4n/logn asymptotically.

The theorem is a consequence of a more general result
that can be found in the full version of this paper [8].

Let us turn back to the bipartite graph problem. As the
second step, consider the following problem: Given a ver-
tex ¢ € (1, find its adjacent vertices (at most two) in C'y
by querying subsets of C's. The simplest way to do it (see
also Section 2) is to find the two vertices in 2 log n tests us-
ing binary search. However, the binary search is a strongly
adaptive method, and for the reason that will become clear
in a moment, we need a non-adaptive algorithm.

Note that this problem is closely related to the problem
of determining two counterfeit coins in a set of n coins (see
[10]). In our case, two counterfeit coins should be identified
in a non-adaptive manner and querying a subset yields the
number (0,1 or 2) of counterfeit coins in it (“spring scale
model”). Giving such a non-adaptive algorithm amounts to
constructing a k x n {0, 1}-matrix such that the sums of two
different pairs of columns are all different. Let us call such
a matrix a 2-separation k x n matrix. The following result
is from [13].

Theorem 3 ([13]) A 2-separation k xn matrix can be effec-
tively constructed with the asymptotic value of k = 2logn.

A proof, different from that of [13], can be found in the
full version [8]. Note that although Theorem 3 provides the
same bound as the naive binary search method, its proof is
non-trivial since the non-adaptiveness is a serious restriction
here. For comparison, the optimal adaptive algorithm for
finding two “defective objects” in the model with counting
was proved to make C'logn queries, where 1.26 < C' <
1.44 ([10]).

Now we are in position to give an efficient algorithm
for the bipartite graph problem that combines the two non-
adaptive algorithms above.

Consider the non-adaptive algorithm based on Theo-
rem 3 for finding the two adjacent vertices in C; for a
given vertex ¢ € (1. This algorithm is simply a collection
of subsets Py,..., P, C (% such that the numbers of
adjacent vertices of ¢ in Py, ..., Py identify uniquely the
two adjacent vertices of ¢ in C. Since P;’s don’t depend
on ¢, we will ask about each P; for all ¢ € C'; “at once” by
applying the detecting matrix of Theorem 2.

RECONSTRUCT-BIPARTITE(C1, C2)

1 for j:=1to kdo

2 apply the detecting matrix to find, for each ¢ € C',
the number of adjacent vertices in P;

Clearly, after the whole run of
RECONSTRUCT-BIPARTITE (C1,C;)  the number of
adjacent vertices of each ¢ € C in each P; will be known,
and therefore the adjacent vertices themselves can be de-
termined. We conclude that RECONSTRUCT-BIPARTITE re-
constructs a bipartite graph with n vertices in each compo-
nent asymptotically in (2logn)(4n/logn) = & = O(n)
queries.

Turning back to algorithm
RECONSTRUCT-QUANTITIVE, solving the initial Hamil-
tonian cycle reconstruction problem, we summarize the
complexity in the following final theorem.

Theorem 4 Reconstructing a Hamiltonian cycle in the
quantitative multi-point model can be done in O(n) queries.

Proof: Consider the
RECONSTRUCT-QUANTITIVE. The first step (algo-
rithm SPLIT) requires 2n queries. Note that the size
of each independent set is at most n/2. The second
step can be done by three applications of algorithm
RECONSTRUCT-BIPARTITE. The overall query complexity
is2n+3-8n/2 = 14n = O(n). O

algorithm

4. k-point and quantitative k£-point models

In some applications, only a limited number of vertices
can be tested. The biological method described in [18] re-



stricts this number to 16, as reactions with a bigger number
of primers don’t give reliable outputs. In terms of our math-
ematical model, the number of vertices that we can test is
bounded by some predefined constant. This restriction can-
not be captured by the methods of Sections 2 and 3, as they
essentially require at some stages an unbounded number of
vertices. This motivates the k-point and the quantitative
k-point models, that are restrictions of the multi-point and
quantitative multi-point models respectively.

First observe that each experiment with & vertices can
be simulated by @ experiments with 2 vertices. Since
the lower bound for the 2-point model is asymptotically
n(n — 2)/4 (see Section 2), any algorithm that solves the
problem in the restricted models makes at least ;k(&__zl))
queries. Therefore, the focus of this section is to reduce the
multiplicative constant in the quadratic complexity bound.

For both models, we propose an algorithm which makes
ZEZ:B(I + o(1)) queries, which is twice more than the
above lower bound. Note that this complexity is the best
we could expect, since for the 2-point model, no essentially
better algorithm than querying all the n(n — 1)/2 edges is
presently known.

The central idea is to cover K, by subgraphs
G1,...,Gyr, where each G is a complete graph K,,,
m < k, such that every edge (7, j) of K, belongs to only
one (7;. Assume that such a covering is constructed. By
querying each (G;, we find at most n of them which contain
edges of the Hamiltonian cycle HC'. In each such G;, we
can identify the edges of H C using the technique developed
in the previous sections. (Of course, G; N H C' does not form
a Hamiltonian cycle of (;, but the results of Sections 2 and
3 still apply to such graphs as it was noted in Section 1.4.)
Processing one (5; then requires O(k log k) queries for the
k-point model (Section 2) and O(k) for the quantitative k-
point model (Section 3), and the overall complexity of the
method is respectively M + O(nklog k) and M + O(nk).
Thus, the main problem is to minimize M , that is to cover
the graph K, by a minimal number of complete graphs i,
m < k, such that every edge of K, occurs in only one of
them. In the rest of the Section we describe how it can be
done.

The problems of arranging objects from some set into
some number of (intersecting) subsets of a given size such
that each object and each pair of objects occur in a spec-
ified number of subsets is a well-established area in com-
binatorics called Design theory or Block design (see e.g.
[9, 3, 5]). However, most of these results give existence
conditions for arrangements and don’t give algorithms for
their construction. Furthermore, the subsets are usually re-
quired to have one or several specified cardinalities. These
requirements are too strong for our purpose, as we allow
subgraphs of any size smaller than 4 and we look for an
algorithm approximating the minimal number of subgraphs

and not for an exact solution.

Another link that should be mentioned here is the Theo-
rem of Rodl [17] that insures that one can find an asymptot-
ically optimal coverage. However, we need stronger prop-
erties — the construction should be “efficient” and should
guarantee that no edge is covered many times.

We present below an algorithmic solution to this prob-
lem. This solution is related to classical Design Theory re-
sults (see methods of Affine Block Design in [3]), but we
will not discuss this relationship here. Instead, we present
it in a self-contained way and focus on algorithmic aspects
and complexity analysis.

Lemma 1 Consider the complete graph K,,. Let n > k*
and assume that the set of vertices V.= {1,... n} is di-
vided into k disjoint subsets Si,...,Sk of n/k elements
each. If n/k = p® is a prime power, then (n/k)* sub-
graphs Ky can be effectively constructed such that every
edge between S; and S;, i £ j, occurs in exactly one of the
subgraphs.

Proof: Consider a k x n/k table A° where the elements
of S; are placed (in any order) in row . Consider the
Galois field GF (p®) and let us view the elements of each
row as distinct elements of GIF (p®). With each row i we
associate a “speed” v; € GF (p®) such that all speeds are
different (this is possible as ¥ < n/k). Now construct a
sequence of k x n/k tables A', A? ... A?/*~' according
to the following formula: A'(i,j) = A%(i,j + v; * t),
1<t <n/k—1,where + and * are addition and multipli-
cation in GF (n/k) (¢, j and t are also naturally regarded as
elements of GIF (n/k)). Intuitively, at each step ¢ each row
is “rotated” by v;. We claim that for every two elements
z € Si,,y € Si,, 11 # ia, there is exactly one column
in A°, A' ... A"/k=1 containing both # and y. Indeed,
since v;, # v;,, the equation j; + v;, x £ = ja + v;, * ¢
has exactly one solutiont = (j1 — ja) * (vi, — v;;)”" in
GF (n/k). This shows that if there are two such columns,
they must belong to the same A!. However, in each A‘
there is only one column containing  in row ¢; . a

The proof gives an effective procedure of constructing
the subgraphs K. If n/k is not a prime power, we can
extend the set V' of vertices by dummy vertices V'’ such that
(IV]+|V'])/k is a prime power, and apply the construction.
Thus, the following corollary holds.

Corollary 1 Under the conditions of Lemma 1, if r = p*
is a prime power greater than n [k, then v subgraphs K,
m < k can be effectively constructed such that every edge
between S; and S;, i # j, occurs in exactly one subgraph.

To cover the whole graph, we apply the construction
recursively to each subset .S;. This leads to the following



algorithm.

COVER(Kn, k)

1 if n > k? then
2 find the smallest number ¢ > n such that
q/k is a prime power
3 divide the n vertices into & disjoint subsets
Sty Sk
4 by applying Corollary 1 find (¢/k)? subgraphs K.,

m < k covering each edge between distinct
subsets .S; and S; exactly once

5 forj:=1tok

6 COVER(|S;], k)

7 elseif k < n < k? then

8 find the smallest number ¢ > k? such that q/k is
a prime power

9 proceed as in the previous case

10 elseif n < k then

11 output &,

To estimate the total number M of subgraphs i, , we need
an estimate of the smallest prime power greater than n.
From Number Theory results on the distribution of primes
the asymptotic bound nextp(n) —n < n2 is known (see
e.g. [15]), where nextp(n) = min{p isprime|p > n}.
Let M = f(n,k) be the total number the subgraphs
constructed by COVER(n, k). Then

| ifn <k
nextp(k)? + k itk <n<k?
nextp(%)? +kx f(%, k) ifn >k

f(n, k)=

As n — oo, we consider only the last case.

Zk: pi=1 (kﬁ (kl)n/zo)2
=D o)

Since the overall query complexity of the method is
f(n, k) + O(nklog k) for the k-point model and f(n, k) +
O(nk) for the quantitative k-point model, we obtain the fi-
nal result.

Theorem 5 Reconstructing a Hamiltonian cycle in the k-

point model can be done in ZE ))(1 + o(1)) queries.

5. Concluding remarks

We have studied four combinatorial search models for re-
constructing an unknown Hamiltonian cycle in the complete
graph. For the multi-point model, a simple algorithm has

been proposed which makes at most 27 log n queries while
nlogn queries is the information-theoretic lower bound.
The Quantitative multi-point model introduces the possibil-
ity of counting the number of pairs of adjacent vertices in a
set. For this model, an algorithm of linear complexity has
been described which is asymptotically the best possible.
Finally, we considered the k-point and quantitative k-point
models that take into account an important practical restric-
tion — a bound on the size of tested subgraphs. For these
models, the algorithms with complexity ZEZ:B (14 o(1))
have been proposed, which is the best we could expect. The
key of the method is Lemma 1 that gives an efficient algo-
rithm for covering a complete graph /,, by “small” com-
plete graphs K,,, m < k, such that every edge of K,, oc-
curs in exactly one small graph. All the results stay valid
for the problem of reconstructing an unknown graph with
the degree of all vertices bounded by 2.

The algorithm for the k-point model has been imple-
mented in MAPLE and some “realistic” computational ex-
periments have been made (up to n ~ 2000). The results
showed, in addition, that the algorithm adapts well to some
other practical constraints arising in particular in the physi-
cal mapping application described in Section 1.2.
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