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Abstract. We study the problem of finding, in a given word, all maximal
gapped palindromes verifying two types of constraints, that we call long-
armed and length-constrained palindromes. For both classes, we propose
algorithms that run in time O(n + S), where S is the number of output
palindromes. Both algorithms can be extended to compute biological
gapped palindromes within the same time bound.

1 Introduction

A palindrome is a word that reads the same backward and forward. Palindromes
have long drawn attention of computer science researchers. In word combina-
torics, for example, studies have been made on palindromes occurring in Fi-
bonacci words [Dro95], or in general Sturmian words [DP99,DLDL05]. More
generally, a so-called palindrome complexity of words has been studied [ABCD03].

From an algorithmic perspective, identifying palindromic structures turned
out to be an important test case for different algorithmic problems. For exam-
ple, a number of works have been done on recognition of palindromic words
on different types of Turing machines [Sli73,Gal78,Sli81,BBD+03]. Palindrome
computation has also been an important problem for parallel models of compu-
tation [ABG94,BG95], as well as for distributed models such as systolic arrays
[Col69,vdSSer].

Interestingly, a problem related to palindrome recognition was also consid-
ered in the seminal Knuth-Morris-Pratt paper presenting the well-known string
matching algorithm [KMP77]. The relation between classical string matching
and palindrome detection is not purely coincidental. Both the detection of a
pattern occurrence and the detection of an even prefix palindrome (even palin-
drome occurring at the beginning of the input string) can be solved on the 2-way
deterministic push-down automaton (2-DPDA), and therefore by Cook’s theo-
rem [Coo71], it can be solved by a linear algorithm on the usual RAM model.

Manacher [Man75] proposed a beautiful linear-time algorithm that computes
the shortest prefix palindrome in the on-line fashion, i.e. in time proportional
to its length. Actually, the algorithm is able to compute much more, namely to
compute for each position of the word, the length of the biggest palindrome cen-
tered at this position. This gives the exhaustive representation of all palindromes
present in the word.



Words with palindromic structure are important in DNA and RNA sequences,
as they reflect the capacity of molecules to fold, i.e. to form double-stranded
stems, which insures a stable state of those molecules with low free energy.
However, in those applications, the reversal of palindromes should be combined
with the complementarity relation on nucleotides, where c is complementary to
g and a is complementary to t (or to u, in case of RNA). Moreover, biologically
meaningful palindromes are gapped, i.e. contain a spacer between left and right
copies. Those palindromes correspond, in particular, to hairpin structures of
RNA molecules, but are also significant in DNA (see e.g. [WGC+04,LJDL07]). A
linear-time algorithm for computing palindromes with fixed spacer length is pre-
sented in [Gus97]. A method for computing approximate biological palindromes
has been proposed e.g. in [PB02].

Results In this paper, we are concerned with gapped palindromes, i.e. subwords
of the form vuvT for some u, v, where vT is v spelled in the reverse order. Oc-
currences of v and vT are called respectively left and right arm of the palin-
drome. We propose algorithms for computing two natural classes of gapped
palindromes. The first class, that we call long-armed palindromes, verifies the
condition |u| ≤ |v|, i.e. requires that the length of the palindrome arm is no less
than the length of the spacer. The second class is called length-constrained palin-
dromes and is specified by lower and upper length bounds on the spacer length
MinGap ≤ |u| ≤ MaxGap, and a lower bound on the arm length MinLen ≤ |v|,
where MinGap, MaxGap, MinLen are constants. Moreover, for both definitions,
palindromes are additionally required to be maximal, i.e. their arms cannot be ex-
tended outward or inward preserving the palindromic structure. For both classes,
our algorithms run in worst-case time O(n+S), where n is the length of the input
word and S is the number of output palindromes, for an alphabet of constant
size. (For length-constrained palindromes, our algorithm is actually independent
on the alphabet size.) We note that because of the variable spacer length, the
above-mentioned algorithm from [Gus97] cannot be efficiently applied to our
problems. Both algorithms can be modified to find biological long-armed and
length-constrained palindromes within the same running time.

2 Basic definitions

Let wT denote the reversal of w. An even palindrome is a word of the form
vvT , where v is some word. An odd palindrome is a word vavT , where v is a
word, and a a letter of the alphabet. A gapped palindrome is a word of the form
vuvT for some words u, v such that |u| ≥ 2. Occurrences of v and vT are called
respectively left arm and right arm of the palindrome.

In this paper, we will be interested in two classes of palindromes. A gapped
palindrome vuvT is long-armed if |u| ≤ |v|. For pre-defined constants MinGap,
MaxGap (MinGap ≤ MaxGap) and MinLen, a gapped palindrome vuvT is
called length-constrained if it verifies MinGap ≤ |u| ≤ MaxGap and MinLen ≤
|v|.



Consider a word w = w[1] . . . w[n] that contains some gapped palindrome
vuvT . Assume v = w[l′..l′′], and vT = w[r′..r′′]. We use notation w[l′ : l′′, r′ : r′′]
for this palindrome. This palindrome is called maximal if its arms cannot be
extended inward or outward. This means that (i) w[l′′ + 1] 6= w[r′ − 1], and (ii)
w[l′ − 1] 6= w[r′′ + 1] provided that l′ > 1 and r′′ < n.

3 Long-armed palindromes

Let w = w[1] . . . w[n] be an input word. For technical reasons, we require that the
last letter w[n] does not occur elsewhere in the word. In this section, we describe
a linear-time algorithm for computing all gapped palindromes occurring in w
which are both maximal and long-armed.

The algorithm is based on techniques used for computing different types of
periodicities in words [KK05,KK00a], namely on (an extension of) the Lempel-
Ziv factorization of the input word and on longest extension functions. The
variant of longest extension functions used here is defined as follows. Assume we
are given two words u[1..n] and v[1..m] and we want to compute, for each position
j ∈ [1..n] in u, the length LP (j) of the longest common prefix of u[j..n] and v.
Assume m ≤ n (otherwise we truncate v to v[1..n]). Then this computation can
be done in time O(n) (see [KK05]). If we have to compute LP (j) for a subset of
positions j ∈ [1..N ] for some N ≤ n, then the time bound becomes O(N + m).
Similar bounds apply if we want to compute the lengths of longest common
suffixes of u[1..j] and v.

We now describe the algorithm. First, we compute the reversed Lempel-Ziv
factorization of w = f1f2 . . . fm defined recursively as follows:

– if a letter a immediately following f1f2 . . . fi−1 does not occur in f1f2 . . . fi−1

then fi = a,
– otherwise, fi is the longest subword of w following f1f2 . . . fi−1 which occurs

in (f1f2 . . . fi−1)
T .

This factorization can be computed in time O(n log |A|), where A is the alphabet
of w, by building the suffix tree for wT with the Weiner’s algorithm that processes
the suffixes from shortest to longest (i.e. processes the input word from right
to left) [CR94]. For i = 1, 2 . . .m, we construct the suffix tree Ti of the word
(f1f2 . . . fi)

T , and compute fi+1 as the longest word that occurs immediately
after f1f2 . . . fi in w and is present in Ti. If no such word exists, fi+1 is defined
to be the letter immediately following f1f2 . . . fi in w. For each i = 1, 2, . . . , m,
denote fi = w[si..ti] (si = ti−1 + 1) and Fi = |fi| = ti − si + 1.

After computing the reversed Lempel-Ziv factorization, we split all maximal
long-armed palindromes into two categories that we compute separately: those
which cross (or touch) a border between two factors and those which occur
entirely within one factor. Formally, for each i = 1, 2 . . .m, we define the set
P (i) of all maximal long-armed palindromes w[l′ : l′′, r′ : r′′] that verify one of
the conditions:

1. r′′ = ti−1 and l′ > si−1, or



2. ti−1 < r′′ ≤ ti and l′ ≤ si.

Complementary, define Q(i) to be the set of all maximal long-armed palin-
dromes w[l′ : l′′, r′ : r′′] that verify l′ > si and r′′ < ti.

Observe that the set ∪m
i=1P (i) ∪ ∪m

i=1Q(i) contains all maximal long-armed
palindromes in w, and all sets P (i), Q(i) are pairwise disjoint.

3.1 Computing P (i)

Each set P (i) is further split into three disjoint sets P ′(i) ∪ P ′′(i) ∪ P ′′′(i).
P ′(i) ⊆ P (i) is the set of all palindromes w[l′ : l′′, r′ : r′′] which satisfy one of
the conditions:

1. r′′ = ti−1 and l′ > si−1, or
2. ti−1 < r′′ ≤ ti and r′ ≤ si.

P ′(i) are maximal long-armed palindromes with the right arm crossing (or touch-
ing from the right) the border between fi−1 and fi.

P ′′(i) ⊆ P (i) contains all palindromes w[l′ : l′′, r′ : r′′] which verify both
l′ ≤ si and l′′ ≥ ti−1. Palindromes of P ′′(i) have their left arm crossing (or
touching) the border between fi−1 and fi.

Finally, P ′′′(i) ⊆ P (i) contains all palindromes w[l′ : l′′, r′ : r′′] which satisfy
the conditions l′′ < ti−1 and r′ > si. Palindromes of P ′′′(i) are those for which
the border between fi−1 and fi falls inside the spacer.

Computing P ′(i). Let w[l′ : l′′, r′ : r′′] be a palindrome from P ′(i), and
let q = r′ − l′′ − 1 be the spacer length. Then the right arm w[r′..r′′] is a
concatenation of a possibly empty prefix u = w[r′..ti−1] and a possibly empty
suffix v = w[si..r

′′]. Then the left arm w[l′..l′′] is a concatenation of the prefix
vT = w[l′..ti−1 − j] and suffix uT = w[si − j..l′′] where j = 2|u| + q (see Fig. 1
in the Appendix). Moreover, since the palindrome is maximal, v has to be the
longest common prefix of words w[si..n] and w[1..ti−1 − j]T , and u has to be
the longest common suffix of words w[1..ti−1] and w[si − j..n]T . Since the spacer
length q is no more than the arm length |u| + |v|, we have q ≤ |u| + |v|, i.e.
j ≤ 3|u|+ |v|.

Lemma 1. |u| < Fi−1.

Proof. If |v| = 0, i.e. r′′ = ti−1, then the lemma follows from the condition
l′ > si−1. If |v| > 0, i.e. r′′ > ti−1, then from |u| ≥ Fi−1 we obtain that the
prefix w[si−1..r

′′] of w[si−1..n] occurs in (f1f2 . . . fi−2)
T as a subword of the left

arm of the palindrome, which contradicts the definition of fi−1 = w[si−1..r
′′] as

the longest prefix of w[si−1..n] that occurs in (f1f2 . . . fi−2)
T . (If fi−1 is a single

letter that doesn’t occur to the left, then we obviously have |u| = 0.)

From the condition r′′ ≤ ti we also have |v| ≤ Fi and then j ≤ 3|u| + |v| <
3Fi−1 +Fi. For all j < 3Fi−1 +Fi, we compute the longest common prefix LP (j)



of words w[si..si+1] and w[1..ti−1 − j]T and the longest common suffix LS(j)
of words w[si−1..ti−1] and w[si − j..n]T (see Fig. 1). These computations can
be done in time O(Fi−1 + Fi). Then each palindrome of P ′(i) corresponds to a
value of j which satisfies the following conditions:

1. LP (j) + 3LS(j) ≥ j,
2. if LP (j) = 0 then j < Fi−1,
3. LS(j) < j/2.

Inversely, if j satisfies the above conditions, then there exists a palindrome
w[l′ : l′′, r′ : r′′] for l′ = si − j − LP (j), l′′ = ti−1 − j + LS(j), r′ = si − LS(j),
and r′′ = ti−1 + LP (j). Once conditions 1-3 are verified for some j, the corre-
sponding palindrome is output by the algorithm. The whole computation takes
time O(Fi−1 + Fi).

Computing P ′′(i). Let w[l′ : l′′, r′ : r′′] be a maximal long-armed palindrome
from P ′′(i), and q = r′−l′′−1 be the spacer length. Then the left copy w[l′..l′′] is
a concatenation of a possibly empty prefix u = w[l′..ti−1] and a possibly empty
suffix v = w[si..l

′′]. Then the right arm w[r′..r′′] is a concatenation of the prefix
vT = w[r′..ti−1 + j] and suffix uT = w[si + j..r′′], where j = 2|v| + q. Moreover,
v has to be the longest common prefix of words w[si..n] and w[1..ti−1 + j]T , and
u has to be the longest common suffix of words w[1..ti−1] and w[si + j..n]T (see
Fig. 2). Since the spacer length q has to be no more than the arm length |u|+ |v|,
we have that q ≤ |u| + |v|, i.e. j ≤ |u| + 3|v|.

Similarly to the case of P ′(i), we compute, for each j = 1, 2, . . . , Fi, the
longest common prefix LP (j) of words w[si..ti] and w[si..ti−1 + j]T and the
longest common suffix LS(j) of words w[1..ti−1] and w[si + j..si+1]

T . Tables LP
and LS are computed in time O(Fi).

Each palindrome of P ′′(i) corresponds to a value of j verifying the following
conditions:

1. 3LP (j) + LS(j) ≥ j,
2. j + LS(j) ≤ Fi,
3. LP (j) < j/2.

If some j satisfies the above conditions, the algorithm outputs the palindrome
w[l′ : l′′, r′ : r′′] where l′ = si − LS(j), l′′ = ti−1 + LP (j), r′ = si + j − LP (j),
and r′′ = ti−1 + j + LS(j). The computation of P ′′(i) is done in time O(Fi).

Computing P ′′′(i). To compute P ′′′(i), we partition it into disjoint subsets
P ′′′

k
(i) for k = 1, 2, . . . , ⌊log2 Fi⌋, where P ′′′

k
(i) is the set of all palindromes w[l′ :

l′′, r′ : r′′] from P ′′′(i) such that si + ⌊Fi

2k ⌋ ≤ r′′ < si + ⌊ Fi

2k−1 ⌋.

Lemma 2. For any palindrome w[l′ : l′′, r′ : r′′] ∈ P ′′′

k
(i), we have r′ ≤ si+⌊Fi

2k ⌋.

Proof. If r′ > si + ⌊Fi

2k ⌋, the arm length of the palindrome is no more than ⌊Fi

2k ⌋,

and then the spacer length is no more than ⌊Fi

2k ⌋. Then, l′′ ≥ r′ − 1 − ⌊Fi

2k ⌋ ≥ si

which contradicts the definition of P ′′′(i).



By the lemma, the right arm of the palindrome is a concatenation of a
possibly empty prefix u = w[r′..ti−1 + ⌊Fi

2k ⌋] and suffix v = w[si + ⌊Fi

2k ⌋..r
′′].

Similar to previous cases, u has to be the longest common suffix of the words
w[1..ti−1 + ⌊Fi

2k ⌋] and w[si + ⌊Fi

2k ⌋ − j..n]T , and v has to be the longest common

prefix of the words w[si + ⌊Fi

2k ⌋..n] and w[1..ti−1 + ⌊Fi

2k ⌋− j]T , where j = 2|u|+ q
and q is the spacer length of the palindrome (see Fig. 3).

Moreover, u and v satisfy the relations |u| < ⌊Fi

2k ⌋ and 0 < |v| ≤ ⌊ Fi

2k−1 ⌋−⌊Fi

2k ⌋.

Thus, q ≤ |u|+ |v| < ⌊ Fi

2k−1 ⌋, and then j = 2|u|+ q < 2⌊Fi

2k ⌋+ ⌊ Fi

2k−1 ⌋ < 2⌊ Fi

2k−1 ⌋.

On the other hand, from the condition l′′ < ti−1 we have also |u| < j − ⌊Fi

2k ⌋

which implies j > ⌊Fi

2k ⌋.
Now, to compute all palindromes from P ′′′

k
(i) we apply again the same pro-

cedure: for all j such that ⌊Fi

2k ⌋ < j < 2⌊ Fi

2k−1 ⌋, we compute the longest common

prefix LP (j) of words w[si+⌊Fi

2k ⌋..si+⌊ Fi

2k−1 ⌋] and w[1..ti−1+⌊Fi

2k ⌋−j]T , and the

longest common suffix LS(j) of words w[si..ti−1 +⌊Fi

2k ⌋] and w[si +⌊Fi

2k ⌋−j : n]T

(Fig. 3). Each palindrome of P ′′′

k
(i) corresponds then to a value j verifying the

following conditions:

1. LP (j) + 3LS(j) ≥ j,
2. 0 < LP (j) ≤ ⌊ Fi

2k−1 ⌋ − ⌊Fi

2k ⌋,

3. LS(j) < min(⌊Fi

2k ⌋, j − ⌊Fi

2k ⌋).

If some j satisfies the above conditions, we output the palindrome w[l′ : l′′, r′ :
r′′], where l′ = si + ⌊Fi

2k ⌋ − j − LP (j), l′′ = ti−1 + ⌊Fi

2k ⌋ − j + LS(j), r′ =

si + ⌊Fi

2k ⌋ − LS(j), and r′′ = ti−1 + ⌊Fi

2k ⌋ + LP (j).

The required functions LP (j) and LS(j) can be computed in time O(Fi

2k ), and

then P ′′′

k
(i) can be computed in time O(Fi

2k ). Summing up over k = 1, 2, . . . , ⌊log2 Fi⌋,
P ′′′(i) can be computed in time O(Fi).

Thus the total time for computing of P (i) is O(Fi−1 + Fi).

3.2 Computing Q(i)

Recall that Q(i) contains all palindromes w[l′ : l′′, r′ : r′′] which verify si < l′

and r′′ < ti, i.e. occur as a proper subword of factor fi. Since fi has a reversed
copy in f1f2 . . . fi−1, a reverse of each palindrome of Q(i) also occurs in that
copy. Therefore, it can be “copied over” from that location. Technically, this
is done exactly in the same way as in the algorithm for computing maximal
repetitions presented in [KK00b] (see also [KK05]). Recovering each palindrome
of Q(i) is done in constant time. We refer the reader to those papers for details
of this procedure.

3.3 Putting all together

Each of the sets P ′(i), P ′′(i), P ′′′(i) is computed in time O(Fi−1 + Fi), and
so is P (i). Summing over all i, all involved palindromes are computed in time
O(n). Time computed for all Q(i) is O(n+T ), where T is the number of output



palindromes. Since all sets P (i), Q(i) are pairwise disjoint, we obtain the final
result:

Theorem 1. All maximal long-armed palindromes can be computed in time
O(n + S), where n is the length of the input word and S the number of out-
put palindromes.

4 Length-constrained palindromes

Recall that a gapped palindrome vuvT is called length-constrained if MinGap ≤
|u| ≤ MaxGap and MinLen ≤ |v| for some pre-defined constants MinGap,
MaxGap and MinLen. In this section, we are interested to compute, in a given
word, all palindromes that are both length-constrained and maximal.

Note that we do not want to output palindromes that verify length con-
straints but are not maximal. The inward/outward extension of such a palin-
drome may lead to a palindrome that no longer verifies length constraints. For
example, if MinLen = 3, MinGap = 3 and MaxGap = 5, then the palindrome
...a gtt aaca ttg g... verifies length constraints but is not maximal, while its ex-

tension ...a gtta ac attg g... is maximal but does not verify length constraints.

First step. Consider an input word w = w[1..n]. For a position i, we consider
words W (i+) = w[i..i + MinLen − 1] and W (i−) = (w[i − MinLen..i − 1)T ,
where i+, i− are interpreted as start positions in forward and backward direction
respectively. Consider the set P = {i+, i−|i = 1..n}. For two positions k1, k2 ∈ P ,
define the equivalence relation k1 ≡ k2 iff W (k1) = W (k2). At the first step, we
assign to each position i−, i+ the identifier (number) of its equivalence class
under the above equivalence relation. This assignment can be done in time O(n)
using, e.g., the suffix array for the word w#wT $. A simple traversal of this
suffix array allows the desired assignment: two successive alphabetically-ordered
suffixes belong to the same equivalence class iff the length of their common prefix
is at least MinLen. Deciding whether position i+ or i− should be assigned is
naturally done depending on whether the suffix starts in w or in wT . Further
details are left out. Note that the suffix array can be constructed in time O(n)
independent on the alphabet size [KS03].

Second step. After the first preparatory step, the second step does the main
job. Our goal is to find pairs of positions i < j such that (i) W (i−) = W (j+)
(arm length constraint), (ii) MinGap ≤ j−i ≤ MaxGap (gap length constraint),
and (iii) w[i] 6= w[j − 1] (maximality condition). Each such pair of positions
corresponds to a desired palindrome. The arm length of this palindrome can then
be computed by computing the longest common subword starting at positions
i− and j+ (i.e. the longest common prefix of (w[1..i − 1])T and w[j..n]). This
can be done in constant time using lowest common ancestor queries on the suffix



tree for w#wT $ [Gus97], but can be also done with the suffix array using the
results of [KS03]. The latter solution is independent on the alphabet size.

We are now left with describing how pairs i, j are found. This is done in an on-
line fashion during the traversal of w from left to right. For each equivalence class,
we maintain the list of all “minus-positions” (i1)

−, (i2)
−, . . . , (ik)− (i1 < i2 <

. . . < ik) scanned so far and belonging to this equivalence class. Moreover, this
list is partitioned into runs of consecutive list items (iℓ)

−, (iℓ+1)
−, . . . , (iℓ+kℓ

)−

such that w[iℓ] = w[iℓ+1] = . . . = w[iℓ+kℓ
] and w[iℓ−1] 6= w[iℓ] and w[iℓ+kℓ

] 6=
w[iℓ+kℓ+1] (provided that w[iℓ−1], w[iℓ+kℓ+1] exist in the list).

Furthermore, we maintain a pointer from each run to the next run, so that
we are able to “jump”, in a constant time, from the first item of the current run
to the first item of the next run, avoiding the traversal of the whole run.

The list items can then be implemented by a structure with the following
fields:

position: position i such that i− belongs to the corresponding equivalence class,
NextItem: pointer to the next item in the list,
NextRun: pointer to the first item of the next run (valid only for the first item

of a run).

Assume now we are processing a position j of w. First, we insert j to the list
of the equivalence class of j− and update links NextItem and NextRun accord-
ingly. Then we have to find all positions i from the interval [j − MaxGap..j −
MinGap] such that i− belongs to the equivalence class of j+.

Let C be the identifier of the equivalence class of j+. We need to check, in the
list for C, those positions which belong to the interval [j−MaxGap..j−MinGap].
To efficiently access the corresponding fragment in the list, we remember the
smallest position of the list belonging to the interval [ℓ−MaxGap..ℓ−MinGap]
for the last processed position ℓ < j such that ℓ+ belongs to equivalence class C.
We then start the traversal from this position looking for the positions i falling
into the interval [j −MaxGap..j − MinGap]. This trick allows us to bound the
total time for finding the starting position of segments [j−MaxGap..j−MinGap]
by the total size of all the lists, i.e. by O(n).

For each retrieved position i, we verify if w[i] 6= w[j − 1] (maximality con-
dition). If this inequality does not hold, we jump to the first position of the
next run of the list, using the run links defined above, thus avoiding consecutive
negative tests and insuring that the number of those tests is proportional to the
number of output palindromes. The following theorem puts together the two
steps of the algorithm.

Theorem 2. For any predefined constants MinLen,MinGap,MaxGap, all length-
constrained palindromes can be found in time O(n + S).

Proof. The first step is done in time O(n) using suffix array. At the second step,
finding starting positions from intervals [j − MaxGap, j − MinGap] in the list
for class of j+ takes time O(n) overall. Testing the maximality condition and
outputting the resulting palindromes takes time O(S), where S is the number



of output palindromes. Finally, implementing the constant-time computation
of longest common subwords starting at given positions is done in time O(n)
independent of the alphabet size using results of [KS03].

Algorithm 1 in the Appendix presents a pseudo-code of the algorithm. Besides
variables position, NextItem and NextRun defined previously, the algorithm
uses the following variables.

LeftClass(j): equivalence class of j−,
RightClass(i): equivalence class of i+,
LastItem(C): pointer to the last item in the list for class C,
LastRun(C): pointer to the first item of the current last run in the list for class

C,
PreviousStartItem(C): pointer to the start item in the search interval for the

last processed position ℓ+ of class C, i.e. to the smallest position in the
list for C belonging to the interval [ℓ − MaxGap..ℓ − MinGap]. (To avoid
irrelevant algorithmic details, we assume that such a position always exists.)

NextF irstItem(C): pointer to the first item in the run following the run con-
taining PreviousStartItem(C).

5 Biological palindromes

Both algorithms presented in Sections 3 and 4 can be extended to biological
palindromes, where the word reversal is defined in conjunction with the comple-
mentarity of nucleotide letters: c ↔ g and a ↔ t (or a ↔ u, in case of RNA). For

example, . . . c acat aca atgt c . . . is a maximal biological gapped palindrome.

The main part of either algorithm is extended in a straightforward way: each
time the algorithm compares two letters, this comparison is replaced by testing
their complementarity.

Some parts of the algorithms deserve a special attention. For the algorithm
of Section 3 for computing long-armed palindromes, the computation of the
reversed Lempel-Ziv factorization extends in a straightforward way too: when
computing the next factor fi+1, one has to use the complementarity relation.
Similarly, the computation of extension functions LP and LS are also extended
straightforwardly.

The algorithm of Section 4 for length-constrained palindromes requires a
straightforward modification of the first step: we now need to compute the suffix
array for w#wT $, where wT stands for the “biological inversion” (i.e. reversal
together with complement). At the second step, the algorithm uses the same
suffix array (or alternatively, the suffix tree for w#wT $) in order to implement
constant-time common subword queries.

6 Concluding remarks

The algorithm for computing long-armed palindromes from Section 3 can be
generalized to palindromes vuvT verifying condition |u| ≤ c|v| for some constant
c ≥ 1. The resulting complexity is O(cn + S).



An interesting open question is whether one can compute the reverse Lempel-
Ziv factorization in time O(n) independent on the alphabet size.
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for j ←MinLen + 1 to n do

/* insert position j− to the appropriate list */

begin
C ←− LeftClass(j);
create a new item NewItem to the list of class C;
NewItem.position←− j;
LastItem(C).NextItem←− NewItem;
if w[j] 6= w[LastItem(C).position] then

LastRun(C).NextRun←− NewItem;
LastRun(C)←− NewItem;

end

LastItem(C)←− NewItem;
end

/* find all maximal length-constrained palindromes with the right

arm starting at position j */

begin
C ←− RightClass(j);
/* find, in the list for class c, the first position greater

than or equal to (j −MaxGap) */

SearchItem←− PreviousStartItem(C);
while SearchItem.position < j −MaxGap do

SearchItem←− SearchItem.NextItem;
if SearchItem = NextF irstItem(C) then

NextF irstItem(C)←− SearchItem.NextRun;
end

end

PreviousStartItem(C)←− SearchItem;
/* for each position in the list for class c between

(j −MaxGap) and (j −MinGap), check if there exists a

corresponding maximal palindrome */

while SearchItem.position ≤ (j −MinGap) do

if w[SearchItem.position] 6= w[j − 1] then
lp←− length of the longest common prefix of words

w[j + MinLen..n] and
(w[1..SearchItem.position−MinLen− 1])T ;

output the palindrome w[SearchItem.position−MinLen− lp :
SearchItem.position− 1, j : j + MinLen + lp− 1];

SearchItem←− SearchItem.NextItem;
end

else
if SearchItem is the first item of a run then

SearchItem←− SearchItem.NextRun;
else SearchItem←− NextF irstItem(C);

end

end

end
end

Algorithm 1: Step 2 of the algorithm for computing length-constrained palin-
dromes


