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Abstract. A (fractional) repetition in a word w is a subword with the
period of at most half of the subword length. We study maximal repeti-
tions occurring in w, that is those for which any extended subword of w
has a bigger period. The set of such repetitions represents in a compact
way all repetitions in w.

We first study maximal repetitions in Fibonacci words — we count their
exact number, and estimate the sum of their exponents. These quantities
turn out to be linearly-bounded in the length of the word. We then prove
that the maximal number of maximal repetitions in general words (on
arbitrary alphabet) of length n is linearly-bounded in n, and we mention
some applications and consequences of this result.

1 Introduction

Repetitions (called also periodicities) play a fundamental role in many topics of
word combinatorics, formal language theory and applications. Several notions
of repetition has been used in the literature. In its simplest form, a repetition
is a word of the form wu, commonly called a square. A natural generalization
is to consider, instead of squares, arbitrary powers, that is words of the form
u™ = yu...u for n > 2. We call such repetitions integer repetitions (or integer

n
powers). If a word is not an integer repetition, it is called primitive. Integer
repetitions can be further generalized to fractional repetitions, that is words of
the form w = u™v, where n > 2 and v is a proper prefix of u. u is called a root
of w. If w is primitive, quantity n + % is called the ezxponent of w, and |u| is
the period of w. Considering repetitions with fractional exponent may turn to
be very useful and may provide a deeper insight of combinatorial properties of

words [Dej72,Lot83,MP92,MRS95,CS96,JP99].
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Depending on the problem, the difference between the above three notions
of repetition may not be relevant (for example if one wants to check whether a
word is repetition-free) but, as will be seen below, may be important. Besides,
if one wants to find (or to count) all repetitions in a word, it must be specified
whether all distinct repetitions are looked for (that is, their position in the word is
not relevant) or all the occurrences of (possibly syntactically equal) repetitions.
In this paper we will be mainly concerned with the latter case, and we will
sometimes say positioned repetitions to underline this meaning.

When one considers (integer or fractional) repetitions in a word, it is natural
to consider “maximal” ones, that is those which cannot be further extended to
the right/left to a bigger repetition with the same period. However, the definition
of maximality differs depending on whether integer or fractional repetitions are
considered. In case of integer repetitions, this amounts to those repetitions u*,
k > 2, which are not followed or preceeded by another occurrence of u. In case
of fractional repetitions, a maximal repetition is a subword u"v (v a prefix of
w, n > 2) which cannot be extended by one letter to the right or to the left
without changing (increasing) the period. For example, the subword 10101 in
the word w = 1011010110110 is a maximal fractional repetition (with period 2),
while the subword 1010 is not. Another maximal fractional repetitions of w are
prefix 10110101101 (period 5), suffix 10110110 (period 3), prefix 101101 (period
3), and the three occurrences of 11 (period 1).

In this paper we study maximal positioned fractional repetitions that, for the
sake of shortness, we will call simply mazimal repetitions.'. Maximal repetitions
are important objects as they encode, in a most compact way, all repetitions in
the word. For example, if we know all maximal repetitions in a word, we can
easily obtain all squares in this word, with both primitive and non-primitive
roots.

The question “How many repetitions can a word contain?” is interesting from
both theoretical and applicative perspective. However, one must specify carefully
which repetitions are counted.

A word of length n contains O(n logn) positioned primitively-rooted squares.
This follows, in particular, from Lemma 10 of [CR95] which asserts that a word
cannot contain in its prefixes more than log, n primitive-rooted squares which
immediately implies the nlog,n upper bound (¢ is the golden ratio). On the
other hand, in [Cro81] it was shown that Fibonacci words contain £2(nlogmn)
positioned squares. Since all squares in Fibonacci words are primitively-rooted,
this proves that O(nlogn) is the asymptotically tight bound. A formula for
the exact number of squares in Fibonacci words has been obtained in [FS99].
Note that in contrast, the number of distinct squares in Fibonacci words and
in general, the maximal number of distinct squares in general words (over an
arbitrary alphabet) is linear in the length [FS99,FS98|.

The situation is different if only distinct squares are counted. In [FS99], it is
shown that the k-th Fibonacci word fj, contains 2(|fr,_2|—1) = 2(2— )| fx|+0(1)

! maximal repetitions have been called runs in [IMS97], mazimal periodicities in
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distinct squares (¢ is the golden ratio). The number of distinct squares in general
words of length n is bounded by 2n (for an arbitrary alphabet), that was shown in
[FS98] using a result from [CR95]. It is conjectured that this number is actually
smaller than n, at least for the binary alphabet. Thus, in contrast to positioned
squares, the maximal number of distinct squares is linear.

In [Cro81], Crochemore studies positioned primitively-rooted maximal inte-
ger powers, that is those subwords u*, k& > 2, which are not followed or pre-
ceeded by another occurrence of u. Similar to positioned squares, the maximal
number of such repetitions is @(nlogn). The lower bound easily follows from
the 2(nlogn) bound for positioned squares in Fibonacci words, as Fibonacci
words don’t contain 4-powers, and an occurrence of a 3-power is an extension
of two square occurrences. Therefore, the number of maximal integer powers in
Fibonacci words is at least half the number of positioned squares, and is then
O(nlogn).

What happens if we count the number of maximal repetitions instead of
integer powers or just squares? Note that a word can contain much less maximal
repetitions than maximal integer powers: e.g. if v is a square-free word over
{a, b, c}, then word v#v#tv contains |v| + 1 (maximal) integer powers but only
one maximal repetition. What is the maximal number of maximal repetitions in
a word?

In the first part of the paper, we study maximal repetitions in Fibonacci
words. The results of [IMS97] imply that Fibonacci words contain a linear num-
ber of maximal repetitions, with respect to the length of the word. This is showed,
however, in an indirect way by presenting a linear-time algorithm which enumer-
ates all maximal repetitions in a Fibonacci word. In this paper we first obtain
directly the exact number of maximal repetitions in Fibonacci words, which is
equal to 2|fr_2| — 3. Incidentally (or maybe not?), a Fibonacci word contains
one less maximal repetitions than distinct squares.

We also estimate the sum of exponents of all maximal repetitions in a Fi-
bonacci word. It is known ([MP92]) that Fibonacci words contain no subword
of exponent greater than 2 + ¢ but contain subwords of exponent greater than
2+ ¢ — ¢ for every € > 0. Therefore, from our previous result, the sum of expo-
nents of all maximal repetitions is bounded from above by (2+ ¢)(2|fr—2]|—3) =
22—=0)(2+ @) |fu] +o(1) =2(3 —@)|fr] +o(1) = 2.764] fr| + o(1). We could not
obtain the exact formula for the sum of exponents, but we give a good estimation
of it showing that this number is bounded asymptotically between 1.922 - | f|
and 1.926 - | fi]-

Fibonacci words are known to contain “many” repetitions, and the fact that
in Fibonacci words there is a linear number of maximal repetitions, rises the
question if this is true for general words. We confirm this conjecture and prove
that a word of length n over an arbitrary alphabet contains O(n) maximal repeti-
tions. The result is both of theoretical and practical interest. From the theoretical
point of view, it contrasts to the above results about the O(nlogn) number of
positioned squares or integer repetitions, and shows that maximal repetitions
are indeed a compact (linear) representation of all repetitions in a word. In par-



ticular, this answers the open question rised in [IMS97] whether all repetitions
can be encoded in a linear-size structure and in particular, whether the number
of maximal repetitions is linearly-bounded.

From the practical point of view, this result allows us to derive a linear-time
algorithm of enumerating all maximal repetitions in a word. This algorithm,
which is a modification of Main’s algorithm [Mai89], will be briefly commented
in the end of this paper, but will be presented in full details in an accompanying
paper.

2 Definitions and Basic Results

Consider a word w = ai . ..a,. Any word a;...a; for 1 < i < j < n, which we
denote w[i..j], is a subword of w. A position in w is an integer number between 0
and n. Each position 7 in w defines a decomposition w = wyws where |w;| = 7.
The position of letter a; in w is (i —1). We say that subword v = w[i..j] crosses
a position 7 in w, if i <7 < j.

If w is a subword of u™ for some natural n, |u| is called a period of w, and
word u is a root of w. Clearly, p is a period of w = a; . .. ay iff a; = a;4p whenever
1 <i,i+ p < n. Another equivalent definition is (see [Lot83]): p is a period of
w=aj...a, iff w[l..n —p] = w[p + 1..n]. The last definition shows that each
word w has the minimal period that we will denote p(w) and call often simply

the period of w. The ratio % is called the exponent of w and denoted e(w).

Clearly, a root u of w such that |u| = p(w), is primitive, that is u cannot be
written as v™ for n > 2. Following [Lot83, Chapter 8], we call the roots u with
|u| = p(w) cyclic roots.

Consider w = a1 ...a,. A repetition in w is any subword r = w[i..j] with
e(r) > 2. A mazimal repetition in w is a repetition r = w[i..j] such that

(i) if @ > 1, then p(w[i — 1..5]) > p(w[i..j]),
(ii) if j < n, then p(w[i..j + 1]) > p(w[i..j]).

In other words, a maximal repetition is a repetition r = wli..j] such that no
subword of w which contains 7 as a proper subword has the same minimal period
as r. Note that any repetition in a word can be extended to a unique maximal
repetition. For example, the repetition 1010 in word w = 1011010110110 extends
to the maximal repetition 10101 obtained by one letter extension to the right.
A basic result about periods is the Fine and Wilf’s theorem (see [Lot83]):

Theorem 1 (Fine and Wilf). If w has periods p1,ps, and |w| > p1 + p2 —
ged(pr, p2), then ged(py, p2) is also a period of w.

The following Lemma states some useful facts about maximal repetitions.

Lemma 2. (i) Two distinct maximal repetitions with the same period p cannot
have an overlap of length greater than or equal to p,

(ii) Two mazimal repetitions with minimal periods py,pa, p1 # p2, cannot have
an overlap of length greater than or equal to (p1 + p2 — ged(p1,p2)) <

2max{pi,pa}-



Proof. Part (i) is easily proved by analyzing relative positions of two repetitions
of period p and showing that if they intersect on at least p letters, at least one
of them is not maximal. Part (ii) is a consequence of Fine and Wilf’s theorem.
If the intersection is at least (p; + p2 — ged(p1, p2)) long, then at least one of the
cyclic roots of the two repetitions is not primitive, which is a contradiction.

3 Maximal Repetitions in Fibonacci Words

Fibonacci words are binary words defined recursively by fo =0, fi = 1, f, =
frn—1fn_2 for n. > 2. The length of f,,, denoted F,,, is the n-th Fibonacci number.
Fibonacci words have numerous interesting combinatorial properties and often
provide a good example to test conjectures and analyse algorithms on words (cf
[IMS97)).

As it was noted in Introduction, Fibonacci word f, contains O(F, log F,)
squares all of which are primitively-rooted. In [FS99], the exact number of
squares in Fibonacci words has been obtained, which is asymptotically %(3 —
¢)nF, + O(F,). Since general words of length n contain O(nlogn) primitively-
rooted squares [CR95], Fibonacci words contain asymptotically maximal number
of primitively-rooted squares (at least up to a multiplicative constant).

In this section, we first count the exact number of maximal repetitions in
Fibonacci words. Let R,, be the number of maximal repetitions in f,,. We prove
the following

Theorem 3. For alln >4, R, =2F,, 5 — 3.

We follow the general proof scheme used in [FS99] for counting the number
of positioned squares. Consider the decomposition f, = f,—1frn—2 and call the
position between f,, 1 and f,_o the boundary. Clearly, the maximal repetitions
in f, are divided into those which lie entirely in f,,_1 or f,_» and those which
cross the boundary, that is intersect with f,_; (call this intersection the left
part) and with f,_o (right part). We call the latter crossing repetitions. Note
first that the left part and the right part of a crossing repetition cannot be both
of exponent > 2, since Fibonacci words don’t have subwords of exponent 4. If
either the left or the right part is of exponent > 2, then the crossing repetition is
an extension of a maximal repetition of respectively f, 1 or f,_o. This implies
that the only new crossing repetitions of f,, that should be counted are those that
don’t have their right and left part of exponent > 2. Denote ¢(n) the number of
such crossing repetitions that we will call composed maximal repetitions of f,.
Then

R,=R, 1+R, >+ c(n) (1)

The following argument gives the solution.
Lemma 4. For all n > 8, ¢(n) = c¢(n — 2).

Consider the representation

fn = fn—1|fn—2 = fn—2fn—3|fn—3fn—4 = fn—2[fn—3|fn—4]fn—5fn—4 (2)



where | denotes the boundary, n > 5, and square brackets delimit the occurrence
of f,—2 with the same boundary as for the whole word f,. It is known that every
repetition in Fibonacci words has the period Fj, for some k (this is mentioned
in [FS99] as a “folklore” result, proved in [Séé85]). Since F,,_5 > F,,_4 > 2F,_g,
it follows from (2) that if a composed maximal repetition of f,, has the period
Fy, for k < n — 6, then it is also a composed maximal repetition of f,_o and
therefore is counted in ¢(n — 2). Vice versa, every composed maximal repetition
of fn—o with period Fj for k& < n — 6, is also a composed maximal repetition
of f,. We now examine the maximal repetitions of f,, with periods F,,_o, F,_3,
F,_4, F,,_5 which cross the boundary.

Crossing repetitions with period Fy,_». The last term of (2) shows that square
(fa_2)? is a prefix of f, that crosses the boundary. As F,_; < 2F,_», the
corresponding maximal repetition does not have a square in its left or right
part and therefore is composed for f,,. Since F,,_» > F,,/3, any two maximal
repetitions of f, with period F,,_» intersect by more than F, o letters. By
Lemma 2(i), this shows that f, has only one maximal repetition with period
F,,_». Trivially, the maximal repetition under consideration is not a maximal
repetition of f, o.

Crossing repetitions with period F,_3. From the decomposition
fn = fa—2fn—3|fn—3fn—a (see (2)), there is a square (f,_3)? with the root length
F,,_3 crossing the boundary. The corresponding maximal repetition does not ex-
tend to the left of the left occurrence of f,_3, as the last letters of f, 3 and
fn—o are different (the last letters of f;’s alternate). Therefore, this maximal
repetition does not have a square in its left or right part, and thus is composed
for f,. As this maximal repetition has a period both on the left and on the right
of the boundary, it is the only maximal repetition with period F,,_3 crossing
the boundary (see Lemma 2(i)). Again, from length considerations, it is not an
maximal repetition of f,, 5.

Crossing repetitions with period Fy_s. As fr, = fn_a[fn—s|fa-a]frn-5fn—a =
fn—3fn—4[fn—4fn—5|fn—5fn—6]fn—5fn—4 = fn—3fn—4[fn—4 fn—5|fn—6 fn—7fn—6]

f

n—4
fn—s5fn—a for n > 7, this reveals a maximal repetition of period F,_, which
crosses the boundary. However, this is not a composed maximal repetition of f,,
as it has a square on the left of the boundary. On the other hand, the restriction
of this maximal repetition to f,_» (subword in square brackets) is a composed
maximal repetition for f, ».

It can be shown that this is the only maximal repetition of period Fj,_4
crossing the boundary. (There is another one which touches the boundary from
the right, but does not extend to the left of it.) In conclusion, there is one
composed maximal repetition of period F,_4 in f, o and no such maximal
repetition in f.

Crossing  repetitions  with  period  F,_s5. Rewrite  f, =
fr—2[fu—afn—s|fn—sfn—6]fn—5fn_4a which shows that there is a square of root
length F,,_5 crossing the boundary. Since the boundary is the center of this
square, the latter corresponds to the only maximal repetition with period Fj,_5



crossing the boundary. However, this maximal repetition is not a composed

maximal repetition for f,, as it has a square in its right part, as shown by

the following transformation: f,, = fn—2[fn—4fn—5|fn—5fn—6]fn—6fn—7fn—4 =

fn72[fn74fn75|fn75 fnfﬁ]fn77 fn78fn77fn74 for n Z 8. On the other hand) the
————

fn—5
restriction of this maximal repetition to f,—o (subword in square brackets) is a
composed maximal repetition for f,,_». Thus, there is one composed maximal
repetition of the period F),,_5 in f,_» and no such maximal repetition in f,.

In conclusion, two new composed maximal repetitions arise in f, in com-
parison to f, 2, but two composed maximal repetitions of f,, s are no more
composed in fy,, as they extend in f, to form a square in its right or left part.
This shows that ¢(n) = ¢(n — 2) for n > 8 and proves the Lemma.

A direct counting shows that Ry =0, Ry =0, R, =0, R3=0, Ry =1, R5 =
3, Rg =7, Ry = 13. Therefore, ¢(3) =0, ¢(4) =1, ¢(5) =2, ¢(6) =3, ¢(7) = 3.
Since ¢(n) = ¢(n—2) for all n > 8, then ¢(n) = 3 for all n > 6. We then have the
recurrence relation R, = R, 1 + R,_2 + 3 for n > 6 with boundary conditions
R4y =1, Rs; = 3. Resolving it, we get R, = 2F,,_5 — 3 for n > 4. Theorem 3 is
proved.

Thus, in contrast to squares, the number of maximal repetitions in Fibonacci
words is linear. Using the same approach, we now estimate the sum of exponents
of all maximal repetitions in f,,. A direct consequence of Theorem 3 and the fact
that Fibonacci words don’t contain exponents greater than (2+¢) [MP92], is that
the sum of exponents is no greater, asymptotically, than 2(3—¢)|fi| = 2.764-| fi|.
We now obtain a more precise estimation.

Denote SR(n) the sum of exponents of all maximal repetitions in Fibonacci
word f,,. We prove the following estimation for SR(n).

Theorem 5. SR(n) = C - |fy| + o(1), where 1.922 < C' < 1.926.

Similarly to (1), we write the recurrent relation
SR(n) = SR(n —1)+ SR(n — 2) + cx(n), (3)

where cz(n) is the sum of exponents of those left and right parts of crossing
repetitions, which have the exponent smaller than 2. (If the exponent of the left
or right part is 2 or more, it is counted in SR(n — 1) or SR(n — 2) respectively.)
As before, the goal is to reduce cz(n) to cz(n—2), and a similar argument shows
that for all crossing repetitions with the period Fj for & < n — 6, nothing has
to be done, as they occur completely inside f,_2 (see (2)) and are counted in
cx(n—2). As for Theorem 3, it remains to analyse repetitions with periods F,,_s,
Fn—37 Fn—47 Fn—5-

The crossing repetition with period F,,_» is composed (both its left and right
part is of exponent < 2), its length can be shown to be F,, =2 = F,,_1+F,,_»—2,
and the exponent % The crossing repetition with period F;,_3 is also
composed, of the length 2F,,_3 + F,_4 = F,_s + F,,_3, and of the exponent



F"’;;E’B. Let us turn to the crossing repetition with period Fj,_4. Recall that

it extends a repetition present in f,_o. Its right part is of exponent < 2, and
is inside f,—_», therefore it is already counted in cz(n — 2), and it does not
have to be added. Its left part is of exponent > 2, and does not have to be
counted in cz(n). However, a part of it which is in f,,_o (namely f,_4fn—5), is
of exponent < 2, and therefore has been counted in cz(n — 2). We then have to

substract F"’ljiJrF""” = 11::":2. Similarly, the crossing repetition with the period

n—4
F),,_5 has the left part which is already counted in cz(n — 2), and the right part
which should not be counted, but the part of it of exponent F"‘;"ii n-6 — ?":g
has been counted in cz(n — 2) and should be substracted. Putting everything

together, we obtain the recurrence

cr(n)=cx(n—2)+2—-2/F, o+ F, 1/F,_2+
Fn—2/Fn—3 _Fn—3/Fn—4_Fn—4/Fn—57 (4)

for n > 8. Transforming further this expression, we obtain
cx(n) =n—1-2(1/Fp_o+1/Fp_a+..+1/Fy+1/F3)+Fy_1/Fp o+ F,_o/Fp_3
for even n > 8, and
cx(n) = n+1/2=2(1/Fp_o+1/Fpy_st .41/ Fs+1/F1)+Fp_1/Fp_s+Fp_s/Fa_s
for odd n > 9. To join the cases, we rewrite (3) into
SR(n) =2SR(n —2) + SR(n —3) + cx(n) + cx(n — 1) = 2SR(n — 2) +
n—2

SR(n—3)+2n—3/2=20)_1/F}))+ Fu_1/Fn s +2F, 2/F 3+ Fy_3/Fy 4.

=1
The following estimation can be obtained using some elementary consideration.

n—1
—2() " 1/F}) + Fy/Fo 1 +2F, 1 /Fy 2+ Fy 5/F, 5 <2,

j=1
for n > 8. We omit the proof. Using this estimation, we get that for all n > 9,
SR(n) <2SR(n—2)+ SR(n —3) +2n+1/2.

Solving this recurrence with initial conditions SR(4) = 2, SR(5) = 6.5, SR(6) =
158 SR(7) = 2927 SR(8) = 53122 we obtain that

307 40° 1957
33 1 47 281 - 147
<22 g 02t 9522l gygns 4 g0l
SEn) < 555 ("D + B U035 ~ B556099" T+ 5 W00
281 - 15 1, 47 281 -
2520 g6 g — 22« L g0 9525 5y4n6 1,996 |1,
S0 ”?" 7 < EW0T ~ P e ?)? 926+ |/l

The lower bound can be obtained as follows. A direct calculation gives the
values SR(23) = 1.922328:| fa3], SR(24) = 1.922520-| f24]. Then using the obvious
inequality SR(n) > SR(n — 1) + SR(n — 2), we get SR(n) > 1.922328 - |f,]|.
Theorem 5 is proved.



4 Maximal number of maximal repetitions in a word

Since Fibonacci words contain “many” repetitions, Theorem 3 suggests the fol-
lowing question: Is it true that general words contain only a linear number of
maximal repetitions? We answer this question affirmatively. We prove that the
maximal number of maximal repetitions in words of length n is a linear func-
tion on n, regardless of the underlying alphabet. Denote by Rep(n) the maximal
number of maximal repetitions in words of length n (the alphabet is not fixed).

Theorem 6. Rep(n) = O(n).

The proof of Theorem 6 is rather technical and cannot be given here be-
cause of space limitations. Actually, we prove that there exist absolute positive
constants C, Cy such that

Rep(n) < Cin — Cyy/nlogn

For the proof we refer the reader to [KK98].

5 Applications, Generalizations, Open Questions

In this concluding section we mention an important algorithmic application of
Theorem 6, discuss its possible generalization, and formulate several related open
questions.

An important application of Theorem 6 is that it allows to derive an algo-
rithm which finds all maximal repetitions in a word in time linear in the length
of the word.

The problem of searching for repetitions in a string (or testing if a string
contains repetitions) has been studied since early 80’s. Let us first survey known
results. In early 80’s, Slisenko [Sli83] claimed a linear (real-time) algorithm for
finding all distinct maximal repetitions in a word. Independently, Crochemore
[Cro83] described a simple and elegant linear algorithm for finding square in a
word (and thus checking if a word is repetition-free). The algorithm was based
on a special factorization of the word, called s-factorizarion (f-factorization in
[CR94]). Another linear algorithm for checking whether a word contains a square
was proposed in [ML85].

If one wants to explicitely list all squares (or integer powers) occurring in
a word, there is no hope to do it in linear time, as their number may be of
order nlogn. Several algorithms have been proposed in order to find all repe-
titions in time O(nlogn). In 1981, Crochemore [Cro81] proposed an O(nlogn)
algorithm for finding all occurrences of primitively-rooted maximal integer pow-
ers in a word. Using a suffix tree technique, Apostolico and Preparata [AP83]
described an O(nlogn) algorithm for finding all positioned right-mazimal frac-
tional repetitions. Finally, Main and Lorentz [ML84] proposed another algorithm
which actually finds all maximal repetitions in O(nlogn) time. In 1989, using



Crochemore’s s-factorization, Main [Mai89] proposed a linear-time algorithm
which finds all leftmost occurrences of distinct maximal repetitions in a word.

As far as other related works are concerned, Kosaraju [Kos94] describes
an O(n) algorithm which, given a word, finds for each position the shortest
square starting at this position. He also claims a generalization which finds all
primitively-rooted squares in time O(n + S) where S is the number of such
squares. In [SG98a], Stoye and Gusfield proposed several algorithms that are
based on a unified suffix tree framework. Their results are based on an algo-
rithm which finds in time O(nlogn) all “branching tandem repeats”. In our
terminology, branching tandem repeats are (not necessarily primitively-rooted)
square suffixes of maximal repetitions. In a very recent paper, Stoye and Gusfield
[SGI8b] proposed a different approach, combining s-factorization (called Lempel-
Ziv factorization in the paper) and suffix tree techniques. The goal achieved is
to find, in linear time, a representative of each distinct square. The feasibility
of this task is supported by the result of [FS98] mentioned in Introduction. The
approach allows also to solve some other problems, e.g. to achieve the results
claimed in [Kos94].

However, so far it has been an open question whether a linear algorithm for
finding all maximal repetitions exists. In the concluding section of [Mai89], Main
speculates that such an algorithm might exist. The same question is raised in
[IMS97]. However, there has been no evidence in support of this conjecture as
the number of maximal repetitions has not been known to be linear. Theorem 6
provides this argument. Using Theorem 6, it can be shown that Main’s algorithm
can be modified in order to find all maximal repetitions in linear time. This allows
also to solve other related problems, e.g. to output all squares in a word in time
O(n + S), where S is the output size (cf [K0s94,SG98b]). The algorithm will be
described in an accompaining paper. An interested reader may consult [KK98].

The results of this paper suggest an interesting question: Can Theorem 5 assert-
ing the linearity of the sum of exponents of the maximal repetitions in Fibonacci
words be also generalized to general words? Putting in direct terms, is the sum of
exponents of maximal repetitions in a word also bounded linearly in the length
of the word?

This conjecture is somewhat related to the hypothesis suggested in [SG98a]
about the linearity of the maximal number of “branching tandem repeats” in
a word. Branching tandem repeats are squares uu (not necessarily primitively-
rooted) which are not followed by the first letter of u. To relate this to maximal
repetitions, branching tandem repeats are suffixes of the maximal repetitions
of length 2kp(r), where r is the corresponding maximal repetition and k > 1.
The linearity of the maximal number of branching tandem repeats is stronger
than our Theorem 6, as there are at least as many branching tandem repeats as
maximal repetitions (each branching tandem repeat corresponds to a maximal
repetition but one maximal repetition may contain several branching tandem
repeats).

If the maximal sum of exponents of all maximal repetitions in a word were
proved also linearly bounded, this would imply both our Theorem 6 and the



conjecture of [SG98a], and also shed some light on some facts we will mention
below. Both authors of this paper strongly believe that this hypothesis is true.
This is supported by computer experiments which show that in binary words
that realize the maximal number of maximal repetitions, maximal repetitions
are all of small exponent, typically not bigger than 3. This phenomenon is also
illustrated by Fibonacci words, which contain “many” maximal repetitions, all
of which are of exponent smaller than 2+ ¢ ~ 3.618. The above hypothesis would
shed light on this fact.

Let us make some other remarks about our results.

The main drawback of our proof of Theorem 6 is that it does not allow to
extract a “reasonable” constant factor in the linear bound. It remains an open
question if a simpler proof can be found which would imply a constant factor.
We conjecture that for the binary alphabet this constant factor is equal to 1,
which is supported by computer experiments.

Concerning counting results of Section 3, we note that Fibonacci words
don’t realize the maximal number of maximal repetitions among the binary
words. For example, for length 21 this number is 15 (realized, e.g., by word
000101001011010010100) while Fibonacci word f7 of length 21 contains 13 max-
imal repetitions.

While the number of maximal repetitions in Fibonacci words is one less than
the number of distinct squares, computer experiments show that the maximal
number of maximal repetitions in binary words of length n is apparently slightly
bigger than the maximal number of distinct squares. In spite of this closeness
between the number of maximal repetitions and that of distinct squares, there
is no apparent connection between them. It is possible to conceive words with
a big number of maximal repetitions and small number of distinct squares. For
example, the result of [FS95] implies that there exist words with only three
distinct squares but with unbounded number of maximal repetitions. Still, we
are wondering if the fact that the number of maximal repetitions in Fibonacci
words is one less than the number of distinct squares is a simple coincidence or
it has some combinatorial explanation.

References

[AP83] A. Apostolico and F.P. Preparata. Optimal off-line detection of repetitions
in a string. Theoretical Computer Science, 22(3):297-315, 1983.

[CR94] M. Crochemore and W. Rytter. Tezt algorithms. Oxford University Press,
1994.

[CR95] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13:405-425, 1995.

[Cro81] M. Crochemore. An optimal algorithm for computing the repetitions in a
word. Information Processing Letters, 12:244-250, 1981.

[Cro83] M. Crochemore. Recherche linéaire d’un carré dans un mot. Comptes Rendus
Acad. Sci. Paris Sér. I Math., 296:781-784, 1983.

[CS96] J.D. Currie and R.O. Shelton. Cantor sets and Dejean’s conjecture. Journal
of Automata, Languages and Combinatorics, 1(2):113-128, 1996.



[Dej72]

[FS95]

[FS98]
[FS99]
[IMS97]

[TP99]

[KK98]

[Kos94]

[Lot83]

[Mai89]

[ML84]

[MLS5]

[MP92]

F. Dejean. Sur un théoréme de Thue. J. Combinatorial Th. (A), 13:90-99,
1972.

A.S. Fraenkel and J. Simpson. How many squares must a binary se-
quence contain?  Electronic Journal of Combinatorics, 2(R2):9pp, 1995.
http://www.combinatorics.org/Journal/journalhome.html.

A.S. Fraenkel and J. Simpson. How many squares can a string contain? J.
Combinatorial Theory (Ser. A), 82:112-120, 1998.

A.S. Fraenkel and J. Simpson. The exact number of squares in Fibonacci
words. Theoretical Computer Science, 218(1):83-94, 1999.

C.S. Tliopoulos, D. Moore, and W.F. Smyth. A characterization of the squares
in a Fibonacci string. Theoretical Computer Science, 172:281-291, 1997.

J. Justin and G. Pirillo. Fractional powers in Sturmian words. Technical Re-
port LIAFA 99/01, Laboratoire d’Informatique Algorithmique: Fondements
et Applications (LIAFA), 1999.

R. Kolpakov and G. Kucherov. Maximal repetitions in words or how to find
all squares in linear time. Rapport Interne LORIA 98-R-227, Laboratoire
Lorrain de Recherche en Informatique et ses Applications, 1998. available
from URL: http://www.loria.fr/ kucherov/res_activ.html.

S. R. Kosaraju. Computation of squares in string. In M. Crochemore and
D. Gusfield, editors, Proceedings of the 5th Annual Symposium on Combina-
torial Pattern Matching, number 807 in Lecture Notes in Computer Science,
pages 146-150. Springer Verlag, 1994.

M. Lothaire. Combinatorics on Words, volume 17 of Encyclopedia of Mathe-
matics and Its Applications. Addison Wesley, 1983.

M. G. Main. Detecting leftmost maximal periodicities. Discrete Applied
Mathematics, 25:145-153, 1989.

M.G. Main and R.J. Lorentz. An O(nlogn) algorithm for finding all repeti-
tions in a string. Journal of Algorithms, 5(3):422-432, 1984.

M.G. Main and R.J. Lorentz. Linear time recognition of square free strings.
In A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words,
volume 12 of NATO Advanced Science Institutes, Series F, pages 272-278.
Springer Verlag, 1985.

F. Mignosi and G. Pirillo. Repetitions in the Fibonacci infinite word. RAIRO
Theoretical Informatics and Applications, 26(3):199-204, 1992.

[MRS95] F. Mignosi, A. Restivo, and S. Salemi. A periodicity theorem on words and

[S6685]

[SG98a]

[SG98b]

[S1i83]

applications. In Proceedings of the 20th International Symposium on Math-
ematical Foundations of Computer Science (MFCS), volume 969 of Lecture
Notes in Computer Science, pages 337—-348. Springer Verlag, 1995.

P. Séébold. Propriétés combinatoires des mots infinis engendrés par certains
morphismes. Rapport 85-16, LITP, Paris, 1985.

J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats
using a suffix tree. In M. Farach-Colton, editor, Proceedings of the 9th An-
nual Symposium on Combinatorial Pattern Matching, number 1448 in Lecture
Notes in Computer Science, pages 140-152. Springer Verlag, 1998.

J. Stoye and D. Gusfield. Linear time algorithms for finding and representing
all the tandem repeats in a string. Technical Report CSE-98-4, Computer
Science Department, University of California, Davis, 1998.

A.O. Slisenko. Detection of periodicities and string matching in real time.
Journal of Soviet Mathematics, 22:1316-1386, 1983.



