Some Results on Top-context-free
Tree Languages

Dieter Hofbauer! * Maria Huber? ** Gregory Kucherov?

! Technische Universitdt Berlin, Franklinstrafie 28/29, FR 6-2
D - 10587 Berlin, Germany, e-mail: dieter@cs.tu-berlin.de
2 CRIN & INRIA-Lorraine, 615, rue du Jardin Botanique
54602 Villers-lés-Nancy, France, e-mail: {huber,kucherov}@loria.fr

Abstract. Top-context-free tree languages (called corégulier by Arnold
and Dauchet [1, 2]) constitute a natural subclass of context-free tree
languages. In this paper, we give further evidence for the importance
of this class by exhibiting certain closure properties. We systematically
treat closure under the operations replacementand substitution as well as
under the corresponding iteration operations. Several other well-known
language classes are considered as well. Furthermore, various characteri-
zations of the regular top-context-free languages are given, among others
by means of restricted regular expressions.

1 Introduction

This paper is motivated by our previous work on tree languages related to term-
rewriting systems [11, 7, 10]. Tt is well-known that for a left-linear term-rewriting
system R, the set Red(R) of ground terms reducible by R is a regular tree lan-
guage. Conversely, if Red(R) is regular, then R can effectively be “linearized”,
il.e., a finite language can be substituted for its non-linear variables without
changing the set of reducible ground terms [7, 10, 14]. However, little is known
about conditions on which Red(R) is context-free. Here again, non-linear vari-
ables play a crucial role.

This motivation led us to study the class of top-contexi-free languages, which
turned out to be of special importance. Top-context-free tree languages are lan-
guages generated by context-free tree grammars in which right-hand sides of
production rules contain non-terminal symbols, if at all, only at the top posi-
tion. This class has been studied by Arnold and Dauchet [1, 2] who proved in
particular the following result.

Theorem 1 The language L = {f(¢t,t)|t € L'} is context-free iff L' is top-
context-free iff L itself is top-context-free.

The theorem remains true if “context-free” and “top-context-free” are re-
placed by “regular” and “finite” respectively. We conjecture that this analogy

* Partially supported by a post-doc grant of the M.E.N.
** Supported by the M.E.S.R.

can also be drawn for the language Red(R) mentioned above: It is context-free iff
a top-context-free language can be substituted for the non-linear variables in R
without changing the set of reducible ground terms. This paper is devoted to the
study of some related topics that could serve as a basis for further investigations.

The class of top-context-free languages is in a sense orthogonal to that of
regular languages. Though these two classes intersect, there are very simple lan-
guages that are top-context-free but not regular and vice versa. For example, the
language {f(g°(a), g'(a))|i > 0} is top-context-free but not regular. Conversely,
Arnold and Dauchet showed that the language of all terms over a signature of
one binary and one constant symbol is not top-context-free. In order to obtain a
criterion that a language is not top-context-free we, more generally, prove that
every top-context-free language is slim, a simple syntactic property.

We further study the class of languages that are both top-context-free and
regular. We propose a number of equivalent characterizations of this class in
terms of grammars (linear top-context-free, non-branching regular), linear reg-
ular expressions, and more syntactic properties (slim, passable, polynomially
size-bounded).

Closure properties play an important role in all branches of formal language
theory. A detailed analysis of closure properties for the class of regular tree lan-
guages can be found in [6]. In this paper we continue this topic, analyzing closure
of different classes under the operations replacement, substitution, and their it-
erations. Replacement and substitution, considered also in [5], are two possible
extentions of the string product to the tree case. In contrast to replacement, sub-
stitution replaces equal symbols by equal terms. We make an exhaustive study
of closure properties under these operations for six classes of tree languages:
finite, regular, linear top-context-free, top-context-free, linear context-free, and
context-free.

2 Notations

We assume the reader to be familiar with basic definitions in term rewriting [4]
and formal language theory [9, 6]. A signature X is a finite set of function symbols
of fixed arity; for n > 0, X, denotes the set of symbols in X of arity n. Tz(X)
is the set of (finite) terms over X and a set of variables X. The set of ground
terms, i.e., terms without variables, over X is denoted by Tx. For t € Tx(X),
Pos(t) is the set of positions in ¢, defined in the usual way as sequences of natural
numbers. We write p < ¢ if p is a prefix of ¢. The subterm of ¢ at position p
is t|p. For p € Pos(t), t|, is a principal subterm of ¢ if |p| = 1, and it is a
proper subterm of ¢ if |p| > 1. Here, |p| denotes the length of p. The depth of
tis [t| = max{|p| |p € Pos(1)}, its size is size(t) = [Pos(t)|. If t' is a subterm
of t, then ¢ can be written as ¢[t'] where ¢[] is a context. A context is called
Y-context in case it contains only symbols from .

A variable z is said to be linear in ¢ if there is only one position p € Pos(?)
such that t|, = z, and is said to be non-linear in ¢ otherwise. A term is linear if
all its variables are linear and is non-linear otherwise.

If unambiguous, we sometimes prefer vector notation to “three dots nota-
tion”. For example, f(f) abbreviates f(t1,...,t,) (n and ¢; will be clear from
the context), and f(#) stands for f(x1,...,2y). For f € Xy and Ly,..., L, C Tz
let f(L1,...,Ln) = {f(t1,. -y tn) |t1 € L1,...,tn € Ly}. The cardinality of a
finite (multi-)set S is denoted by |S|.

3 Context-free languages, Replacement, and Substitution

Definition 2 A context-free tree grammar G = (N, 2, P, S) consists of disjoint
signatures N (nonterminals) and X (terminals), « finite rewrite system P over
NUZX, and a distinct constant symbol S € Ny (initial symbol); all rules in P
are of the form

Alxy, ... zn) = 1

where A € Ny, n > 0, @1,...,2, are pairwise different variables, and t €

Tvus({z1, ..., 20}).

— G 15 said to be regular if N contains only constant symbols.

— (G 15 said to be top-context-free if all proper subterms of right-hand sides of
rules are in Ty ({x1,...,20}).

— G 15 said to be linear if all right-hand sides of rules in P are linear.

The language generated by a grammar G = (N, X, P, 5) is
L(G)={teTs|S =pt}.

A language L C Tz is called (linear) context-free (regular, ...) if there is a
(linear) context-free (regular, ...) grammar generating L. For A € N,, we also
use the more general notation

LG, A(x1, ... 20)) ={t € To(X) | A(z1,...,2n) 5P t}.

Thus £(G) = L(G, S).

FiN (REG, LINTorPCF, TorPCF, LINCF, CF) will denote the class of finite
(regular, linear top-context-free, top-context-free, linear context-free, context-
free) languages. By definition we have the inclusions FIN € REc C LINCF C CF,
Fin C LinTopCr C TorCr C CF and LINTorPCF C LINCF. All inclusions are
proper and both LINTopPCF and TopPCF are incomparable with REG.

Top-context-free languages were studied by Arnold and Dauchet [1, 2] under

the name of langages coréguliers. In [1] they showed that ToPCF coincides with
the class of languages obtained by deterministic top-down tree transformations
on monadic regular languages. It can even be shown that it is sufficient to con-
sider a single monadic language, e.g., 7g,1,5} where 0 and 1 are symbols of arity
1 and A is a constant symbol.
Regular tree languages have been extensively studied, e.g., in [6]. For context-
free tree languages see, e.g., [12]. Several normal forms have been defined for
regular and context-free grammars. In this paper we will use the fact that for
each grammar there is a reduced grammar of the same type, generating the same
language. A grammar is said to be reduced if all nonterminals A in N,, n > 0,
are

— reachable, i.e., S =% c[A(t1,...,ty)] for some term c[A(t1,...,tn)] € Tzun,
and

— productive, i.e., L(G, A(z1, ..., x,)) # 0.

It is well-known that such a normal form always exists. For top-context free
grammars we will use another normal form. We call a context-free grammar
slow if all right-hand sides of its rules contain exactly one X-symbol. Thus, slow
top-context-free grammars contain only rules of the form

A(xla"'axn)%f(yla"'aym)
Ay, .. mn) = Blzr, oo flyn, oy ¥m)y -+ 28),

where BE N, k> 1, fe€ X0, m>0,{v1,-. ,YUm,21,---, 26} C{@1,..., 25}
Whereas not all context-free languages can be generated by slow grammars (for
an example see [3], exercise 17), for each (linear) top-context-free language there
is a slow reduced (linear) top-context-free grammar generating this language. A
proof can be found in [8].

The operations c-replacement and c-substitution constitute two different ways
of “replacing” a constant ¢ in all terms of a language L by terms of a language
L'. The c-substitution operation substitutes all occurrences of ¢ in a term of L
by the same term of L’. When applying the c-replacement operation, all ¢’s in
terms of L are replaced independently by possibly different terms of L’. Thus the
c-substitution corresponds to the usual substitution, if ¢ is treated as a variable.
The c-replacement corresponds to a substitution, where all ¢’s are considered as
different (linear) variables. In [5] e-replacement and c-substitution are called OI-
and [O-substitution respectively.

Definition 3 For languages L, L' and a constant symbol ¢, the c-replacement
of L'into L is L-. L' =, t-c L', wheret- L' is defined by (for n > 0)

L if f=c
T)
Fltr, - tn) el = { ft1-cL s .ty L) otherwise.
The c-substitution of L' into L is Lo L' = Uyer Upepi{toct’}, where tot" is
defined by (forn > 0)

t ff=c
;o ?
[t tn)ot’ = { Fltroct! .. thoct’) otherwise.

When c is clear from the context or arbitrary, we will not mention it. Given
classes of languages C and C’, C is said to be closed under replacement (substi-
tution) by C',if L-.L' € C (Lo.L' € C respectively) holds for all L € C, L' € C'
and all constant symbols ¢. We will also write C-C" C € (CoC" C C). C is said
to be closed under replacement (substitution) if it is closed under replacement
(substitution) by C (cf. Gécseg and Steinby [6], TT1.3.6 and 11.4.3).

The replacement and the substitution operations for tree languages give rise
to two types of star operations, the replacement iteration and the substitution

iteration. For a language L and a constant ¢, the c-replacement iteration is de-
fined by L*e =, Ln, where

Lo =A{c} and Lpy1 = Lp-o(L U {c}).
The c-substitution iteration is defined by L =+, L°°, where
Lo={c} and L,41 = Lpo.L

The e-replacement iteration (called e-iteration in [6]) generalizes the star oper-
ation for word languages to trees. Given a class C of languages, C is said to be
closed under replacement iteration (substitution iteration), if L*e € C (L% € C
respectively) holds for all L € C and all constant symbols c¢. We will also write
C*CC(C°CO).

4 Top-context-free Languages Are Slim

In this section we give a a criterion for showing that certain languages are not
top-context-free. It can be seen as a generalization of a proof method used by
Arnold and Dauchet in [1]. We prove that every top-context-free language is
slim. Intuitively, a term is slim if it can be “decomposed” in a top-down way
such that at each intermediate step only a bounded number of different subterms
occur. If there is such a bound, uniform for all terms in the language, then the
language is said to be slim. Formally:

Definition 4 (slim) A decomposition of t € Ty is a finile sequence Dy, ..., Dy
of subsets of Ty, where Do = {t}, Dy = 0, and for all i, 0 < i < m, there is
some term f(t1,...,tp) € D;, n >0, such that

Divi = (D\{f(tr, . t)) ULt).

t is k-slim for k € IN if t has a decomposition Dy, ..., Dy, where |D;| < k for
alli, 0 <i<m. A language s k-slim «f it contains only k-slim terms; it s said
to be shim if 1t is k-slim for some k.

ExaMPLE 5. All terms f(a, f(a, ... f(a,a)...)) are 2-slim. The same is true,
more generally, for all terms f(g"1 (a), f(¢'2(a), ... f(g'™ (a),a)...))), i; € IN.

EXAMPLE 6. Definetq = a, t,41 = f(¢;,1;). Thesequence {t;}, {ti—1}, ..., {to}, 0
1s a decomposition of ¢;, therefore ¢; is 1-slim.

Note that every subterm of a k-slim term is also k-slim. Note also that all
languages over a signature containing only symbols of arity at most one are 1-
slim. Hence there are slim languages which are not top-context-free — not even
recursively enumerable.

Lemma 7 Top-contexrt-free languages are slim.

Proof. Let G = (N, X, P,S) be a slow top-context-free grammar and let & be
the maximal arity of symbols in N U X. We will show that £(G) is k-slim.
Consider a derivation S =ty —p ... 5p t,, = of a term t € Tx. Define sets
D;, 1 <i<m,by Dy = {tm}, Dm_1 = {s|s a principal subterm of ¢, }, and,
for 0 < i< m,

(DZ N ({yl,}/’ sy yp"y} \ {f(zla .. azq)"y})) U {217a RS Zq'}/}
D, = iff(zl,...,zq)'yEDi,
D; else.

where t;_1 = [y and ¢; = rv for a rule

l=A(z1,...,2n) > Blyr, ..., flz1, ..., 29), -y yp) =7

from P. If now in the sequence D,,, ..., Dy repetitions of sets are eliminated we
obtain a decomposition of ¢. Clearly |D;| < k, thus ¢ is k-slim. a

The next — somewhat technical — lemma gives sufficient conditions for a
term to be not k-slim. Define By, = Pos(ty), ¢, from example 6, and by, = {p €
By | |p] = k}. An injective function h : By — D is a (homeomorphic) embedding
from By into a tree domain D, if different edges in B — seen as a directed
graph — map to disjoint paths in D. Note that h(By) is uniquely determined by
h(bx) € D.

Lemma 8 Lett € Ty and h: By — Pos(t) be an embedding. Suppose t|, # t|7
for allp,p € h(by) and all q,q with ¢ <p, ¢ < p, ¢ # q. Then t is not k-slim.

We conclude this section with some immediate corollaries to lemma 8. Let us
mention, however, the limitations of this simple criterion. The term
h(h(a,b,c), h(b,c,a), h(c,a,b)), e.g., is not 4-slim, but this is not provable us-
ing lemma 8.

EXAMPLE 9. The language Ty of all ground terms over signature X' is not slim
if, and only if, X, # @ for some n > 2, and Xy # §. Clearly terms built up
using only unary symbols and constants are 1-slim, also the empty set is slim.
Conversely, given a symbol h € X, n > 2, and a € Xy, for each k there are
terms which are not k-slim. Define terms ¢[7, j] inductively by

t[0,0] = h(a,a,...),
[0, 7 + 1] = h(a,t[0,7], .. .),
tli+ 1, 5] = h(t[4, 24], [, 25+ 1],...)

where ... is filled with a’s. Now ¢[k, 0] is not k-slim by lemma 8 using an embed-

ding where h(b;) = {1,2}*.

Corollary 10 7Ty is top-context-free iff X0 contains only symbols of arity at most
one or no constant symbol.

This is obvious from example 9 and the fact that, in case X has only symbols
of arity at most one, Ty is generated by the top-context-free grammar

S — A(c) for all constant symbols ¢ € X,
A(x) = A(f(z)) for all unary symbols f € X,
Alz) - x.

By a simple generalization of example 9 we can prove the following lemma
which will be used in the next section.

Definition 11 (branching) A regular grammar G = (N, X, P, S) is said to be
branching if A =% ¢[A, A] for some A € N and some term c[A, A] € Tnuz
containing A at more than one occurrence. Otherwise G is non-branching.

Lemma 12 IfG is a branching reduced regular grammar, then L(G) is not slim,
hence not top-context-free.

5 Regular Top-context-free Languages

In this section we study the class of languages that are both regular and top-
context-free.

5.1 Linear Top-context-free Languages

For strings, a right-regular grammar (rules of the form A — wB) can always be
transformed into an equivalent left-regular one (rules of the form A — Bw), and
vice versa. When regarding string grammars as tree grammars — map letters to
unary function symbols — this means transforming a regular tree grammar into
an equivalent top-context-free tree grammar and vice versa. This is not possible
in general. The following lemma, however, allows to go from regular grammars
to (linear) top-context-free ones and vice versa under additional assumptions.

Lemma 13 For a language L the following statements are equivalent:

(1) L is generated by a regular grammar where no right-hand side of a rule
contains more than one nonterminal

(2) L is generated by a linear top-context-free grammar where each nonterminal
has arity at most one.

(3) L is generated by a top-context-free grammar where the right-hand side of
every rule contains at most one variable position.

Using lemma 13 we prove now the converse to lemma 12.

Lemma 14 A language generated by a non-branching regular grammar ts linear
top-context-free.

Proof. Let G = (N, X, P,S) be a non-branching regular grammar that we sup-
pose to be reduced. We will show that £(G) is linear top-context-free by induc-
tion on |N|. Clearly for N = {S}, £(G) is linear top-context-free by lemma 13.
For |N| > 1 we define

N' ={4A€ N | A—} c[S] for some context c[]},

N'=N\N', P'=Pn{A—=t|AcN'}, and ¢/ = (N', S UN", P',5).

First observe that £(G') is linear top-context-free by lemma 13. Indeed, sup-
pose A — ¢[B, B’] is a rule in P’ where B, B’ € N’ occur at different positions
in the term ¢[B, B’]. Then by definition of N’ and since G is reduced, we have

S =% alA] —=p ale[B, B']] =5 alc[b[S], b'[ST]]

for some contexts af], b[], b'[], contradicting the assumption that G is non-
branching.

For A € N" define G4 = (N4, X, Py, A) where Ny = {B € N | A =} ¢[B]
for some context ¢[]} and Py = PN{B —¢|B € N4}. Note that Ny C N and
that G4 is reduced and non-branching. From S & N" we get |[Na| < |N"| < |N]|,
thus by induction hypothesis, £(G4) is linear top-context-free.

Let N” ={A1,..., Ap}. As is easily seen, L(G4,) = L(G, A;) for 1 <i<n

and

L(G) = L(G") 4, L(Gay)...oa, L(Ga,).
Since £L(G') as well as £L(Ga4,),...,L(G4,) are linear top-context-free, £(G) is

linear top-context-free, too, by lemma 23. a

We conclude this section with a criterion allowing to prove that certain lan-
guages are not linear top-context-free. In close analogy to the result that every
top-context-free language is slim, we will show that every linear top-context-
free language is passable, a notion defined by K. Salomaa [13]. The definition
of “k-passable” 1s just the definition of “k-slim” if sets are treated as multisets.
Salomaa also showed that passability of a language implies a uniform polynomial
size-bound, 1.e., the size of terms in the language is polynomially bounded by
their depth.

Definition 15 (passable) A multi-decomposition oft € Ty is a finile sequence
Dy, ..., Dy of multisets over Ty where Dy = {t}, D, = 0, and for all i, 0 <
i < m, there is some term f(t1,...,1y) € D;, n >0, such that

Dig1 = (D \ {f(t1, ... t) DU Lts, ... tn}

where all sets and operations are interpreted as multisets and multiset operations.
t is k-passable for k € N, if t has a multi-decomposition Dy, ..., D, where
|Di| < k for all i, 0 < i < m. A language is k-passable if it conlains only
k-passable terms; it is said to be passable if it is k-passable for some k.

Salomaa [13] defines k-passability in a slightly different way — using tree
automata — which, however, 1s easily seen to be equivalent to the definition
given above. Note that only the empty set is 0-passable.

Let us call a language L polynomially size-bounded if there 1s a polynomial p
over IN with one argument such that size(t) < p(Jt|) for all t € L. Lemma 3.2 in
[13] states that size(t) < k - |t|" + 1 for all ¢ € L, provided that L is k-passable.
Together with the following result this can be used to prove that a language is
not linear top-context-free.

Lemma 16 Linear top-context-free languages are passable.

Proof. Let GG be alinear top-context-free grammar where nonterminals have arity
at most k; without loss of generality we assume that GG is slow. A straightforward
induction on the length of a derivation then shows that £(G) is max{l,k}-
passable. a

ExAMPLE 17. The top-context-free language L = {t; | k > 0} from example 6 is
not linear top-context-free, since it is not polynomially size-bounded.

5.2 Linear Regular Expressions

The class REG of regular languages is closed under replacement and replacement
iteration. Moreover, according to Kleene’s theorem for tree languages, REG is
the smallest class containing all finite sets and closed under union, replacement
and replacement iteration (cf [6]). In other words, every regular language can
be represented by a regular expression, constructed from finite sets by using
union, replacement and replacement iteration. On the other hand, REG 1s not
closed under substitution and substitution iteration (cf section 6). The situation
is inverse for top-context-free languages. We will show in section 6 that this class
is closed under substitution and substitution iteration and is not closed under
replacement and replacement iteration.

Nevertheless, the subclass of top-context-free languages which are also regular
can be represented by regular expressions with restricted use of replacement and
replacement iteration.

Definition 18 Let o ¢ X be a new constant symbol. We inductively define a
set of linear regular expressions &, an auziliary set of contextual linear regular
expressions C&, and the language L(e) C Tz (L(e) C Tou{a} resp.) represented
by e € & (e € CE resp.) as follows:

— for every a € Xy: a € E; L(a) = {a}; a € CE; L(a) = {a}.

— for every f € Dy i ifer,...en €E, then fler,...,en) €E;
ife€CE, and 1 <i<mn, then fler,...,€i_1,€,€i11,...,€n) € CE;
in either case L(f(e1,...,en)) = f(L(e1),...,L(en)).

— ifel,en EE, theneyUey €E; ifer,ea € CE, then e Ues € CE;
in either case L(e; Ues) = L(e1) U L(ez).

— ifey,es €CE, then ey-qes € CE, and e1*> € CE;
£(61~a62) = ,C(@l)'aﬁ(ez); [,(61*") = ﬁ(@l)*a.
—ifecCE ec&, theneqe €& L(ewe) = L(€)L(e).

Obviously, for every e € £ UCE, L(e) is a regular language, since e is a
regular expression. For e € C&, it is easy to see by induction that « occurs
exactly once in each term of L(e). Therefore, if e € C&, then L(e)™ = L(e)°™
and L(e)-oL = L(e)on L for every L C Tx.

Proposition 19 A language represented by a linear regular expression is top-
contert-free.

Proof. According to the remark above, every replacement (replacement iteration
resp.) in e can be interpreted as a substitution (substitution iteration resp.) with-
out changing £(e). ToPCF is closed under union, substitution and substitution

iteration (see section 6). Closure under substitution implies that f(Li,..., L)
i1s top-context-free if L1,..., L, are top-context-free. Thus every operation in
linear regular expressions preserves top-context-freeness. a

The proof of the following lemma (see [8]) uses a standard technique for
constructing regular expressions from automata (or grammar) representations.
It is somewhat a mixture of that for words (cf [9]) and that for trees (cf [6]).

Lemma 20 A language generated by a non-branching regular grammar can be
represented by a linear reqular expression.

5.3 Characterizations of Regular Top-context-free Languages

Collecting together all results on regular top-context-free languages obtained so
far, we can state the following

Theorem 21 For a regular language L the following statements are equivalent:

(1) L is linear top-context-free.

(2) L is top-context-free.

(3) L is slim.

(4) L can be generated by a non-branching regular grammar. Moreover, every
reduced regular grammar generating L is non-branching.

(5) L can be represented by a linear regular expression.

(6) L is passable.

(7) L is polynomially size-bounded.

Proof. Trivially (1) = (2), and (2) = (3) by lemma 7. (3) = (4) is lemma 12 and
(4) = (1) by lemma 14. (4) = (5) by lemma 20 and (5) = (2) by proposition 19.
(1) = (6) by lemma 16 and (6) = (7) by lemma 3.2 in [13]. Finally, (7) = (4) is
easy to show. Indeed, if L 1s generated by a reduced branching regular grammar,
a sequence of terms of L can be constructed in an obvious way such that their
size grows exponentially with respect to their depth. a

Conditions (4) and (5) can be seen as syntactic characterizations of REG N
TorCr = REG N LINToPCF.

6 Closure Properties

In this chapter we study some closure properties of classes of tree languages.
First we just mention a few well-known properties, then concentrate on study-
ing closure of the classes FIN, REG, LINTorCF, TorCF, LINCF, CF under
replacement, substitution and their iterations. We summarize positive and neg-
ative results in tables.

We define (linear) homomorphisms on 7x as (linear) tree homomorphisms in
the usual way [6].

Lemma 22 FIN, REG, LINTorPCF, TorCF, LINCF, and CF are closed under
unton, under intersection with regular languages, and under linear homomor-
phisms.

ToprCF is even closed under arbitrary homomorphisms, and a proof of its
closure properties can be found in [1].

Lemma 23 (Closure under Replacement) (/) FiN, REG, LINToprCF,
ToprCr, LINCF, and CF are closed under replacement by FIN.

(2) LINTopCF-LINTopCF = LINToPCF and LINToPCF-TopCF = ToprCF.

(3) REG, LINCF, and CF are closed under replacement.

(4) TorCFr-LINToPCF ¢ TopCF.

Proof. (1) Let G = (X, N, P,S) be a context-free grammar and let L' over X’ be
finite. Then the grammar (YU X' N, {A(Z) = t'|A(ZX) - te P, t' €t L'}, S)
generates L(G)-.L'. This grammar is of the same type as G.

(2) Let G = (N, X, P,S) be linear top-context-free and G' = (N', X', P’ 5") be
top-context-free. Without loss of generality let G be slow; this is crucial for the
proof, since it guarantees that, if ¢t € Tyux(X) is the right-hand side of a rule in
a slow linear grammar and y is a variable not occuring in ¢, then ¢-.y is linear.

A top-context-free grammar G generating £(G)-.£(G") is constructed as fol-
lows: The set of nonterminals in G is N x (N’ U {done}) where “done” is a new
unary nonterminal; if A has arity n and A’ has arity m, then (4, 4") has arity
n + m. The initial symbol of G is (S, S") and G contains the following rules:

(A, A)(Z,§) = (A, B')(Z,1) if A(§) = B'({)isin P, A€ N,

(A, AN(Z,§) — (A, done)(£,t) if A(§) —tisin Pt €T, AEN,
(A, done)(Z,y) — (B, done)(t_: y) if A(%) = B(f) is in P, does not contain c,
(A, done)(Z,y) — (B, S’)(fc{y}) if A(Z) — B(f) is in P, contains c,
(A, done)(Z,y) = t-.{y} if A(Z) > tisin Pt € Ts.

In order to proof that G generates £(G)-.L(G") use the fact that (A, S")(f) =%
(A, done)(t,t') implies t’ € L(G"). Moreover, as G is linear, there are no copies of
subterms, which could cause ¢’s at different positions to be always instantiated
by the same terms. Note also that G is linear if G’ is linear.

(3) Let G = (¥,N,P,S) and G' = (X', N', P, S") be context-free grammars
with N N N’ = . Then the context-free grammar

(DU, NUN', {A@) = {5} | A(Z) >t e PYUP' 9)
generates L(G)-L(G"). Tt is regular (linear), if both G and G are regular (linear).

(4) Let L be generated by {S — A(c), A(x) = A(f(z,2)), A(x) = x}. Let
L' = {g'(a)|i > 0} be generated by {S — A(c), A(z) — A(g(x)), A(z) — z}.
Then L-.L' is not slim, thus not top-context-free, as is easily shown using results
of section 4. ad

Lemma 24 (Closure under Substitution) (/) FIN, REG, LINTorPCF,
ToprCr, LINCF, and CF are closed under substitution by FIN.

(2) TorCroToPCF = ToPCF and CroTorPCF = CF.

(3) FINoLINToPCF = LINToPCF.

(4) FINoREG ¢ CF.

(5) LiNTopCroLINToPCF € LINToPCF.

(6) REGoLINTOoPCF € LINCF and REGoLINToPCF € TopPCF.

Proof. (1) First observe that for a ground term ¢, o.{t} is a linear homomor-
phism. Hence by lemma 22, L € C implies Lo {t} € C. Now (1) follows from
LocL" = ;¢ /(Loc{t}) and from the closure under union (lemma 22).

(2) From a context-free grammar GG and a top-context-free grammar G’ with
disjoint sets of nonterminals, a context-free grammar G generating £(G)o.L(G")
can be constructed as follows: Nonterminals in G are the nonterminals of G’
together with a nonterminal A of arity n + 1 for each nonterminal A4 in G of
arity n; hence S is unary for S, the initial symbol of Gi. The initial symbol of G
is S’, the initial symbol of G’. The rules of G are:

ANE) =t if A/(¥) > tisarulein G', t contains a nonterminal,
CAN(E) = S(t) if A/(¥) > tis arulein G’ t contains no nonterminal,
A(Z,y) = h(t)oy if A(X) = tisarulein G,

(%
(%

where h is the (linear) homomorphism defined by

h(A(t1, ..., t)) = A(h(t1), ..., k(ty), ¢) for all nonterminals A and
h(f(t1,...,t0)) = f(h(t1),.. ., h(ts)) for all terminals f.

In the special case where (' is top-context-free this yields:

fi(i", y) — B({ocy, y) if A(¥) — B(ﬂ is a rule in G,
z

A(Z, y) = tocy if A(Z) — tisarulein G, t contains no nonterminal.

Thus G is top-context-free in case G is top-context-free.

(3) Let G be a linear top-context-free grammar, and s a term. Since LINTorCF
is closed under union, it is sufficient to show that so.L(G) is generated by a

linear top-context-free grammar G. G is constructed as follows: Let s contain m
occurrences of the symbol ¢. For each nonterminal A in G of arity n we have
a nonterminal A of arity m -n in G. If ¥ is x1,...,x, then let 7,..., 7, be
variable renamings such that all variables x;m; are pairwise distinct. Let #'m;
denote z17;, . .., x,m;, for ¢ similarly.

Now, if A(Z) — B(f)is arule in G, then A(Z7y,...,&7,) — B(ir, ... t7,)
is a rule in G.

If A(Z) — t is a rule in G where t contains no nonterminal, then
A(ZFrmy,...,7m) — § is a rule in G, where s’ is obtained from s by replac-
ing the m symbols ¢ successively by twy, ... 7.

(4) Consider 7y; 43. This language is not top-context-free by corollary 10, hence
by theorem 1 the language {f(c, ¢)}o. T q) is not context-free.

(5) Let L be generated by {S — A(c), A(x) = A(f(c,»)), A(z) — «}. Let
L' = {g'(a)|i > 0} be generated by {S — A(c), A(x) — A(g(z)), A(z) — z}.
Then Lo.L’ is not linear top-context-free. To show this, an appropriate pumping
lemma for linear top-context-free languages can be used, see [8].

(6) Consider Ty; o.{g%(a)|i > 0}. It is neither linear context-free (by a pump-
ing lemma for linear context-free languages given in [8]) nor top-context-free
(using results from section 4). O

Lemma 25 (Closure under Replacement Iteration) (7) Rea, LINCF,
and CF are closed under replacement iteration.

(2) FIN® € TopCF.

Proof. (1) Let G be a context-free grammar. A context-free grammar G gener-
ating £(G)" is constructed as follows: 7 has the same nonterminals and the
same initial symbol S as GG, and the rules of GG are:

A(X) =t {S} if A(¥) > tisarulein G,
S —ec.

If G is regular or linear then G is so.
(2) Consider {f(c,c)}™ = Tic,sy; it is not top-context-free by corollary 10. O

Lemma 26 (Closure under Substitution Iteration) (1) TorPCF is closed
under substitution iteration.

(2) REG® € CF.

(3) FIN® € LINToprCF.

Proof. (1) Given a top-context-free grammar G = (N, X, P, S), in order to get
a top-context-free grammar G generating £(()°° we can use a construction
analogous to that given in the proof of lemma 24(2). Just the following rules

have to be added. If A(¥) —tis arulein G, t € Tx(X), we have in G not only
the rule A(Z,y) — to.y, but also the rule

A(Z,y) = S(tocy).
(2) Consider the regular language L = {f(c,¢)} U Tx over X = {a,h}, where
a is a constant and h is binary. We have L% = {f(c,¢)}°* U ({f(c,)} 0. Tx).
Thus Lo N {f(t,t")|t,t' € Te} = {f(t,t) |t € T}, which is not context-free by

theorem 1 and corollary 10. As {f(¢,t')|¢,t' € Tx} is regular and CF is closed
under intersection with regular languages, L°< is not context-free.

(3) For L = {f(¢c,c)}, L is the set of complete binary trees over {¢, f}. Thus,
by example 17, L°¢ € LINTopCF. |

CLOSURE BY REPLACEMENT: C-C’

C/
C Fin REG LinTopCr |TorCF LINCF |CF
Fin = Fin = REG |= LinTorCr|= TorPCF |= LINCFr|= CF
23(1) 23(3) 23(2) 23(2) 23(3) 23(3)
REG = REG = REG |C LINCF C Cr = LinCFr|= CF
23(1) 23(3) 23(3) 23(3) 23(3) 23(3)
LinTopCr|= LINToPCF|C LINCF|= LINTorPCr|= TorPCF |= LINCFr|= CF
23(1) 23(3) 23(2) 23(2) 23(3) 23(3)
ToprCr = TorCF C Cr C Cr C Cr C Cr =CF
23(1) 23(3) 23(3), 23(4) (23(3), 23(4)|23(3) 23(3)
LINCF = LINCF = LinCF|= LINCF C Cr = LinCFr|= CF
23(1) 23(3) 23(3) 23(3) 23(3) 23(3)
CF =CF =CF =CF =CF =CF =CF
23(1), 23(3) (23(3) 23(3) 23(3) 23(3) 23(3)
| CLOSURE BY SUBSTITUTION: Co(’ |
C/
C Fin REG |LiINTorCr |ToprCF LiNCF|CF
Fin = FIN ¢ Cr|= LINTopCr|= TorCr |Z Cr | CF
24(1) 24(4)(24(3) 24(2) 24(4) |24(4)
REeG = REa ¢ Cr|C CF CCr ¢ Cr | CF
24(1) 24(4)(24(2), 24(6) |24(2), 24(6)|24(4) |24(4)
LiNToprPCF|= LINTorCF|Z Cr|C TorCF = ToprCr |Z€ CF |Z CF
24(1) 24(4)|24(2), 24(5) |24(2) 24(4) |24(4)
TorCF = ToprCF ¢ Cr|= ToprCF = ToprCr |Z€ CF |Z CF
24(1) 24(4)(24(2) 24(2) 24(4) |24(4)
LINCF = LINCF ¢ Cr|C CF CCr ¢ Cr | CF
24(1) 24(4)(24(2), 24(6) |24(2), 24(6)|24(4) |24(4)
Cr =CF ¢ Cr|=CrF =CF ¢ Cr | CF
24(1) 24(4)(24(2) 24(2) 24(4) |24(4)

CLOSURE BY
C |REPLACEMENT ITERATION: C* |SUBST1TUT10N ITERATION: C°
Fin C REG C TorCF
25(1), 25(2) 26(1), 26(3)
REG = REG ¢ CF
25(1) 26(2)
LinTopCr|C LINCF C TorCF
25(1), 25(2) 26(1), 26(3)
ToprCr C Cr = TorCF
25(1), 25(2) 26(1)
LiNnCF = LINCF ¢ Cr
25(1) 26(2)
CF =Cr ¢ CF
25(1) 26(2)
References
1. A. Arnold and M. Dauchet. Transductions de Foréts Reconnaissables Monadiques.

10.

11.

12.

13.

14.

. A. Arnold and M. Dauchet.

. J. Hopcroft and J. Ullman.

Foréts Corégulieres. RAIRO Informatique Théorique et applications, 10(3):5-28,
1976.

Un Théoréme de Duplication pour les Foréts Al-
gébriques. JCSS, 13:223-244, 1976.

. M. Dauchet and S. Tison. Structural Complexity of Classes of Tree Languages. In

Tree Automata and Languages, pp. 327-353. Elsevier (North-Holland), 1992.

. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of Theoretical

Computer Science, vol. B, pp. 243-320. Elsevier, 1990.

. J. Engelfriet and E. Schmidt. 1O and OI. I. JCSS, 15:329-353, 1977.
. F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadé, Budapest, 1984.
. D. Hofbauer and M. Huber. Computing linearizations using test sets. In 3rd In-

ternational Workshop on Conditional Term Rewriting Systems, LNCS 656, pp.
287-301. Springer-Verlag, 1992.

. D. Hofbauer, M. Huber, and G. Kucherov. Some Results on Top-context-free Tree

Languages. Centre de Recherche en Informatique de Nancy, Technical Report, to
appear, 1993.

Introduction to Automata Theory. Languages and
Computation. Addison-Wesley, 1979.

G. Kucherov and M. Tajine. Decidability of regularity and related properties of
ground normal form languages. In 3rd International Workshop on Conditional
Term Rewriting Systems, LNCS 656, pp. 272-286. Springer-Verlag, 1992.

G. A. Kucherov. On relationship between term rewriting systems and regular tree
languages. In 4th Conference on Rewriting Techniques and Applications, LNCS
488, pp. 299-311. Springer-Verlag, 1991.

T. S. E. Maibaum. Pumping lemmas for term languages. JCSS, 17:319-330, 1978.
K. Salomaa. Deterministic Tree Pushdown Automata and Monadic Tree Rewrit-
ing Systems. JCSS, 37:367-394, 1988.

S. Végvolgyi and R. Gilleron. For a rewriting system it is decidable whether the set
of irreducible ground terms is recognizable. Bulletin of the European Association
for Theoretical Computer Science, 48:197-209, 1992.

This article was processed using the ETEX macro package with LLNCS style

