On repetition-free binary words of minimal density
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Abstract

We study the minimal proportion (density) of one letter in n-th power-free binary words.
First, we introduce and analyse a general notion of minimal letter density for any infinite set
of words which don’t contain a specified set of “prohibited” subwords. We then prove that for
n-th power-free binary words the density function is £ + & + L 4+ O(-). We also consider
a generalization of n-th power-free words for fractional powers (exponents): a word is z-th
power-free for a real z, if it does not contain subwords of exponent 2 or more. We study the
minimal proportion of one letter in z-th power-free binary words as a function of z and prove, in
particular, that this function is discontinuous at % as well as at all integer points n > 3. Finally,
we give an estimate of the size of the jumps.
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1 Introduction

One of classical topics of formal language theory and word combinatorics is the construction of
infinite words verifying certain restrictions. A typical restriction is the requirement that the word
does not contain a subword of the form specified by some general pattern. Results of this kind find
their applications in different areas such as algebra, number theory, game theory (see [15, 21]).

The oldest results of this kind, dating back to the beginning of the century, are Thue’s famous
constructions of infinite square-free and (strongly) cube-free words over alphabets of three and two
letters respectively [22, 23] (see also [4]). A word is square-free (respectively cube-free, strongly
cube-free) if it does not contain a subword wu (respectively wuu, uua), where u is a non-empty
word and a is the first letter of w.

During the last two decades, different generalizations of Thue’s results have been studied. A
natural generalization is to consider, instead of squares or cubes, any n-th power, or, yet more
generally, any pattern (a word over some alphabet of variables). Works [3, 1] introduce a general
property of avoidability of a pattern and propose an algorithm to test it. A pattern is avoidable
iff for some k, there is an infinite word over k letters that does not contain a subword which is an
instance of the pattern. If k is fixed, the pattern is called k-avoidable.! In this terminology, Thue’s
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results state that pattern zx is 3-avoidable, and pattern zxz and, more strongly, the pattern xyxyx
are 2-avoidable. We refer the reader to [6, 7] for a survey of the area of pattern avoidability.

Many results on avoidability establish some threshold values or some “borderline conditions”.
As an example, let us mention the result of Roth [19] showing that every pattern over two variables
of length six is 2-avoidable. Six is the best possible value, as there are patterns of length five that
are not 2-avoidable (e.g. rzyzz).

As another example, Dejean [11] strengthens the Thue construction of a square-free word by
constructing an infinite word over three letters such that any two occurrences of a non-empty
word u are separated by at least |u|/3 letters, and she shows that this bound is optimal. There
is another formulation of this result: There exists an infinite word over three letters that not only
avoids repetitions (subwords uu), but does not admit subwords uv, where v is a prefix of u of length
more than 3|u|/4. Generalizations of this result for bigger alphabets have been obtained (see [4]
for more references; see also [8] for a related result).

In this paper, that fits into this general research direction, we address the following general
problem. Assume that each letter has some weight, and we try to minimize the total weight of a
word of given length avoiding the pattern. For example, if one letter is much “heavier” than the
others, this leads to the following problem: Assume that a pattern is k-avoidable but not (k — 1)-
avoidable, then what is the minimal proportion of the k-th letter in an infinite word avoiding the
pattern?

In this paper we solve this problem for the case of binary alphabet (k = 2), and patterns z"
(n-th power) for n > 2. Specifically, we show that the minimal proportion p(n) of one letter in an
n-th power-free binary word is %—i— # + # + (’)(%) As for strongly cube-free words, this proportion
is asymptotically 1/2, i.e. it is not possible in this case to reduce the number of occurrences of
one letter with respect to the other. Both these results can be expressed uniformly through the
generalized minimal frequency function based on the notion of exponent (fractional power) of a
word. In this way, we consider z-th power-free words (words without subwords of exponent x or
more) for any real > 2 (cf [16, 17, 10]). In the second part, we study properties of the generalized
minimal frequency function p(z) and prove, in particular, that it is discontinuous to the right of %
as well as to the right of all integer points n > 3. We then estimate the values p(n + 0) — the right
limit of p(z) at integer points n > 3 — and prove that p(n+0) =1 — L+ 2 — 2 4 O(L).

To the best of our knowledge, minimal density has been first studied in a related paper [14].
However, some work has been done on counting limit densities of subwords in words defined by
DOL-systems (cf e.g. [12]).

The paper is organized as follows. We introduce the notion of minimal density in Section 2. In
particular, we prove that two natural definitions of this notion lead to the same quantity. Section 3
is devoted to the estimate of p(n). In Section 4 we study the generalized minimal density function.
We conclude in Section 5 with possible directions for future work.

As usual, A* denotes the free monoid over an alphabet A. u € A* is a subword of w € A* if w
can be written as ujuuy for some ujug € A*. |u| stands for the length of u € A*. A% stands for the
set of one-way infinite words, often called w-words, over A, that are defined as mappings N — A.
For n € N, the word w obtained by concatenating n copies of a word v is called the n-th power of
v and denoted v™. A word v is a period of w iff w is a subword of v" for some n € N.

2 Minimal density: general definition and properties

In this section we analyse, in a general context, the notion of minimal limit density of a letter in
words of an infinite set.



Assume we have specified a set of words P C A*, and consider the set F' C A* of words that
don’t contain any word of P as subword. For example, P can be the set of instances of a given
pattern, and F' the set of words avoiding this pattern (cf. Introduction). Note for any set P of
prohibited subwords, the set F' of avoiding words is closed under subwords, that is if a word w is
in F, then any subword of w belongs to F' too. Moreover, any set F' closed under subwords is the
set of avoiding words for some P (just take P = A* \ F'). Therefore, being closed under subwords
can be considered as a characterization for the sets of words that can be specified by means of
prohibited subwords.

Assume we have an infinite set F C A* which is closed under subwords. Then there exist
an infinite word from A“ such that its every finite subword belongs to F. With interpretation of
pattern avoidance, this allows to speak about infinite words avoiding the set of patterns. We denote
by F“ C AY the set of all infinite words with every finite subword belonging to F'.

Let a € A be a distinguished letter, and we are interested in the minimal limit proportion of
a’s in words of F' of unbounded length. For w € F', define ¢,(w) to be the number of occurrences

of a in w and pu(w) = ) Denote F(l)={we F||w| =1}

|w]

Definition 1 For everyl € N, let po(F,1) = %minwep(l) co(w) and po(F) = lim;_,  pa(F,1). pe(F)
is called the minimal (limit) density of a in F'.

Note that the type of argument of p, will always make it clear if the density of an individual word,
or the minimal density is meant.

Obviously, all numbers p,(F, ) belong to [0, 1] and therefore p,(F') belongs to [0,1] too. The
following two Lemmas clarify the behaviour of the sequence {p,(F,1)}72, with respect to pg(F').

Lemma 1 For everyl € N, po(F,1) < pa(F).

Proof: Take any | € N and assume that {p,(F,[;)}5°, is a subsequence converging to p,(F'). Take
some [; > . By definition of p,(F,[;), there exists a word w; € F(I;) such that c,(w;) = ljpa(F,1;).
Consider [/;/l] non-overlapping subwords of w; of length [. Since F' is closed under subwords,
each of these subwords belongs to F(I) and then contains at least lpy(F,l) a’s. Therefore, w;
contains at least [I;/l|lpa(F,l) a’s, that is co(w;) > [li/l|lpa(F,l). We obtain that p,(F,l;) >
/U Lpa (Fy 1) [1; > (L)1) — Vlpa(F, 1)/l = (1 = (1/1;))pa(F,1). By taking the limit for i — oo, we
conclude that p,(F) = lim; e pa(F,1;) > lim; o (1 — (1/1;)) pa(F, 1) = pa(F,1). g

Lemma 2 pg(F) = limy_,o po(F,1) = Sup;>1 pa(F,1).

Proof: By Lemma 1, p,(F,1) < pa(F) for every [, and then lim; o0 pa(F,1) < po(F) = lim; , . pa(F,1).
Thus, pe(F,1) converge to po(F) from below, and then p,(F) = sup;>q po(F,1). O

By Lemma 2, the lower limit in Definition 1 can be replaced by the simple limit. Thus, the
definition p,(F) = lim;_, o min,ep) c“(lw) is correct and seems to capture in a right way the notion
of minimal density. However, there is another natural way to define the minimal limit density
directly in terms of infinite words F'“, and not as the limit density value for finite words. One may
ask if this approach always leads to the same density value or may lead to a different one.

For a word w € FUFY, let w[l : j] denotes the prefix of w of length j. The density of letter a in
an infinite word v € F* is naturally defined as the limit lim;_,, po(v[1 : j]). Obviously, this limit

may not exist. However, below we show that among all words for which this limit exists, there is




one that realizes the minimum of these limits, which is equal to p,(F'). This confirms that p,(F)
is the right quantity caracterizing the limit density.

We define an auxiliary measure o, (F,l) = min,¢ () maxi<j<; pa(w[l : j]). The following lemma
gives a key argument.

Lemma 3 For everyl € N, po(F,l) < 0,(F,l) < po(F).

Proof: It is easily seen that o4(F,l) > pa(F,l). Let us prove that o,(F,l) < p(F) for all [ € N.
Assume that o4(F, L) > po(F) for some L € N. This means that every word v € F' of length at
least L has a pefix v[l : j] with pa(v[l : j]) > po(F'). Let ¢ = min{pa(v[l : j]) — pa(F)} where
minimum is taken over all such prefixes. Take any word w € F(N) with N > %(pa(F) +¢). Find a
decomposition w = wiws . .. wy, such that jw;| < L and py(w;) > pa(F) for every j, 1 < j <m-—1,
and |wy,| < L. Then cq(w) > (po(F)+e)(|w| — L) and pg(w) > pa(F)—l—e—L(%) > pa(F)+5.

Since w was chosen arbitrarily, this contradicts to p,(F, N) < pg(F) (Lemma 1). O

Corollary 1 The limit lim;_, o, 04(n,l) exists and is equal to pg(F).
Lemma 4 There exists a word v € F* such that lim;j_, p,(v[1 : j]) ezists and is equal to p,(F).

Proof: From Lemma 3 it follows that for every [ € N, there exists a word w € F(I) with
p(w) = 04(n,1) < pa(F), that is max|<j<jw pa(w[l : j]) < po(F). Moreover, every prefix of w
verifies the same inequality. Therefore, the set of words w verifying the inequality forms an infinite
tree with respect to the prefix relation such that the parent of a word w in the tree is its immediate
prefix, obtained by removing the rightmost letter. Since the alphabet A is finite, the tree is finitely
branching. By Konig’s Lemma, there exists an infinite path in this tree which defines the infinite
word v with pg(v[l @ j]) < pao(F) for all j € N. Since po(F,j) < p(v[l : j]) < pa(F), the result
follows from Lemma, 2. O

Lemma 5 min,epe lim;_,o0 pa(v[1 : j]) = po(F), where minimum is taken over v € F* for which
the limit exists.

Proof: By Lemma 4, there exists a word v € F* such that lim;_, po(v[1 : j]) = pa(F). Therefore,
infyepe limj_o0 pa(v[l @ j]) < po(F). On the other hand, since v[1 : j] € F(j), then pq(v[l : j]) >
pa(F,7), then lim; o0 pa(v[l @ j]) > limjso0 po(F,J) = po(F) and infyecpe limj_o pa(v[l = j]) >
pa(F). The lemma follows. O

Lemmas 4 and 5 imply that there exists a word v € F“ that realizes the minimal limit
lim; 00 pa(v[1 : j]) among all words of F“ for which the limit exists. Moreover, this minimum
is equal p,(F). To avoid the problem of existence of the limit, we could replace it by the lower
limit and define the quanity infyepw lim;_,  pq(v[1 : j]) where the infimum is taken over all words
v € F¥. The proof of Lemma 5 shows that this value is also equal to p,(F'), and the infimum is
reached on some word v € F¥.

Finally, note that one might suggest yet another, though less natural definition of minimal letter
density as the value lim;_, . min,cpo pa(v[l : j]). Using Lemma 4 and arguments similar to the
proof of Lemma 5, it is easily shown that the lower limit here can be replaced by the simple limit
which is again equal to p,(F).

The equvalence of different definitions gives a strong evidence that p,(F) is an interesting
quantity to study. In this paper, we undertake this study for a particular family of sets F' — the
sets of n-th power-free binary words.



3 Minimal letter density in n-th power-free binary words

Consider an alphabet A. For a natural n > 2, a word w € A* is called n-th power-free iff it does
not contain a subword which is the n-th power of some non-empty word. We denote PF(n) C A*
the set of n-th power-free finite words. Words from PF'(2) are called square-free, and words from
PF(3) are called cube-free. If w € A* does not contain a subword uua, where u is a non-empty
word and a is the first letter of u, then w is called strongly cube-free. An equivalent property (see
[20]) is overlap-freeness — w is overlap-free if it does not contain two overlapping occurrences of
a non-empty word u. Well known Thue’s results [22, 23] state that there exist square-free words
of unbounded length on the 3-letter alphabet, and strongly cube-free words of unbounded length
on the 2-letter alphabet. An infinite sequence of strongly cube-free words can be constructed by
iterating the morphism h(0) = 01, A(1) = 10, known as Thue-Morse morphism. Note that the
existence of infinite strongly cube-free words on the 2-letter alphabet implies that for that alphabet
the set PF'(n) is infinite for every n > 3.

From now on we fix on the binary alphabet A = {0,1}. Our goal is to compute, for all n > 2, the
value p1 (PF(n)) — minimal density of 1 in the words PF(n). Note that by symmetry, p1(PF(n)) =
po(PF(n)), and to simplify the notation, we denote p (PF(n)) (respectively pi (PF(n),l)) by p(n)
(respectively p(n,[)) in the sequel. Similarly, we will drop the index in ¢;(w) and p;(w), and will
write ¢(w) and p(w) instead.

In [14] it has been proved that p(n) = 1 + (’)(#) Here, using a different method, we prove
the following more precise estimation, that corresponds to the first four terms in the asymptotic
expansion of p(n).

Theorem 1 p(n) =+ + 5 + L + O(5).

n

We first establish the upper bound

1 1 1 C
<4t 1
pn) < kot (1)
for all n > 3 and some positive constant C'. The proof is based on the following lemma.

Denote by «; the word 0°1.

Lemma 6 Let k > 3. Fori,j, 0 <14,j <k and i # j, consider a morphism h : {0,1}* — {0,1}*
defined by h(0) = a;, h(1) = oj. For a word w € {0,1}*, if w € PF (k) then h(w) € PF(k +1).

Proof: First observe that {h(0), (1)} is a prefix code, i.e. the inverse image w of any word h(w)
is unique. Furthermore, for any v € {0,1}*, the occurrences of 1 in h(u) delimit the images of
individual letters of w. This means that any subword of A(w) which ends with 1 and is preceeded
by 1 (or starts at the beginning of h(w)) is the image of some subword of w.

To prove the lemma, assume by contradiction that for some w € PF(k), h(w) contains a sub-
word v¥t1. Proceed by case analysis on the number of 1’s in v. If v contains no 1’s, then v**!
contains at least k+1 consecutive 0’s which is impossible as h(w) is a concatenation of words «;, «;.
If v contains one 1, then v = 0'10™, and v**! = 0'1(0!F™1)k0™. Since h(w) € {ay, a;j}*, we con-
clude that [ +m € {i,j} and w must contain k consecutive occurrences of the letter »~1(0!*™1).
Finally, if v contains s 1’s, then v = 0'la, ... ;,_,0™, and v**! = 0'1(ay, ... a;,_, 0™ 1)FO™.
Again, [ +m € {i,7} and w contains the k-th power of the inverse image h~'(a, ... q;,_,07™1).
a



Lemma 7 For every n > 4,
1
< 2
o) € s )

Proof: For [ € N, take a word w € PF(n — 1) with |w| = [ and p(w) = p(n — 1,1). De-
note by h the morphism defined by h(0) = a,—1, h(1) = ay—2. Let u = h(w). By Lemma 6,

u € PF(n). Since c¢(u) = |w|, and |u| = (n — 1)c(w) + n(|Jw| — ¢(w)) = n|w| — ¢(w), we have
p(n,|ul) < p(u) = % = nﬁ;(w) = nfp(rlzfl ik Taking the limit for [ — oo, and then |u| — oo, we
have p(TL) S $ O

Upper bound (1) is now proved by simple induction on n > 3. Using the trivial inequality
p(3) < 1/2, the base case n = 3 can be satisfied by choosing any constant C' > 57/2. To prove the
inductive step, we apply Lemma 7. This leads to the inequality

1 1 1 1 C
C i c VST w s
n— (ﬁ T T T (n—1)5)

for n > 4, which reduces to the polynomial inequality
(=3 +C)nb + (=5C +8)n° + (8C — 9n* + (2—6C)n® + (=3C +3)n?+ (3C - 1)n— (C* +C) >0

After substituting C' = 30, the routine check shows that the inequality holds for all n > 4 (substitute
n — 4 for n, expand and notice that all coefficients get positive). This proves that upper bound (1)
holds for C' = 30.

Note that constant C' can be reduced if we take into consideration the next term in the asymp-
totic expansion. Using a similar argument, it can be shown that

1 1 1 3 Ch
p(n)§ﬁ+—3+m+—5+

n n nb

for C; = 90.

Now we turn to bounding p(n) from below, and prove the following lower bound.

n—1

p(n) > — (3)

n®—n-—1

for all n > 3.

Consider an arbitrary finite n-th power-free word w. First, group its letters into blocks a; = 0°1,
0 <4 < n—1. For a technical reason we assume that w does not start with «,_1. If it does,
we temporarily remove the first symbol 0. w is uniquely decomposed into a concatenation of
«;’s and a suffix of at most n — 1 0’s. Then, we group occurrences of q;’s into larger blocks
B(m,k) = (ap—1)"ag, 0 < m <n—1,0 < k < n— 2. Informally, blocks # are delimited by
occurrences of o; with ¢ < n—2. Again, w is uniquely decomposed into blocks § and the remaining
suffix Q of length at most n2 — 1 (n — 1 occurrences of a,, 1 followed by n — 1 0’s). We proceed by
grouping blocks ( into yet more large blocks. Let

V(Za ko, k1, ... aks) = ﬁ(la ]{70),8(”— L, kl) s ﬁ(n_ L ks) = (an—l)lako (an—l)nilakl s (an—l)nilaksa

where 0 <1 <n—-2,5>0,0<kyki,...,ks <n— 2. Blocks vy are delimited by each occurrence
of B(l,k) with [ < n — 2. Note that since w starts with ag, k¥ < n — 2, it starts with (0, %) and



therefore the first block « starts at the beginning of w. Thus, the decomposition of w is uniquely
defined with a possibly remaining suffix Q of length up to n? — 1. Taking into account the first
possibly removed 0, we have w = Pw'Q, where |P| < 1,|Q| < n?—1, and w' is uniquely decomposed
into blocks 7.

Let us now compute the minimal possible ratio of 1’s in blocks . Consider a block
v(l, ko, k1,. .., ks). We distingish two cases:

Case s > 1: We show that k; + kj;1 < n — 2 for every j, 0 < j < s — 1. Indeed, consider
the subword ag; (an—1)" " Loy ki1 of v, ko, k1,...,ks). If kj + kji1 > n — 1 then it has the prefix
(0ki10m~1=k5)" which contradicts to the n-th power-freeness of w.

Using this observation, we can bound

im < %ln s impair,
- kil = sn+(n—1) s pair.
Then |y(I, ko, k1,...,ks)| < Sn+(n—1) +sn(n —1) +In = s(n®> — &) + nl + n — 1. Since the

qunberoflisin«ya,ko,kh...,kg is ns 41 + 1, we have p(y(l, ko, k1, ..., ks)) > Rzyggfggiﬁji.

The right-hand side minimizes when / is maximal (Il = n — 2) and s is minimal (s = 1). We then

obtain p(y(l, ko, k1,...,ks)) > 27122?7%1_1

Case s = 0: In this case (I, ko) = B(l, ko), |7(l, ko)| = In+ko+ 1, and p(vy(l, ko)) = mfrﬁ The
right-hand mininizes when both [ and kg are maximal (I = kg = n — 2), which gives p(y(l, ko)) >

n—1
n2-n—1"

The second case gives a smaller bound for all n > 3 and we conclude that p(y(l, ko, ..., ks)) >
Since w' is a concatenation of blocks 7, this implies p(w') > —2~1—. Returning to w, we

n2 —n— 1 n2—n—1
have o(w) > e(w') > 2ZLgw'| > 5 (jw| - n?), and then ol )= Taf 2 A= iy As

w is an arbitrary n-th power-free word, we have p(n,l) > —"—— L(1- —) for all [. Taking the limit
n— 1

for [ going to infinity, we obtain p(n) > ———- This implies in particular that

112
+=+o+= (4)

1
>_

p(n) > -t -

d

Lower bound (4) together with upper bound (1) implies Theorem 1.

4 Generalized minimal density function

As a function on integer argument n > 3, p(n) admits an interesting extension to real argument.
The extension is achieved through the notion of ezponent (see [11, 5, 8]) that generalizes the notion
of n-th power. The exponent of a word w is the ratio |—M, where the minimum is taken over all
periods v of w. Instead of n-th power-free words, we can now consider words which don’t contain
subwords of exponent = or more, where z is a real number (see, e.g., [16, 17, 10]).

Formally, for a real number z, define PF(x) (resp. PF(x + ¢)) to be the set of binary words
that do not contain a subword of exponent greater than or equal to (resp. strictly greater than) x
Note that PF(2+¢) is precisely the class of strongly cube-free words. For the binary alphabet, the



existence of infinite cube-free words implies that PF(z) (resp. PF(z+¢)) is infinite for > 2 (resp.
for 2z > 2). Using the results of Section 2, values p1 (PF(z)) and p1(PF(x +¢)) are well-defined for
x > 2 and x > 2 respectively. Similar to the previous section, we denote them respectively by p(z)
and p(z +¢). Notation p(z,[) and p(z + ¢,1) is defined accordingly. Note that for natural values of
x > 2, p(z) coincides with p(n) studied in the previous section.

4.1 Discontinuity of p(zx)

Now we study the generalized function p(z) and prove, in particular, that it has an infinite number
of discontinuity points.

Functions p(z), p(z + €) are non-increasing with values from [0, 1]. Therefore, at every z > 2
there exists a right limit, denoted p(z + 0), and p(z + 0) = sup,-, p(y). The following lemma is
useful.

Lemma 8 For every z > 2, p(z +0) = p(z + ¢€).

Proof: Clearly, for every y > z, p(y) < p(z +¢), and therefore p(z +0) = sup,», p(y) < p(z +¢).
Assume that p(x + 0) < p(x + €). Then by Lemma 2, for some I, p(z +¢,l) > p(z +0). The
exponents of subwords of words of length [ can take finitely many possible values. Let Z; be the
smallest such value strictly greater than z. Then p(z + ¢,1) = p(#;,]) > p(x + 0). By Lemma 1,
p(i1) > p(#;,1) and then p(#;) > p(2+40). This contradicts to the fact that p(z+0) = sup,~, p(y). O

Let us now compute the value p(2 4 ¢). The class PF (2 +€) of strongly cube-free (overlap-free)
binary words has been extensively studied (see [18, 13]) and the structure of these words has been
thoroughly characterized. In particular, it is known that every strongly cube-free word can be
written as vjvve, where |v1| < 2, Jvg] < 2 and v € {01,10}* (see Lemma 2.2 of [13]). This implies
immediately that p(2 +¢) = % However, a stronger result can be stated.

Lemma 9 For all x € (2, %], p(z) = 1.

Proof: To prove that a word w can be decomposed as above, it is sufficient to assume that w
does not contain subwords vva where |v| < 3 and «a is the first letter of v. We refer the reader to
the proof of Lemma 2.1 in [13] to check this out. O

We now show that p(x) is discontinuous at = = 7/3. Specifically, we prove

7 10
L < =
p (3 +5> =91
Together with p(%) = 1 (Lemma 9), this proves a jump of p(z) to the right of z = %
Consider the morphism h defined by

Theorem 2

h(0) = 011010011001001101001,
h(1) =100101100100110010110.

We call h(0),h(1) coding words. Note that a coding word is uniquely determined by its first (or
last) letter. Consider a word w € {0, 1}* and its image h(w). An occurrence of h(a), a € {0,1}, in
h(w), corresponding to the image of a in w, is called a coding occurrence. Consider an occurrence



in h(w) of some subword u, that is h(w) = ujuug for some wuy,us € {0,1}* . Consider the minimal
subword w' of w such that u is covered by h(w'), that is h(w) = h(wy)h(w')h(ws), h(w') = d1uds,
h(wy)d1 = uy, d2h(we) = ug, and d§; (resp. d2) is a proper prefix (resp. suffix) of a coding occurrence.
We call 07 the precursor of this occurrence of u.

We show that h preserves the property of absence of subwords of exponent greater than 7/3.

Lemma 10 For every w € {0,1}*, if w does not contain subwords of exponent greater than 7/3,
then neither does h(w).

Proof: Assume that w does not contain subwords of exponent greater than 7/3. First show that
h(w) does not contain a subword of exponent greater than 7/3 and with a period less than or equal
to 15. If such a subword exists, there exists another one, say v, of length at most 36, with the
same period and of exponent greater than 7/3. Since |h(0)| = |h(1)| = 21, v is covered by three
contiguous coding occurrences. Since w does not contain 000 or 111, v occurs in one of A(001),
h(010), A(011), A(100), h(101), A(110). A direct exhaustive check shows that none of these words
contains a subword of exponent greater than 7/3 and with a period at most 15.

Now assume that h(w) contains a subword v = vv1v9, where |v1| > 16, vy is a prefix of vy, and
|va| > |v1]/3. Let w' be the shortest subword of w such that h(w') contains v, that is h(w') = d1vd2,
where 41,09 € {0,1}*, and 07 is the precursor of the considered occurrence of v.

We now observe that if u is a subword of h(w) of length 16 or more, then the precursor of u
is uniquely defined for all occurrences of w. Since every subword of length 16 is located within
two coding occurrences, this can be shown by checking this property for all subwords of length 16
occurring in words h(00), h(01), h(10), h(11). 2

By applying this argument to the two occurrences of v; in v and by using properties of h, we
can rewrite h(w') = h(a)vih(a)vih(a)vhde, a € {0,1}. Now observe that
(1) v} is non-empty (otherwise w would contain aaa),

(2) |h(@)v}] = for . [h(a)o}] > fool,

(3) vhde is a prefix of v|h(a),

(4) v} = h(w;) and vhdy = h(ws) for some wy,wy € {0,1}.

By taking the inverse image of h(w'), we get w' = awjaw;awsy, where wy is a prefix of wya, and
[Ala)vy| +10a] ool 1 Jouf _ 1

21 251 >3 91 — zlawl

We conclude that w' is a word of exponent greater than 7/3, which is a contradiction. O

laws| =

Theorem 2 now follows from Lemma 10. Consider words A (0), h2(0),...,k*(0),.... By Lemma 10,
these words don’t contain subwords of exponent greater than 7/3. On the other hand, since both
h(0), h(1) are of length 21 and contain ten 1’s, then p(h¥(0)) = 22|h*(0)|. By Lemma 2, we conclude
that p(7/3 +¢) < 2.

By Lemma 8, p(7/3 +0) < 22 which proves that p(z) has a jump at z = 7/3.

Now we show that, besides z = 7/3, the generalized function p(z) is discontinuous to the right
at all integer points x > 3. We use the following lemma which is somewhat similar to Lemma 6.
Recall that a; = 0°1.

Lemma 11 Let A = {a1,...,ax} and n > 3. Let h : A — {0,1} be a morphism such that
h(a;) = om;, where m; <n for all 1 <1i <k, and m; # m; for all i # j. Then for every (n —1)-th
power-free word w € A*, h(w) is (n + €)-th power-free.

2This does not hold for subwords of length 15. For example, 010011001011001 occurs in h(01) as well as in h(10),
and these occurrences have different precursors.



Proof: Similar to Lemma 6, morphism A is injective, and every subword of h(w) ending with 1
and preceeding by 1 is the image of a subword of w.

Assume that h(w) is not (n+¢)-th power-free. Then it contains a subword u"a for a non-empty
word u € {0,1}* and a the first letter of u. If u contains no 1’s, then u"a contains at least n + 1
consecutive 0’s, which is impossible as h(w) is a concatenation of a,,’s, and m; < n. Assume that
u contains at least one 1, that is u = 0P1u', p > 0, v’ € {0,1}*. Then u" = (0P1u')" = 0P1v" '/
for v = «/0P1. By properties of morphism h, each occurrence of v is the image of some subword of
w under morphism h. Since this subword is the same for all occurrences of v, then w contains a
subword (h~!(v))"~! which contradicts to n-th power-freeness of w. O

Lemma 12 For every n > 4,

1
p(n+e) <
n+1—pn-—1)

(5)

Proof: Denote hy : {0,1}* — {0,1}* the morphism defined by h,(0) = @, hn(l) = ap_1. Let
w; be an (n — 1)-th power-free word of length [ with minimal number of 1’s (p(w;) = p(n — 1,1)).
Clearly, |h,(w)| = (n+1)(I —c(wy)) +ne(w;) = (n+ 1)l — c¢(w;), and ¢(hy,(w;)) = I. By Lemma 11,
hn(w;) is (n + €)-th power-free, and we have

[ 1

P+ &, b (w0)) < plhn ) = ooy =

By taking the limit for [ — 0o (see Lemma 2), inequality (5) follows. O
Inequality (5) together with the trivial inequality p(n — 1) < 1/2 gives p(n + ¢) < n_11/2 <1
for n > 4. On the other hand, from lower bound (3) it follows that p(n) > nZ”__l - > 1. This im-

plies that p(n+0) = p(n+¢) < p(n), that is p(z) has a jump to the right of all integer points n > 4.

For n = 3, inequality (5) does not make sense (p(2) is not defined). Therefore, the case n = 3
should be analysed separately.

Lemma 13 p(3+¢) < 1.

Proof: Take a 3-letter alphabet A = {1,2,3}. For w € A*, let ¢;(w) (i =1,2,3) denote the num-
ber of occurrences of ¢ in w. For any [ € N, choose a square-free word w; € A* of length [ such that
c1(w) < co(w) < c3(w). Note that for all [ € N, w; is well-defined, which follows from the existence
of infinite square-free words on the 3-letter alphabet. Consider the morphism A : A* — {0,1}*
defined by k(1) = 01, h(2) = 001, h(3) = 0001. Then |h(w;)| = 2¢1(w;) + 3ca(wy) + des(wy) =
31+ (cs(wy) —c1(wy)) > 31, and p(h(w;)) < 4 = 3. By Lemma 11, word wy is (3 + ¢)-th power-free,

and then p(3+¢, |h(w;)|) < 1. Taking the limit for / — 0o and using Lemma 2, we get p(3+¢) < 1. O

On the other hand, from lower bound (3) it follows that p(3) > 2. Therefore, p(z) has a jump
to the right of z = 3.

Putting all together, we obtain
Theorem 3 p(z) is discontinuous to the right of x = L as well as to the right of all natural points

3
n > 3.

10



4.2 Estimating p(n + ¢)

In Section 3 we obtained an estimate of p(n), for natural n > 3 (Theorem 1). Theorem 3 says that
p(x), considered as function on real argument, has a jump on the right of all these points. In this
final part of the paper, we estimate the size of these jumps by estimating the values p(n + ¢) for
natural n > 3. Recall that p(n 4 ¢) = p(n + 0) by Lemma 8.
We start with proving the lower bound
n—1

n? —2 (6)

for all n > 3. The proof follows closely the proof of lower bound (3) from Section 3. Therefore, we
only give a sketch of it, underlining the differences with the proof of Section 3.

Consider a finite (n + ¢)-th power-free word w. As in Section 3, we group its letters into blocks
a; = 01, where 0 < 7 < n (w may contain n-th powers). Again, we assume that w does not
start with «,, otherwise we remove the first 0 into a separate prefix. We now note that under
this assumption, w cannot contain a subword («,,)". Indeed, since w does not start with a,, the
occurrence of (a;,)" is preceeded by at least one letter. This latter cannot be 0, as w would then
have a subword 0"*! which contradicts to the fact that w does not contain subwords of exponent
greater than n. This letter cannot be 1 either, as this would give the subword (10™)"1 which again
contradicts to the fact that w is (n + £)-th power-free. Thus, no occurrence (ay,)" exists.

We then group «;’s into blocks (m, k) = (ap)™ag, 0 <m <n—1,0 <k <n—1, and then
further into blocks

’Y(lv kUa kla s 7ks) = /8(17 ko)ﬂ(’ﬂ - ]-7 kl) s B(’I’L - ]-7 ks) = (an)lako (an)nilakl T (an)nilaksa

where 0 <[ <n—2,5>0,0<kyki,....ks <n—2.
We now compute the minimal value of p(y(l, ko, k1, ..., ks)). Consider a block (I, ko, k1, ..., ks).
As in Section 3, we distingish two cases:

p(n+¢e) >

Case s > 1: Here we show that k;+kj11 < n for every j, 0 < j < s—1. By contradiction, assume
that kj +kj 41 > n. If k; = 0 then kj,1 > n which is a contradiction. Assume k; > 0, and consider
the subword ay, (an—1)" tay,,,. If kj + kji1 > n, then it has the prefix (0% 10" %3 )" followed by
at least one 0. This gives a subword of exponent greater than n which is a contradiction.

Now we can bound >%_ e, | < (5+1)n+s, and then |y(I, ko, k1, . . ., ks)| < [(n+1)+s(n?+2)+

n. Then p(y(l, ko, k1,...,ks)) > l(nﬂ)lis”(fl"giﬂHn. Again, the right-hand side minimizes when [ is
2
maximal (I = n—2) and s is minimal (s = 1). Finally for this case, p(y(l, ko, k1, .., ks)) > %33_7_21_2
2

Case s = 0: In this case y(I,ko) = B(l, ko), |v(l,ko)] = l(n + 1) + ko + 1, and p(v(l, ko))

Mﬁ. The right-hand mininizes when both [ and k¢ are maximal (I =n — 2, kg = n — 1),

which gives p(y(l, ko)) > &=L

= n2-2°

The second case gives a smaller or equal bound for all n > 3 and we conclude that

p(v(l ko, ... kg)) > :2__12. Since w is a concatenation of blocks 7 (with possibly remaining prefix

and suffix of bounded length), this implies inequation (6).
Turning to asymptotic expansion of (6), we have
1 1 2 2 1

P(”‘FE)ZE—ﬁvLﬁ—H‘FO(ﬁ)- (7)
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To obtain the lower bound of p(n + ¢) that matches upper bound (7), it suffices to substitute
into inequality (5) the upper bound of p(n — 1) implied by (1) (instead of trivial upper bound

p(n —1) < 3).
We then get
1 1 1 2 2 1
< = —_-—— — —_— O —_—
p(n+e) < 2+n3 n4+ (n5)

1 1 1 c
n+1-— (nfl T T (n—1)5> v
Together with (7), this gives

Theorem 4 p(n+e) =+ — 5+ 5 — 4 + O(%).

5 Concluding remarks

In this paper we initiated the study of minimal density function for the words avoiding a set of
patterns. In particular, we analysed the minimal density p(z) of a letter in binary words that don’t
contain an exponent greater than or equal to 2. We proved p(z) to be discontinuous to the right
of point 7/3 as well as of all integer points starting from 3, and we gave an estimate of values p(n)
and p(n +¢).

Many questions about minimal density function p(z) remain open. Does it have other discon-
tinuities? What are they? Is this function piece-wise constant? All these questions are still to be
answered.

Another direction of generalizing the results of this paper is to consider the general notion of
k-avoidability of a pattern (see Introduction). The general question is: If a pattern p is not k-
avoidable but is (k + 1)-avoidable, what is the minimal frequency of a letter in an infinite word over
(k + 1) letters avoiding p? For example, what is the minimal frequency of a letter in an infinite
ternary square-free word? A pattern which is 4-avoidable but not 3-avoidable is given in [2]. What
is the minimal proportion of the 4th letter needed to avoid that pattern?
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