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Abstract

The problem of computing periodicities with K possible mismatches is studied. Two
main definitions are considered, and for both of them an O(nK log K + S) algorithm
is proposed (n the word length and S the size of the output). This improves, in
particular, the bound obtained in [1]. Finally, other possible definitions are briefly
analyzed.

1 Introduction

Repetitions (periodicities) play a central role in word combinatorics [2,3]. On
the other hand, repetitions are important from the application perspective. As
an example, their properties allow to speed up pattern matching algorithms
[4-6].

The problem of efficiently identifying repetitions in a given word is one of the
classical pattern matching problems [7,8]. A tandem repeat or a square is a
pair of consecutive occurrences of a subword in a word. For example, baba
is a tandem repeat in word cbacbabacba. Since the beginning of 80s [9] it is
known that checking whether a word contains no tandem repeat (or is square-
free) can be done in time O(n). If one wants to find all tandem repeats, their
number comes into consideration. Word a" contains O(n?) tandem repeats.
If we restrict ourselves to primitive squares (i.e. subwords uu where u is not
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itself a repetition v* for k& > 2), then a word may contain O(nlogn) of them
and this bound is tight. All primitive squares can be found in time O(n + S)
where S is their number [10-12], hence in time O(nlogn) in the worst-case.

In [13,12], we studied mazimal repetitions (see also [14,15]). Those can be
viewed as maximal runs of squares [16,11], i.e. series of squares of equal length
with contiguous start positions. For example, bcbacacacaab contains a maximal
repetition acacaca which is a succession of four squares : acac, caca, acac,
caca. Thus, the set of maximal repetitions can be regarded as an encoding of
all tandem repeats in the string. We showed [13] that this encoding is more
compact in the worst case, as there are only O(n) maximal repetitions in words
of length n. Moreover, all of them can be found in time O(n) [12].

Recently, searching for repetitions in a string received a new motivation, due
to the biosequence analysis [17]. Successive occurrences of a fragment often
bear an important information in DNA sequences and their presence is char-
acteristic for many genomic structures (such as telomer regions for example).
From practical viewpoint, satellites and alu-repeats are involved in chromo-
some analysis and genotyping, and thus are of major interest to genomic re-
searchers. Thus, different biological studies based on the analysis of tandem
repeats have been performed (see [18] as an example), and even databases of
tandem repeats in certain species have been compiled [19].

The major difficulty in finding biologically relevant repetitions in genomic
sequences is a certain variation that must be admitted between the copies of
the repeated subword. In other words, biologists are interested in approzimate
repetitions and not necessarily in exact repetitions only. Finding approximate
repetitions is the subject of this paper.

The simplest notion of approximate repetition is an approximate tandem re-
peat which is a subword uv where v and v are within a given distance k£ and the
distance measure could be one of those usually used in biological applications,
such as Hamming distance or edit distance. The problem of finding approxi-
mate tandem repeats for both these distances has been studied by G. Landau
and J. Schmidt [1]. They showed that in case of the Hamming distance (re-
spectively edit distance), all approximate tandem repeats can be found in
time O(nK log(n/K) + S) (respectively O(nK log K logn + S)), where S is
the number of repeats found. Several other approaches to finding approximate
tandem repeats in DNA sequences have been proposed in the bioinformatics
community — some of them use a statistical framework [20,21], some require to
specify the size of repeated motif [22,23], some use a very general framework

and have to make some heuristic filtering steps to avoid exponential blow-up
[24].

This paper deals with finding approximate repetitions using exact combina-



torial methods of string matching. We focus on the Hamming distance case
when the variability between repeated copies can be only letter replacements.
An important motivation is to define structures encoding families of approxi-
mate tandem repeats, analogous to maximal repetitions in the exact case. In
Section 2, we define two fundamental structures which we call globally-defined
approximate repetitions and runs of approximate tandem repeats. In Section 3,
we show that all globally-defined approximate repetitions can be found in
time O(nK log K + S), where S is their number. In Section 4 we show that
the same bound holds for runs of approximate tandem repeats: all of them can
be found in time O(nK log K + R), where R is their number. The latter result
implies, in particular, that all approximate tandem repeats can be found in
time O(nK log K +T) (T their number), improving the O(nK log(n/K)+T)
bound of [1] for the most interesting case of small K. Finally, in Section 5
we introduce two other possible notions of approximate repetitions and give
a brief analysis of their properties.

2 K-mismatch globally-defined repetitions and runs of K-mismatch
tandem repeats

Quoting [20], one difficulty in dealing with (approximate) tandem repeats is
accurately defining them. Intuitively, approximate repetitions are specified by
authorizing some number of “errors” between repeated copies. Usually (in
genomic applications at least), two types of errors are considered — letter
replacements and indels (letter insertions/deletions). To each set of allowed
errors is associated a transformation distance between two words, defined as
the smallest number of errors that should be made to transform one word
to another. If replacements only are allowed, this yields the classic Hamming
distance, defined as the number of mismatches between the two words; if both
replacements and indels are permitted we get the edit distance (known also as
Levenstein distance).

In this paper, we consider the case of Hamming distance, that is the only
allowed type of “errors” will be letter replacements. However, even in this
simpler case, different notions of approximate repetitions can be thought of.
Here we introduce two of them, other definitions will be discussed in Section 5.

We start by recalling briefly some facts about exact repetitions. The period of
a word w[l : n] is the minimal natural number p such that w[i] = w[i+p] for all
1 <14,i+p < n. The ratio n/p is called the ezponent of w. A repetition is any
word with the exponent greater or equal to 2 [13]. A tandem repeat, or a square,
is a word which is a catenation of another word with itself. Equivalently, a
tandem repeat is a repetition the exponent of which is an even natural number.
In the case when the exponent is equal to 2, the tandem repeat (square) is



called primitive. The following proposition is well-known (see [2]).

Proposition 2.1 A word r[1 : n| is a repetition of period p < n/2 if and only
if one of the following conditions holds:

(i) r[l.n —p| = r[p+ 1..n], and p is the minimal number with this property,
(i1) any subword of r of length 2p is a tandem repeat, and p is the minimal
number with this property.

When considering repetitions as subwords of a bigger word, the notion of
maximality turns out to be very useful: a repetition is mazimal iff it cannot
be extended (by one letter) to the right or left without changing the period.
Formally, given a word w(1 : n] and a subword w[i..j] which is a repetition of
exponent e > 2, this repetition is called mazimal if the period of both w(i..j+1]
(provided that j < n) and w[i — 1..j] (provided that i > 1) is strictly larger
than e. For example, acaabaababe contains repetition (tandem repeat) aabaab
which is not maximal, as the a which follows it respects the periodicity. On
the other hand, aabaaba occurs as a maximal repetition. Maximal repetitions
were studied in [15,13,12,11].

We now turn to defining approximate repetitions. Similar to the exact case,
the basic notion here is the approximate tandem repeat. Assume h(-,-) is the
Hamming distance between two words of equal length, that is h(wy, ws) is the
number of mismatches (letter differences at corresponding positions) between
wy and w,y. For example, h(baaach, bcabch) = 2.

Definition 2.2 A word a = o'”, such that |o/| = |&"|, is called a K-
mismatch tandem repeat iff h(a/,a”) < K. Reusing the terminology of the
exact case [12], we call p = |a/| = || the period of o, and words o/, o the

left and right root of a respectively.

We now want to define a more global structure which would be able to cap-
ture “long approximate periodicities”, generalizing repetitions of arbitrary ex-
ponent in the exact case. As opposed to the exact case, Conditions (i)-(ii)
of Proposition 2.1 generalize to different notions of approximate repetition.
Condition (i) gives rise to the strongest of them:

Definition 2.3 A word r[1 : n] is called o K-mismatch globally-defined rep-
etition of period p, p < n/2, iff h(r[l.n —p|,r[p+ 1..n]) < K.

Equivalently, r[1 : n] is a K-mismatch globally-defined repetition of period
p, if the number of ¢ such that r[i] # r[i + p] is at most K. For exam-
ple, abaa abba cbba cb is a 2-mismatch globally-defined repetition of period 4.
abc abe abe abd abd abd abd abd is a 1-mismatch globally-defined repetition of
period 3 but abc abc abc abb abc abe abe abb is not.
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Fig. 1. Maximal K-mismatch globally-defined repetition

Another point of view, expressed by Condition (ii) of Proposition 2.1, considers
a repetition as an encoding of squares it contains [16,11]. Projecting this to the
approximate case, we come up with the notion of run of approximate tandem
repeats:

Definition 2.4 A word r[1 : n] is called a run of K-mismatch tandem repeats
of period p, p < n/2, iff for everyi € [1..n —2p+ 1], subword o = rli..i 4+ 2p —
1] =rli.i+p—1]r[i+p..i+2p— 1] is a K-mismatch tandem repeat of period
.

Similarly to the exact case, when we are looking for approximate repetitions
occurring in a word, it is natural to consider mazimal approximate repetitions.
These are repetitions extended to the right and left as much as possible pro-
vided that the corresponding definition is still verified. Note that the notion
of maximality applies to both definitions of approximate repetition considered
above: in both cases we can extend a repetition to the right/left as long as the
obtained subword remains a repetition according to the considered definition.
Throughout this paper we will be always interested in maximal repetitions,
without mentioning it explicitly. Note that for both notions of approximate
repetitions defined above, the maximality requirement implies that if w[i : j]
is a repetition of period p in w(l : n}, then w[j + 1] # w[j + 1 — p] (provided
j <n)and w[i — 1] # w[i — 1 + p| (provided 7 > 1) 2. Furthermore, if w(i : j]
is a maximal globally-defined repetition, it contains ezractly K mismatches
wll] # w[l+p|, i <1,l+p < j, unless the whole word w contains less than K
mismatches (to simplify the presentation, we always exclude this latter case
from consideration).

Figure 2 illustrates the definition of (maximal) run of K-mismatch tandem
repeats, and Figure 1 that of (maximal) K-mismatch globally-defined repeti-
tions.

Example 2.5 The following Fibonacct word contains three runs of 3-mismatch
tandem repeats of period 6. They are shown in reqular font, in positions aligned

2 For one type of repetitions defined in Section 5 this implication will not hold, and
we will add this condition explicitely.
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Fig. 2. Maximal run of K-mismatch tandem repeats

K-mismatch globally—defined repetitions

|

run of K-mismatch tandem repeats

Fig. 3. Extension relation

with their occurrences. Two of them are identical, and contain each four 3-
mismatch globally-defined repetitions, shown in italic for the first run only.
The third run is a 3-mismatch globally-defined repetition in itself.

010010 100100 101001 010010 010100 1001

10010 100100 101001
10010 100100 10
0010 100100 101
10 100100 10100
0 100100 101001
1001 010010 010100 1
10 010100 1001

In general, each K-mismatch globally-defined repetition is a subword of a run
of K-mismatch tandem repeats. On the other hand, a run of tandem repeats
in a word is the union of all globally-defined repetitions it contains. We say
then that the notion of run of K-mismatch tandem repeats extends that of
K-mismatch globally-defined repetition (see Figure 3).

However, a run of tandem repeats may contain as many as a linear number
of globally-defined repetitions with the same period. For example, the word



(000100)™ of length 6n is a run of 1-mismatch tandem repeats of period 3,
which contains (2n — 1) 1-mismatch globally-defined repetitions. Below is an-
other example.

Example 2.6 The following run of 1-mismatch tandem repeats of period 4
contains eight 1-mismatch globally-defined repetitions, shown below in posi-
tions aligned with their occurrences.

0000 1000 1100 1110 1111 1111 0111 0011 0001 0000
0000 1000 1
000 1000 1100 11
00 1100 1110 111
0 1110 1111 1111
1111 1111 0111 0
111 0111 0011 00
11 0011 0001 000
1 0001 0000

It is easily seen that the run can be iterated and therefore this gives another
example of a family of runs containing a linear number of globally-defined
repetitions.

In general, the following observation holds.

Lemma 2.7 Let w[l : n] be a run of K-mismatch tandem repeats of period
p and let s be the number of mismatches wli] # wi +p], 1 < i,i+p < n
(equivalently, s = h(w[l..n — p|,w[p + 1..n])). Then w contains s — K + 1
globally-defined repetitions of period p.

Note that both notions can be criticized as for their relevance to practical
situations. An obvious property of runs, as shown by Example 2.6, is that the
repeated pattern can change completely along the run regardless the value of
K. For example, aaa aba abb abb bbb is a run of 1-mismatch tandem repeats of
period 3, although 3-letter patterns aaa and bbb have nothing in common. On
the other hand, globally-defined repetitions put a global limit on the number
of mismatches and therefore may not capture some repetitions that one would
possibly like to consider as such, in particular repetitions of big exponent
where the total number of mismatches can exceed K while the relative number
of mismatches remains low. However, these two structures are of primary
importance as they provide respectively the weekest and strongest notions
of repetitions with K mismatches, and therefore “embrace” all practically



relevant repetitions. In what follows we propose efficient algorithms to find
both those types of repetitions.

3 Finding K-mismatch globally-defined repetitions

In this section we describe how to find, in a given word w, all maximal K-
mismatch globally-defined repetitions occurring in w (K is a given constant).
Our algorithm extends, on the one hand, the one for exact maximal repetitions
[15,12] and on the other hand, generalizes the one of [1] (see also [17]) by using
a special factorization of the word to speed-up the algorithm.

To proceed, we need more definitions. Consider a globally-defined repetition
r = wli..j] of period p in a word w(l : n|. w[i..i + p — 1] is called the left root
of r and w[j — p + 1..j] its right root. r is said to contain the character w(l]
iff i <1 < j, and is said to touch wll] iff r contains w|l], or contains one of
characters w[l — 1], w[l + 1].

We assume we fixed a minimal bound py for the period of repetitions we are
looking for. For example, py can be taken to be K + 1 having in mind that
if a period p < K is allowed, a tandem repeat of length 2p with no common
characters between the left and the right root would fall into the definition.
This is purely pragmatic assumption which does not affect the method nor
the complexity bounds.

Our first basic technique is described by the following auxiliary problem: Given
a word w(l : n] and a distinguished character w(l], [ € [2..n — 1], we wish to
find all K-mismatch globally-defined repetitions in w which touch w[l]. We
distinguish two disjoint classes of repetitions according to whether their right
root starts to the left or to the right of w[l]. We concentrate on repetitions of
the first class, those of the second class are found similarly.

For each p € [po..l — 1], and for all £ € [0..K], we compute the following
functions :

LPy(p) =max{jlh(w[l —p.l—p+j—1],w[l.l+j—1]) <k}, (1)
LSi(p) =max{jlh(w[l —p—j.l —p—1],w[l —j.l = 1]) < k}. (2)

Informally, LPy(p) is the length of the longest subword in w starting at posi-
tion [ — p and equal, within £ mismatches, to the subword of the same length
starting at [. Similarly, LS(p) is the length of the longest subword ending at
position [ — p — 1 and equal, within £ mismatches, to the subword ending at
position [ — 1. These functions are variants of longest common extension func-
tions [1,17] and can be computed in time O(nK) using suffix trees combined



with the lowest common ancestor computation in a tree. We refer to [17] for
a detailed description of the method.

Consider now a K-mismatch globally-defined repetition r of period p which
has its right root starting to the left of w[l]. Note that character w[l — p] is
contained in 7, and that r is uniquely defined by the number of mismatches
wli—p| # w[i], i > [, contained in r. Let & be the number of those mismatches.
Then

LP;(p) + LSk_x(p) > p- (3)

Conversely, (3) can be used to detect a repetition. The following theorem holds
(see [1,17]), which is a generalization of the corresponding result of [14,15] for
the exact case.

Theorem 3.1 Let w[l : n] be a word and w[l], 1 < | < n, a distinguished
character. There exists a K-mismatch globally-defined repetition of period p
which touches w[l], and has its right period starting to the left of w(l], iff for
some k € [0..K],

LPy(p) < p, (4)

and inequation (3) holds. In this case, this repetition starts at position | —p—
LSk_k(p) and ends at position | + LPy(p) — 1.

Inequation (4) ensures that the right root starts to the left of w]l].

Theorem 3.1 provides an O(nK) algorithm for finding all considered globally-
defined repetitions: compute longest extension functions (1) (2) (this takes
time O(nK)) and then check inequations (3), (4) for all p € [po..I — 1] and
all £ € [0..K] (this takes time O(nK) too). Each time the inequations are
verified, a new repetition is identified.

To find the repetitions with the right root starting to the right of w[l], functions
LP and LS have to be defined symmetrically: LP;(p) should be defined as the
biggest j such that A(w([l+p+1..1+p+j], w[l+1..147]) < k, and LSi(p) as the
biggest j such that h(w[l+p—j+1..l+p|,w[l—j+1..]) < k. Then inequation
(3) indicates the presence of a repetition. Similarly, those repetitions can be
found in time O(nK).

The algorithm solving the auxiliary problem described above will be referred
to as Algorithm 1. Its pseudo-code is shown below.

The second important tool is Lempel-Ziv factorization used in the well-known
compression method. Let w be a word and assume that the last symbol of w



Algorithm 1 Computing all K-mismatch globally-defined repetitions repeti-
tions in w touching a distinguished character
Input: word w[l : n|, position [, 1 <l <n
Output: all K-mismatch globally-defined repetitions in w which touch w]l]
{Find those repetitions which have their right root starting to the left of
wll]}
1: for all p € [po..l — 1], k € [0..K], compute longest common extension
functions LPy(p), LSk(p) defined as in (1), (2)
for p = py to min{n — 1+ 1,n/2} do
for £ =0to K do
if LPy(p) + LSk-x(p) > p and LP;(p) < p then
output a K-mismatch globally-defined repetition starting at posi-
tion | — p — LSk _(p) and ending at position | + LP;(p) — 1
{Similarly, find those repetitions which have their right root starting to
the right of w[l]}

does not occur elsewhere. In this paper, we need two variants of the Lempel-
Ziv factorization, that we call with copy overlap and without copy overlap? .

Definition 3.2 The Lempel-Ziv factorization of w with copy overlap (respec-
tively without copy overlap) is the factorization w = f1fa. .. fm, where f;’s are
defined inductively as follows:

b fl = U)[].],
e fori > 2, f; is the shortest word occurring in w immediately after fifo... fi1
which does not occur in fifs ... f; other than in suffix (respectively, does not

occur in fifa... fi—1).

As an example, the Lempel-Ziv factorization with copy overlap of the word
aabbabababbbe is alab|balbababblbe ; the factorization without copy overlap is
a|ablba|bab|abbb|c. Both variants of Lempel-Ziv factorization can be computed
in linear time [25,17]. If w = f1fa... fim is the Lempel-Ziv factorization, we
call f;’s Lempel-Ziv factors or simply factors of w. The last character of f; will
be called the head of f;.

We are now ready to describe the algorithm for finding all K-mismatch globally-
defined repetitions. Consider the Lempel-Ziv factorization with copy overlap
of w. The algorithm consists of three stages. The first stage is based on the
following two lemmas.

3 The s-factorization used in [15,12] is a minor modification of the Lempel-Ziv
factorization with copy overlap. The difference is that the s-factorization considers
the longest factor occurring earlier, while the Lempel-Ziv factorization considers the
shortest factor which does not occur earlier (see [17] for a related discussion). In
this paper, we use the Lempel-Ziv factorization which suits better to our purposes.
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Lemma 3.3 The right root of a K-mismatch globally-defined repetition can-
not contain as subword K + 1 consecutive Lempel-Ziv factors.

Proof: Each factor contained in the right root contains a character mis-
matching the one located one period to the left. Indeed, if it does not contain
a mismatch, it has an exact copy occurring earlier, which contradicts the def-
inition of factorization. As the right root contains at most K mismatches, it
cannot contain K + 1 or more factors. O

We divide w into consecutive blocks of K + 2 Lempel-Ziv factors. Let w =
B ... B, be the partition of w into such blocks. The last character of B; will
be called the head character of this block. At the first stage, we find, for each
block B;, those repetitions which touch the head character of B; but do not
touch that of B;,;. First, concentrate on those of such repetitions with the
right root starting before the head character of B;.

Lemma 3.4 Assume a K-mismatch globally-defined repetition r touches the
head character of B; but not that of Biy1. Then |r| < 2|B;Bi;1].

Proof:

Lemma 3.3 implies that the right root of r cannot start before the first char-
acter of B;. Therefore, the period of r is bounded by |B;B;;1|.- On the other
hand, by the argument of the proof of Lemma 3.3,  cannot extend by more
than a period to the left of B;. Therefore, the total length of r is bounded by
2‘Bsz+1‘ O
Lemma 3.4 allows us to apply Algorithm 1 : Consider word w; = vB;B;.1,
where v is the suffix of By ... B;_; of length |B;B;.1|. Then find, using Algo-
rithm 1, all repetitions in w; touching the head character of B; and discard
those which touch the head character of B;;;. The resulting complexity is
O(K(|Bi| + [Bi+1l))-

After processing all blocks, we find all repetitions touching block head char-
acters. Observe that repetitions resulting from processing different blocks are
distinct. Summing up over all blocks, the resulting complexity of the first
stage is O(nK). The repetitions which remain to be found are those which lie
entirely within a block — this is done at the next two stages.

At the second stage we find all repetitions inside each block B; which touch
factor heads other than the block head (=head character of the last factor of
the block). For each B;, we proceed by simple binary division approach:

(i) divide current block of factors B = f;fi+1 ... fitm into two sub-blocks B’ =

Jiooo fl_m/ZJ and B" = fLm/2J+1 e Sivm,
(ii) using Algorithm 1, find the repetitions in B which touch the head charac-

11



ter of f|;,/2), but discard those which touch the head character of fi,,, or
contain the first character of f;,
(iii) process recursively B’ and B”".

The above algorithm has [log K| levels of recursion, and since at each step
the word is split into disjoint sub-blocks, the whole complexity of the second
stage is O(nK log K).

Finally, at the third stage, it remains to find the repetitions which occur
entirely inside each Lempel-Ziv factor, namely which don’t contain its first
character and don’t touch its head character. By definition of factorization
with copy overlap (Definition 3.2), each factor without its head character has
another (possibly overlapping) occurrence to the left. Therefore, each of these
repetitions has another occurrence to the left too. Using this observation,
these repetitions can be found using the same technique as the one of [12]:
When constructing the Lempel-Ziv factorization we keep for each factor wa a
pointer to a copy of w to the left. Then processing factors from left to right,
recover repetitions inside the factor from its pointed copy. We refer to [12] for
algorithmic details. The complexity of this stage is O(n + S), where S is the
number of repetitions found.

The following theorem summarizes this section.

Theorem 3.5 All K-mismatch globally-defined repetitions can be found in
time O(nKlog K + S) where n is the word length and S is the number of
repetitions found.

The algorithm of finding all K-mismatch globally-defined repetitions, referred
to as Algorithm 2, is given below.

4 Finding runs of K-mismatch tandem repeats

In this section we describe an algorithm for finding all runs of K-mismatch
tandem repeats in a word.

The general structure of the algorithm is the same as for globally-defined
repetitions (Algorithm 2) — it has the three stages playing similar roles. At
the first and second stages, the key difference is the type of objects we are
looking for : instead of computing globally-defined repetitions we now compute
subruns of K-mismatch tandem repeats. Formally, a subrun is a run of K-
mismatch tandem repeats, which is not necessarily maximal. At each point of
the first and second stage when we search for repetitions touching some head
character w[l], we now compute subruns of those K-mismatch tandem repeats

12



Algorithm 2 Computing all K-mismatch globally-defined repetitions in w

Input: word w[l : n|
Output: all K-mismatch globally-defined repetitions in w
1: Compute the Lempel-Ziv factorization with copy overlap w = fi ... f,,
2: Partition the factorization into blocks of K + 2 consecutive factors; let
w = By ...B,, be the decomposition of w into such blocks
{first stage}
3: for each block B; do
4:  find, using Lemma 3.4 and Algorithm 1, globally-defined repetitions
which touch the head character of B; but not that of B;
{second stage}
5: for each block B; do
6: starting from B; apply the following recursive procedure

7 divide the current block B = f; fi1+1 ... fizm into two sub-blocks
B' = fi... fim/2) and B" = fim/o)+1 - fitm
8: find, using Algorithm 1, globally-defined repetitions in B which touch
the last
character of f|,,/2|, but discard those which touch the head character
of fi+m
or contain the first character of f;
9: process recursively B’ and B”

{third stage}
10: for each Lempel-Ziv factor f; do
11:  retrieve all globally-defined repetitions in f; which don’t contain its first
character and don’t touch its last character, from its left copy (see [12]
for details)

which touch wll]. This can be seen as outputting by Algorithm 1 only that
part of the globally-defined repetition which falls to the interval [ — 2p..l + 2p.
The modified Algorithm 1, referred to as Algorithm 3, is given below.

A major additional difficulty in computing runs is assembling subruns into
runs. To perform the assembling, we need to store subruns in an additional
data structure and to carefully manage merging of subruns into bigger runs.
We have to ensure that the number of subruns we come up with and the work
spent, on processing them do not increase the resulting complexity bound.

The assembling occurs already at the level of Algorithm 3, as subruns found for
different values of k£ (for-loop at line 3) may overlap or immediately follow each
other, in which case we join them into a bigger subrun (lines 6-7). Similarly,
subruns of tandem repeats with the right root starting to the right of w[l]
(case non-shown in Algorithm 3) may have to be joined with subruns found
by instructions 1-7 of Algorithm 3). We leave out the details of how this is
done.

13



Algorithm 3 Computing subruns of K-mismatch tandem repeats in w touch-
ing a distinguished character
Input: word w[l : n|, position [, 1 <l <n
Output: all subruns of K-mismatch tandem repeats in w which touch wll]
{Find those tandem repeats which have their right root starting to the
left of wll]}
1: for all p € [po..l — 1], k € [0..K], compute longest common extension
functions LPy(p), LSk(p) defined as in (1), (2)
2: for p = py to min{n — [+ 1,n/2} do
3: for k=0to K do
4: if LP;(p) + LSk_«(p) > p and LP;(p) < p then
5: create a subrun of K-mismatch tandem repeats ending at positions
start(p, k) = max{l+p— LSk _x(p) — 1,1 — 1} through end(p, k) =
min{l + LPy(p) — 1,1 +p—1}
if £ > 0 and end(p, k) < end(p,k — 1) + 1 then
7 merge this subrun with the subrun computed for the previous
value of k
{Similarly, find those tandem repeats which have their right root starting
to the right of w[l] and thus end in the interval [ + p..l + 2p}

>

Below we describe the three stages of the algorithm in more details. We identify
a subrun with the interval of end positions of the tandem repeats it contains.
This is a technical, but important convention, which allows us to express the
algorithm in terms of maintaining, for each period p, a set of non-intersecting
intervals corresponding to subruns of period p found so far.

For the input word w, we compute the Lempel-Ziv factorization without copy
overlap and divide it into blocks B; ... B,,, each containing K + 2 consecutive
Lempel-Ziv factors. At the first stage, we find subruns of all those tandem
repeats which touch block head characters. For each block B;, we find the
tandem repeats which touch the head character of B; but not that of B;;.
Let [; be the position of the head character of B;. Then the subruns of period
p found at this step belong to the interval [l; — 1.. min{l; + 2p, ;11 — 2}] . We
call this interval the explored interval for wl;] and p. For each period, subruns
found at this step can be seen as non-intersecting subintervals of this explored
interval. These subruns are stored into a double-linked list in increasing order
of positions. (We leave it to the reader to check out that such a list can be
easily computed by Algorithm 3 by making at each step a constant amount of
extra work.) For p > (I; —l;_1)/2 — 1, the explored interval for w[l;_1] has to
be merged with the explored interval for w(l;], thus forming a bigger explored
interval. Accordingly, the lists of subruns associated with these intervals are
merged into a single list. All additional operations take constant time, and the
resulting complexity of the first stage is O(nkK).

The second stage is modified in a similar way. Recall that at each call of
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Algorithm 3 we are searching for repetitions occurring between some factor
head, say w(l'], another factor head w[l"], and touching some factor head
w[l] (I' <1 < 1"). Assuming that recursive calls are executed in a top-down
manner (see the description of the second stage in Algorithm 2), no factor
head between wll’] and w([l"] has been processed yet. In this case, the explored
interval is [max{l' + 2p + 1,1 — 1}.. min{l + 2p, " — 2}], and we may have to
merge it either with the previous explored interval, or with the next one, or
both. The complexity of the second stage stays O(nK log K).

Note at this point that the algorithm maintains, for each period p, a set of
non-intersecting explored intervals. Each interval is associated with a sequence
of successive head characters w(l;], w[l;11], - .., w[ly] such that [; 1, —1; < 2p+2
for j € [i..m — 1], and the interval itself is [I; — 1..l;, + 2p|. Those subruns of
tandem repeats which have been actually found within this interval, are stored
in a double-linked list associated to the interval. When two explored intervals
are merged into a bigger one at the first and second stages, the corresponding
lists are concatenated. Furthermore, the interval is linked to w[l;] and w[l,,] -
the first and the last head characters of this sequence. More precisely, if w][l;]
is the first head character of an interval, and p is the corresponding period,
then wll;] has a pointer to the first subrun of period p found in this interval.
Similarly, if w[l,,] is the last head character of an interval of period p, then
wlly] points to the last subrun of the interval. These pointers are needed,
in particular, for merging explored intervals at the second stage. Note finally
that storing these pointers, for both the first and the second stage, can be
done within the given complexity bound. The key observation is that, for a
head character w[l], a pointer to the first subrun should be defined only for
periods p < (I —1')/2 — 1, where w[l'] is the closest head character to the left
of w|l] which has been processed before. Similarly, a pointer to the last subrun
is defined only for periods p < (I” —1)/2 — 1, where w[{"] is the closest head
character to the right of w[l] which has been processed before. This shows that
at each moment there is only O(n) pointers that need to be stored.

At the third stage, we have to find subruns of those tandem repeats which
lie entirely inside Lempel-Ziv factors. For each period, potential occurrences
of these subruns correspond precisely to the gaps between explored intervals.
Thus, the third stage can be also seen as closing up, for each period, the gaps
between explored intervals.

As in the previous section, the key observation here is the fact that Lempel-Ziv
factors without their head character have a copy to the left (here required to
be non-overlapping), and the idea is again to process w from left to right and
to retrieve the subruns inside each factor from its copy. However, the situation
here is different in comparison to globally-defined repetitions: we may have to
“cut out” from a longer list a chain of subruns belonging to a factor copy and
then to “fit” it into the gap between two explored intervals. The “cutting out”
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may entail splitting subruns which span over the borders of the factor copy,
and “fitting into” may entail merging those subruns with subruns from the
neighboring explored intervals. Below we sketch the algorithm for the third
stage, which copes with these difficulties. Algorithm 4 given below provides a
detailed description of the third stage.

Algorithm 4 Third stage of the algorithm of finding runs of K-mismatch
tandem repeats

Input: word w[l : nJ; lists of subruns found at the first and second stages
Output: all runs of K-mismatch tandem repeats in w
{activerun(p) is maintained to be the last considered run of period p}
{startingruns(i) is maintained to be the list of runs starting at 7}
1: for each position i € [1..n] do

2:  for each run r startingruns(i) do

3: let p be the period of r

4: activerun(p) :=r

5: if 7 is not the last run in its list then

6: let 7' be the first position of the next run in the list

7: add the next run to startingruns(i’)

8:  for each factor copy ending at position ¢ do

9: let w[j..7] be this copy and f,, the corresponding factor

10: for each period p< (j —i+1)/2 do

11: if activerun(p) contains tandem repeats inside wlj..;] then

12: link /merge this subrun of tandem repeats to/with the first sub-
run of the explored interval associated with the head symbol of
fm

13: currentrun :=the predecessor of activerun(p) in its list

14: while currentrun contains tandem repeats inside w(j..i| do

15: link the subrun of those tandem repeats to the previously

copied subrun in f,,
16: currentrun :=the predecessor of currentrun in its list
17: link/merge the last processed subrun to/with the last subrun of

the explored interval associated with the head symbol of f,,_;
18: else
19: link the last subrun of the explored interval associated with the
head symbol of f,,_1 with the first subrun of the explored interval
associated with the head symbol of f,,

20: if activerun(p) is the last subrun of the explored interval associated
with the head symbol of f,,_; then

21: let 7' be the first position of the next run in the list

22: add the next run (if any) to startingruns(i')

23: close up the gap corresponding to f,,, by merging intervals associ-

ated to the head symbol of f,, and the head symbol of f,,_;
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During the computation of the Lempel-Ziv factorization, for each Lempel-Ziv
factor f; = va we choose a copy of v occurring earlier and point from the end
position of this copy to the head character a of f;. It may happen that one
position has to have several pointers, in which case we organize them in a list.
We traverse w from left to right and maintain the rightmost run, of each period,
which starts before the current position. This run is denoted activerun(p) in
Algorithm 4. To this purpose, we also maintain the following invariant: at
the moment we arrive at a position i, we know the list startingruns(i) of all
subruns which start at this position. startingruns is maintained according to
the following general rule: for each subrun starting at the current position, we
assign the starting position of the next subrun in the list (instructions 2-7 in
Algorithm 4). Of course, there may be no next subrun if the current subrun is
the last one in the explored interval. In this case, the starting position of the
subrun following the current subrun will be set at the moment we fill the gap
after this explored interval (instructions 20-22).

When we arrive at the end position of a copy of a Lempel-Ziv factor, we need
to copy into the factor all the subruns which this copy contains. Therefore, we
scan backwards the subruns contained in the copy and copy them to the factor
(instructions 11-19). Copying the subruns closes up two explored intervals
into one interval, and links together two lists of subruns, possibly inserting
a new list of runs in between. Copying subruns in the backward direction
is important for the correction of the algorithm — this guarantees that no
subruns are missed. It is also for this reason that we need the copy to be
non-overlapping with the factor.

After the whole word has been traversed, no more gaps between explored
intervals exist anymore. This means that for each period, we have a list of
subruns with this period occurring in the word, which are actually the searched
runs.

The complexity of the third stage is O(n + S), where S is the number of
resulting runs. To show this, we make an amortized analysis of Algorithm 4
[26]. Specifically, we show that the total number of iterations of each loop in
Algorithm 4 is either O(n) or O(S). Each iteration of the for-loop at line 2
processes a new run starting at position i. Therefore there are O(S) iterations
of this loop during the whole run. Each iteration of the for-loop at line 8 treats
a copy of a distinct Lempel-Ziv factor. Furthermore, the number of iterations
of the nested for-loop at line 10 is the half of the length of the corresponding
factor. Therefore, the total number of iterations of both for-loops is O(n).
On the other hand, the while-loop at line 14 iterates O(S) times, as at each
iteration it treats a subrun, which becomes a definite run at that point. Thus,
the overall time spent by all internal loops is O(n + S). The main for-loop
(line 1) makes obviously O(n) iteration, and this completes the proof that the
whole complexity of the third stage is indeed O(n + S).
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Putting together the three stages, we obtain the main result of this section.

Theorem 4.1 All runs of K-mismatch tandem repeats can be found in time
O(nKlog K + S) where n is the word length and S is the number of runs
found.

Once all runs have been found, we can easily output all tandem repeats. We
then have the following result improving the bound obtained in [1].

Corollary 4.2 All K-mismatch tandem repeats can be found in time
O(nKlog K + S) where n is the word length and S is the number of tandem
repeats found.

5 Other notions of approximate repetitions

K-mismatch globally-defined repetitions limit by K the total number of mis-
matches, and therefore provide the strongest notion of approximate repetition.
On the other hand, a run of K-mismatch tandem repeats provides the week-
est notion of repetition with K mismatches, as it imposes only the minimal
requirement that every tandem repeat in such a repetition contains no more
than K mismatches. For practical applications, such as genome analysis, it
might be interesting to consider intermediate definitions with respect to the
two “extreme” cases. In this section we introduce two such types of repetitions
and point out very briefly some of their properties.

One natural way to loosen the notion of a globally-defined repetition of period
p is to limit by K the Hamming distance between two subwords of length p
or less, located within any distance which is a multiple of p.

Definition 5.1 A word r[1 : n] is called a K-mismatch uniform repetition of
period p, p < n/2 iff for every two subwords rli..i+j—1|,r[i+kp..i+kp+j—1]
of r such that k is any integer and 1 < j < p, we have h(r[i.i+ j — 1],7[i +
kp.i+kp+j—1])) <K.

For example, cbca bbca ab is a 1-mismatch uniform repetition of period 4, but
abca abca be is not since ab at position 1 is at Hamming distance 2 from be
at position 9. In general, K-mismatch uniform repetitions is a weaker notion
than K-mismatch globally-defined repetitions: any word from (abcadc)™ is a
1-mismatch uniform repetition of period 3, whereas none of these words is a
1-mismatch globally-defined repetition.

The following technical remark concerning uniform repetitions is important.
When we consider mazimal uniform repetition in a word we have to add an
additional condition: w[i..j] is a maximal K-mismatch uniform repetition of
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d(u, u)>K d(v, v )<K d(w, w')>K azb  czd
Fig. 4. K-mismatch uniform repetition

period p in w if neither w[i — 1..j] nor w[i..j + 1] is a K-mismatch uniform
repetition of period p and the following additional conditions hold:

wii = 1] # wli = 1+p], wlj+1-p] #wlj+1] (5)

In contrast to both notions of repetition considered before, inequalities (5)
don’t hold automatically for uniform repetitions and should be added explic-
itly in order to ensure, in particular, that every K-mismatch uniform repetition
in a word is the union of K-mismatch globally-defined repetitions containing
in it. The following example illustrates the situation.

Example 5.2 Consider the following word of length 4p. It contains two maz-
imal K-mismatch globally-defined repetitions of period p starting at position 1
and p+ 1 and shown below in regular font. Both of these repetitions are also
mazimal K-mismatch uniform repetitions. However, if we don’t require in-
equalities (5) to hold, we obtain a series of K —1 “ superfluous ” K-mismatch
uniform repetitions shown in italic.

p p—1 p—K K p-K-1 K+1
- - i -~ ~ —NN N NS
0...00...00...0...01 0...01...10...01...111
0...00...00...0...01 0...01...1 0...0

K-1

—

0...00...0...010...01...10...01

—N—
00...0...010...01...10...01...1
0...0...01 0...01...1 0...01...111

Figure 4 gives an illustration to the definition of maximal K-mismatch uni-
form repetition. The relationship of uniform repetitions to globally—defined
repetitions and runs are summarized in the following lemma.

Lemma 5.3(i) Any K-mismatch globally-defined repetition can be extended to
a (possibly not unique) K-mismatch uniform repetition. Any K-mismatch
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uniform repetition is the union of K-mismatch globally-defined repetitions
it contains.

(i1) Any K-mismatch uniform repetition can be extended to a unique run of
K-mismatch tandem repeats. A run of K-mismatch tandem repeats is the
unton of K-mismatch uniform repetition it contains.

Another possible definition of approximate repetition is obtained when one
thinks of it as an “exact repetition with no more than K replacement errors
per period”. This viewpoint is somewhat similar to the one of [24], where a
repetition is defined through a consensus such that each repeated motif is
within a specified distance from the consensus.

Definition 5.4 Word r[1 : n| is a K-mismatch consensus repetition of period
p, p < n/2, iff there exists an exact repetition v[1 : n] of period p such that for
any subword r[i..j] of r such that j — i < p, we have h(r[i..j], v[i..j]) < K.

Example 5.5 Consider the word from Ezample 2.6. The 1-mismatch con-
sensus repetitions it contains are shown together with a possible consensus for
each of them shown below in italic.

0000 1000 1100 1110 1111 1111 0111 0011 0001 0000
0000 1000 1100 11
1000 1000 1000 10
000 1000 1100 1110 111
100 1100 1100 1100 110
00 1100 1110 1111 1111
10 1110 1110 1110 1110
0 1110 1111 1111 01110
1 1111 11171 1111 1111 1
1111 1111 0111 0011 0O
0111 0111 0111 0111 01
111 0111 0011 0001 000
011 0011 0011 0011 001
11 0011 0001 0000
01 0001 0001 0001

The notion of K-mismatch consensus repetition is illustrated on Figure 5.
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5 - exact repetition of period p
d(u, u)>K d(v, v')<K d(w, w)>K

Fig. 5. K-mismatch consensus repetition

Similar to uniform repetitions, consensus repetitions provide an intermediate
structure between globally-defined repetitions and runs:

Lemma 5.6 Assume K is even.

(i) Any K-mismatch globally-defined repetition can be extended to a (possibly
not unique) K/2-mismatch consensus repetition. Any K /2-mismatch con-
sensus repetition is the union of K-mismatch globally-defined repetitions it
contains.

(i) Any K/2-mismatch consensus repetition can be extended to a unique run of
K -mismatch tandem repeats. A run of K-mismatch tandem repeats is the
union of K/2-mismatch consensus repetition it contains.

Concerning the relationship between uniform and consensus repetitions, it is
easily seen that a K /2-mismatch consensus repetition can be extended to a K-
mismatch uniform repetition. Any K-mismatch uniform repetition can be, in
turn, extended to a K-mismatch consensus repetition. A more subtle relation-
ship between these two notions require an additional analysis. Designing an
efficient algorithm for finding these types of repetitions remains an additional
open problem.

Relations between different notions of repetition, studied in this paper, is
summarized on Figure 6. A solid arrow denotes the extension relation (see
Figure 3 and remark after Example 2.5), and a flashed arrow means just
that the “source structure” can be extended to the “target structure”, but
not necessarily that a target structure is the union of the source structures
contained in it.

6 Concluding remarks

We proposed O(nK log K 4+ S) algorithms for finding K-mismatch globally-
defined repetitions and runs of K-mismatch tandem repeats (S the output
size). Note that if K is considered constant, we have O(n + S) algorithms for

21



K—mismatch consensus runs of K—mismatch
repetitions tandem repeats

~~

K—mismatch uniform
repetitions

K/2—mismatch consensus
repetitions (K is even)

/

K—mismatch globally—
defined repetitions

Fig. 6. Relations between different notions of repetitions

finding each of these structures. This is an interesting result, which had been
long time unknown even for the exact case [10-12].

In the final stage of preparation of this paper, we got known of paper [27]. In
this paper, yet another notion of approximate repetitions is considered, which
is weaker than globally-defined repetitions, but stronger than both uniform
repetitions and consensus repetitions. The algorithm presented in [27] runs
in time O(nKElog(n/K)), where E is the maximal exponent of reported
repetitions.

The algorithms presented in this paper has been implemented within the
mreps software?, specialized in the search of repetitions in DNA data. As
expected, the implementation turned out to be very efficient — a sequence
of several millions of letters (typical size of a bacterial genome) is processed
within seconds on a regular Pentium™ computer. The experiments show that
a typical run of approximate tandem repeats in a DNA sequence contains 2-
3 globally-defined repetitions, and the phenomenon of error accumulation in
runs does not really occur in these data. Our observation is that, in the case of
DNA sequences, runs of approximate tandem repeats provide a notion which
captures well biologically interesting repetitions.
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