
The Complexity of Testing Ground Reducibility
for Linear Word Rewriting Systems with

Variables

Gregory Kucherov and Micha�l Rusinowitch

INRIA�Lorraine and CRIN
���� rue du Jardin Botanique� BP ���
����� Vand	uvre�l
s�Nancy� France
email� �kucherov�rusi��loria�fr

Abstract� In �
� we proved that for a word rewriting system with vari�
ables R and a word with variables w� it is undecidable if w is ground
reducible by R� that is if all the instances of w obtained by substituting
its variables by non�empty words are reducible by R� On the other hand�
if R is linear� the question is decidable for arbitrary �linear or non�linear�
w� In this paper we futher study the complexity of the above problem
and prove that it is co�NP�complete if both R and w are restricted to
be linear� The proof is based on the construction of a deterministic �nite
automaton for the language of words reducible by R� The construction
generalizes the well�known Aho�Corasick automaton for string matching
against a set of keywords�

� Introduction

This paper continues with the study undertaken in ��� where the following ques�
tion has been proved to be generally undecidable� Given a set of words with vari�
ables R and a word with variables �subject pattern	 w
 do all the instances of w
obtained by substituting its variables by non�empty words contain an instance
of a word from R as a factor� From the point of view of rewriting systems ���

the question amounts to testing a well�known ground reducibility property �
��
which is at the core of the inductive completion methods for proving theorems
in the initial model of equational speci�cations� Here R is identi�ed with the set
of left�hand sides of a rewriting system
 and the rewriting systems under con�
sideration
 called word rewriting systems with variables �WRSV	
 are rewriting
systems over a signature of a single associative binary symbol �concatenation	
and a �nite set of constants �letters	� The undecidability result above strength�
ens a result from ��� of undecidability of ground reducibility problem for term
rewriting systems over an associative function and a number of non�associative
ones� On the other hand
 the result can be regarded as the undecidability result
for a particular fragment of positive ���theory of free semigroups
 and in this
sense generalizes the result of �

��

If the rewriting systemR is restricted to be left�linear
 the ground reducibility
problem is decidable regardless of the linearity of w� In this paper we study



the complexity of the problem and prove that it is co�NP�complete when w is
restricted to be linear too� This case can be viewed as the inclusion problem for
regular languages represented by regular expressions of a particular class
 the
problem known to be PSPACE�complete for general regular expressions ����
Proving that the problem is in co�NP requires an analysis of the structure of a
deterministic �nite automaton recognizing the words reducible by R� The key
idea is to prove that although the total number of states in such an automaton
is exponential on the size of R
 the length of a loop�free path going from the
initial to a �nal state can be bounded polynomially� This allows us to construct
a non�deterministic polynomial�time algorithm for checking the existence of an
irreducible instance of a given subject word w� The automaton construction
generalizes the well�known Aho�Corasick automaton for string matching against
a set of keywords� Using similar techniques we prove that the related problem
of testing �niteness of the set of irreducible words is also co�NP �complete�

� Notations

Given a �nite alphabet A and an alphabet of variables X 
 we consider words over
A � X called words with variables �or patterns	 and words over A called simply
words �or strings	� A pattern is called linear if every variable occurs at most once
in it� A substitution � is a mapping from X to A��� It can be extended to a
homomorphism from �X �A�� to A� �regarded as monoids	 such that ��a� � a
for every a � A�

Word concatenation will be denoted either by � or just by jaxtaposition� �
denotes the empty string and jwj the length of a word w� A position of a symbol
�a letter or a variable	 in a pattern w is a nonnegative integer in f�� ���� jwj��g� If
p�� p� are positions in w and p� � p�
 then by w�p� � p�� we denote the pattern
obtained by deleting all symbols at the positions fp�� � � � � p� � �g�

Given a set R of words with variables
 Inst�R� denotes the set of instances
of patterns from R
 that is the set f��w�jw � Rg for all possible substitutions
�� We de�ne Red�R� � fu� � v � u�jv � Inst�R�� u�� u� � A�g
 and NF �R� �
A� n Red�R�� Our notation comes from the term rewriting system vocabulary�
Think of Red�R� as the set of strings reducible by a WRSV �see introduction	
with R being the set of left�hand sides of the rules� For this reason sometimes
we call elements of R rules without adding �the left�hand side of�� Similarly

NF �R� stands for the set of all normal forms �� irreducible words	 for R� A
word with variables w is called ground reducible by R i� Inst�fwg� 	 Red�R�

or equivalently
 i� Red�fwg� 	 Red�R��

� Preliminary results

In ��� we proved the following result�

� Having in mind term rewriting system applications� we do not allow a variable to
be substituted by the empty string� This assumption is technical and does not a�ect
the soundness of the results�



Theorem � For a WRSV R and a word with variables w� it is undecidable if
w is ground reducible by R�

We even showed that the problem remains undecidable for a �xed and very
simple word w � axa where a is a letter and x a variable�

If R consists of linear patterns
 every v � R can be written as
v � u�x�u�x� � � �xnun where u�� un � A�
 ui � A�
 � 
 i 
 n � �
 xi �
X 
 � 
 i 
 n and all xi are di�erent� Obviously in this case Red�fvg� �
A�u�A

�u�A
� � � �A�unA

� is a regular language and so is
Red�R� �

S
v�RRed�fvg�� If w is a linear pattern in addition
 testing ground

reducibility of w by R amounts to testing the inclusion of regular languages
which is of course decidable�

We show now that the problem remains decidable for linear R and arbitrary
�non�linear	 w� We need a notation to identify positions in ��w�� Assume that
w � u�x�u�x� � � � xnun �where variables xi may be equal	� If pi is the position of
xi then by p�i we denote the position in ��w� which corresponds to the beginning
of the substring corresponding to xi� Formally
 we de�ne recurrently p�� � p�

and p�i�� � p�i � j��xi�j� juij for 	 
 i 
 n�

Lemma � For a linear WRSV R and an arbitrary word with variables w� it is
decidable if w is ground reducible w�r�t� R�

Proof� The idea of the proof is somewhat similar to that for ordinary term
rewriting systems ��
 
��� We show that a constant C�R� w� can be computed
such that if w is not ground reducible w�r�t� R
 then there exists a R�irreducible
instance ��w�
 and j��x�j
C�R� w� for each variable x in w� We prove that if
for some variable x in w
 j��x�j exceeds the bound
 then we can always modify
��x� by reducing its length and preserving the irreducibility of ��w��

Let A be a deterministic automaton recognizing NF �R�� To each position
p in a word u�NF �R� the automaton associates a state denoted A�u� p�� We
will use the usual pumping lemma trick� if p�� p� are positions in u
 p� � p� and
A�u� p�� � A�u� p��
 then u�p� � p�� is also recognized by A and therefore is not
R�reducible�

We show now that C�R� w� can be set to jAjn
 where jAj is the number of
states of A and n is the maximal number of occurrences of a variable in w�
Assume that ��w� is not R�reducible and suppose j��x�j � C�R� w� where x is
a variable in w� Assume that x occurs at positions p�� � � � � pm in w �m 
 n	�
The idea is to �nd two distinct positions p�� p�� in ��x� such that ���w� still be�
longs to NF �R� where �� is the substitution de�ned by ���x� � ��x��p� � p���

and ���y� � ��y� if y �� x� To do this
 we choose p�� p�� that satisfy the follow�
ing property� for every j� � 
 j 
 m
 A���w�� p�j � p�� � A���w�� p�j � p����
Note that with every position p in ��x� we can associate a m�tuple of states
� A���w�� p�� �p�� � � � �A���w�� p�m�p� �� It is clear that there are at most jAjm

di�erent tuples of this form� Since p has at least jAjn � � possible values where
n � m
 by the pigeon hole principle we conclude that positions p�� p�� with the
desired property must exist� �



It follows from the proof above that if w is linear
 C�R� w� is just the number
of states of A� However
 it is easy to see that in this case the proof remains valid
if C�R� w� is taken to be a constant which bounds the number of states along
any loop�free path in A going from the initial to a �nal state� This re�nement

important for the rest of the paper
 is summarized as follows�

Corollary � Let R be a linear WRSV and w a linear pattern� Assume that A
is a deterministic automaton recognizing NF �R� and K is the maximal length
of a loop�free path going from the initial to a �nal state in A� If w is not ground
reducible by R� then there is an irreducible instance ��w� such that j��x�j 
 K
for every variable x of w�

� Complexity Results

��� Complexity of Testing Ground Reducibility

Now we give a complexity analysis of the ground reducibility problem for a linear
WRSV R and a linear subject pattern w� We show
 namely
 that this problem
is co�NP�complete� As usual
 the proof consists of two parts� We �rst prove
that the problem is co�NP�hard by reducing to it the MONOTONE�ONE�IN�
THREE�SAT problem�

Lemma � Testing ground reducibility of a linear subject pattern by a linear
WRSV is co�NP�hard�

Proof� Let X be a �nite set of variable symbols and C � C� 
C� 
 � � �
Cm be a
conjunction of clauses each consisting of � variables of X �positive literals	� It is
known ��� that the following problem
 labeled MONOTONE�ONE�IN�THREE�
SAT
 is NP�complete� Given C
 does there exist a truth assignment � 
 X �
ft� fg such that every clause Ci contains exactly one variable mapped to t under
��

Assume that fx�� � � � � xng is the set of variables in C� We encode C into the
following string over the alphabet A � f�� � � � � ng � ft� fg � f�g and a variable
set Y � fy�� y�� � � �g�

w � �C��C�� � � ��Cn�

where each Ci is obtained from Ci by replacing an occurrence of a variable xi
in Ci by two symbols yj i where yj is a fresh variable occurring nowhere else
in w� �Two di�erent occurrences of xi in C are replaced by yj i and yk i where
yj �� yk�	 By construction
 w is a linear pattern�

We construct now a linear WRSVR over A and X � fx� � � �gwhich applies to
all instances of w but those which correspond to the solutions of MONOTONE�
ONE�IN�THREE�SAT for C�

Firstly
 we put into R the following two patterns�

�� �
	

�x�� � � ��xn��� ��	



These patterns reduce any instance of w that contains more than n � � occur�
rences of � and thus guarantee that every variable in an irreducible instance
must be substituted by a string from �ft� fg � f�� � � � � ng���

Then
 for every i� j� �
 i� j 
n
 we add the pattern

ij ��	

Also
 we add the four patterns

tt� tf� ft� ff ��	

To �prevent� variables in w to take values other than t� f we add for every
i�� i�� i�� i�� �
 i�� i�� i�� i� 
n
 the eight patterns schematized by the expression

i�ft� fgi�ft� fgi�ft� fgi� ��	

Patterns ��	���	 �force� every variable yj in w to take one of the values ft� fg
under ��

For every i� �
 i 
n
 we add the following two patterns� They make reducible
any instance of w in which two variables corresponding to the same variable xi
in C are substituted by di�erent values ft� fg�

tixfi ��	

fixti ��	

tifi ��	

fiti ��	

Finally
 for every i�� i�� i� �
 i�� i�� i� 
n
 we add the patterns

fi�fi�fi� �
�	

ti�ti�fi� �

	

ti�fi�ti� �
�	

fi�ti�ti� �
�	

ti�ti�ti� �
�	

Clearly
 the instances of w that remain irreducible by the patterns above
correspond exactly to the solutions of MONOTONE�ONE�IN�THREE�SAT for
C� We have constructed O�n�� patterns of constant length and two patterns
�including w	 of length O�n� over an alphabet of O�n� symbols� It is obvious
that the whole construction can be done in polynomial time� �

We are now to prove that the existence of an irreducible instance of a linear
pattern w w�r�t� a linear WRSV R can be tested in polynomial time on the
non�deterministic Turing machine� In order to simplify the presentation of this
part we will allow variables to be substituted by an empty string� We leave the
reader to make sure that this assumption does not a�ect the complexity�



Throughout the rest of this section we assume that R � fp�� � � � � png is a
set of patterns where each pj is of the form uj�x

j
�u

j
� � � �x

j
nj��

ujnj where uji �

A�� �
 i
 nj and xji � X � �
 i
 nj � � are pairwise distinct� �Note that a
linear variable at the beginning and�or at the end of a pattern can be omitted�	
A non�deterministic algorithm that tests whether there exists an irreducible
instance of w w�r�t� R consists of the following two steps�


� guess a substitution � assigning to every variable a string no longer than K

where K is the constant from corollary 



�� test if ��w� is irreducible by fp�� � � � � png

Let C � maxfjuji j j�
 j
n� �
 i
njg and N � maxfnj j�
 j
ng� Step �
can be done deterministically in time O�n�j��w�j � CN �� by using for each pj
the Knuth�Morris�Pratt string matching algorithm successively for uj�� � � � � u

j
nj
�

In order to prove that the whole algorithm is in polynomial time it is su�cient
to show that K can be bounded polynomially on the size of R� In this case the
size of a guess at step 
 and the run time of step � would be polynomial on
�jRj� jwj��

Recall that K is the length of the longest loop�free path going from the initial
to a �nal state in some deterministic automaton recognizing NF �R�� Note that
we can equivalently reason about a deterministic automaton for Red�R� since it
can be obtained from the one for NF �R� by changing the set of �nal states to its
complement� From semantical considerations it is clear that in a deterministic
automaton for Red�R��

� every transition from a �nal state leads to a �nal state

� from every reachable state there is a path to a �nal state�

Therefore
 K can be taken to be the length of the longest loop�free path in some
deterministic automaton recognizing Red�R��

In the rest of this section we construct a deterministic automaton for Red�R�
for which we show that although the total number of states is exponential on
jRj
 the number of states along a loop�free path can be bounded polynomially�

Example � For k � �
 consider the system

R � f�a�x�a�� �aa�x�aa�� � � ���ak�x�ak�g

over the two�letter alphabet A � fa��g� It can be shown that the minimal
deterministic automaton for Red�R� has the number of states exponential on k�
Informally
 if the automaton reaches some non��nal state after reading a word w

then this state should �memorize� the set fi j�
 i
k��ai� is a subword of wg�
States corresponding to di�erent sets cannot be factorized since for any two of
them
 there is a word which leads to a �nal state from one but not from another�
The number of di�erent such sets is 	k�

On the other hand
 the longest loop�free paths are of polynomial length� It
can be proved that the words spelled out by the longest loop�free paths in the au�
tomaton are of the formw � �ai���ai�� � � ��aik��ak�
 where �i�� i�� � � � � ik�



is an arbitrary permutation of ��� � � � � k�� The proof consists of two parts� First
we show that the automaton does not go twice through the same state during
its run on w� To show this
 we prove that for any two distinct pre�xes w�� w� of
w
 there is a word v � A� such that w�v � Red�R� and w�v �� Red�R�
 or vice
versa� This implies that no two pre�xes of w take the automaton to the same
state� At the second step
 we show that any word longer than w has two distinct
pre�xes w�� w� such that for every v � A�
 w�v � Red�R� i� w�v � Red�R��
This means that any such word makes the automaton visit twice the same state�
Both steps of the proof can done by exhaustive case analysis� We omit further
details�

In conclusion
 the length of the longest loop�free paths is k���k��
�

� �

To explain the structure of the automaton let us start with a very particular
case when every pattern pi � R is just a string vi � A�� We come up then with
a well�known problem of matching against a set of keywords �
�� The well�known
Aho�Corasick algorithm is a generalization of the Knuth�Morris�Pratt algorithm
to the multiple�keyword case �
�� Similar to the Knuth�Morris�Pratt algorithm

the Aho�Corasick algorithm preprocesses �in time O�jRj�	 the set R into an
automaton which allows one to perform pattern matching by scanning the input
string in linear time without backtracking� Let us recall very brie�y the idea
of the construction� Think of the algorithm as scanning the input string and
moving a pointer in each vi� Clearly
 a state in the automaton is associated with
a combination of pointer positions� However
 it is not necessary to consider �a
potentially exponential number of	 all possible combinations
 as the following
argument shows� The position of each pointer is uniquely determined by the
su�x w of length maxfjvij j�
 i
 ng of the scanned part of the input string�
The pointer position in vi is then de�ned as the longest pre�x of vi which is a
su�x of w� Moreover
 it is su�cient to know the longest su�x of w which is at
the same time a pre�x of some vi� But this shows that a state can be identi�ed
with a pre�x of some vi which shows that the number of states is bounded by
jRj� We essentially use this idea in the construction below�

We describe a deterministic automatonA that recognizes the strings matched
by at least one of the patterns� Let us �rst introduce some notations� Given a
word w
 pref�w� �respectively su��w�	 denotes the set of pre�xes �respectively
su�xes	 of w� � denotes the empty string� Given two words v� w
 S�v� w� stands
for the longest word from su��v� � pref�w�� Finally
 if q is a state and v a word

q � v denotes the state reached by A from the state q after processing the word
v�

The set of states Q of A is a set of triples

� �i�� � � � � in�� 	� �
�� � � � � 
n� �

where � 
 ij 
 nj � � 
 	 �
Sn

j�� pref�u
j
ij
� and 
j � pref�ujij � � f�g�

The initial state of the automaton is �

q� �� ��� � � � � ��� �� ��� � � �� �� �



Assume that a � A
 q �� �i�� � � � � in�� 	� �
�� � � � � 
n� �
 and ij 
 nj for
all j� � 
 j 
 n� We de�ne q � a �� �i��� � � � � i

�
n�� 	

�� �
��� � � � � 

�
n� �
 where

i��� � � � � i
�
n� 	

�� 
��� � � � � 

�
n are computed as follows� For every j� � 
 j 
 n
 �rst

compute

�j �

�
S�	a� ujij � if 
j � �

S�
ja� u
j
ij
� if 
j �� �

�
�	

There are two cases�


� �local transition	 if there is no j� �
j
n such that �j � ujij 
 then

�a	 i�j � ij for all j� �
j
n

�b	 	� is the longest string of f��� � � � � �ng

�c	 for every j� �
j
n



�j �

�
� if �j � S�	�� ujij��

�j otherwise
�
�	

�� �global transition	 if there exists j� �
j
n such that �j � ujij 
 then

�a	 for every j� �
j
n
 i�j �

�
ij � � if �j � ujij �

ij otherwise

�b	 	� is the longest string of f�j j �
j
n� �j �� ujijg


�c	 for every j� �
j
n



�j �

���
��
� if �j � ujij �

� if �j �� ujij and �j � S�	�� ujij ��

�j otherwise

�
�	

If a �global	 transition results in a state q �� �i�� � � � � in�� 	� �
�� � � � � 
n� �
such that ij � nj�� for some j� �
j
n
 then q is a �nal state� Every transition
from a �nal state leads to the same state� Clearly
 the constructed automaton is
deterministic and complete�

Let us explain informally the construction above� As for the Aho�Corasick
algorithm
 think of the automaton as simulating the process of moving a pointer
in every pattern pj � uj�x

j
�u

j
� � � �x

j
nj��

ujnj � At each moment the pointer is located

in some ujij 
 and the pointed pre�x of u
j
ij

 say �j
 is a su�x of the scanned part of

the input string� After reading a letter a from the input
 the pointer moves one
position right if a is the letter which follows �j in u

j
ij

 and moves left or stays at

the same position otherwise� In the latter case the pointed pre�x becomes equal
to the longest pre�x of ujij which is a su�x of �ja� In both cases
 the new pointed

pre�x is S��ja� u
j
ij
�� Once the pointer gets to the end of ujij 
 the following word

ujij�� is entered
 that is the pointer is placed at the beginning of it�

The �rst component �i�� � � � � in� of the state of the automaton indicates
 for
every pj 
 the word ujij that the pointer is currently located in� We call ij the
j�th coordinate of the state� The second component 	 is maintained to be the
longest among all pointed pre�xes� Unlike the Aho�Corasick algorithm
 	 does



not generally determine the pointer position in each of u�i�� � � � � u
n
in

because they
have not been generally entered at the same moment� Formally
 saying that 	
determines the pointer position in ujij means that the pointed pre�x is equal

to S�	� ujij �� In order to keep track of the pointer positions
 a third component

�
�� � � � � 
n� is added to the state� If 	 determines the pointer position in ujij 

then the corresponding 
j is set to �
 otherwise 
j is assigned the pointed pre�x

of ujij � The states of the automaton are de�ned recursively� To compute a �new�
state q �a from a �current� state q
 auxiliary words ��� � � � � �n are �rst computed
which correspond exactly to the new pointer positions in u�i� � � � � � u

n
in
�

The next two lemmas show the correctness of the construction
 i�e� that the
automaton recognizes precisely the words reducible by R�

Lemma � Assume that v � A� and q � q� � v� Assume that no proper pre�x
of v is accepted by the automaton �i�e� either q is not �nal or it is a �nal state
reached by the automaton for the �rst time during its run on v��

�	� If q �� �i�� � � � � in�� 	� �
�� � � � � 
n� �� then for every j� �
 j 
 n� there
exists a decomposition

v � 
j�u
j
�


j
� � � �u

j
ij��


jij � 
j�� � � � � 

j
ij
� A� �
�	

where 
j�� 

j
�� � � � � 


j
ij

satisfy the following properties

�i� for every k� �
 k
 ij � �� ujk does not occur in 
jku
j

k as a factor except at
the su
x position�

�ii� if ij �� nj � �� then ujij does not occur in 
jij as a factor�

�iii� if ij �� nj � �� then S�
jij � u
j
ij
� �

�
S�	� ujij � if 
j � �


j if 
j �� �

��� Conversely� for every j� � 
 j 
 n� let ij � � 
 ij 
 nj� and 
j� � � � � � 

j
ij

be such that v admits decomposition �	�� that satis�es conditions �i���ii�� Then
q �� �i�� � � � � in�� 	� �
�� � � � � 
n� �� where 	� 
�� � � � � 
n verify the following con�
ditions

�iv� 	 is the longest string of fS�
jij � u
j
ij
� j �
j
ng�

�v� 
j �

���
��
� if 
jij � �

� if 
jij �� � and S�	� ujij � � S�
jij � u
j
ij
�

S�
jij � u
j
ij
� otherwise

Proof� First we note that part ��	 of the lemma is stated correctly since a
decomposition of v satisfying �i	
�ii	 is unique and therefore ij �s and 
jij �s are
well�de�ned�

We use induction on the length of v�
�
	 For v � � the lemma trivially holds� Assume that the lemma holds

for a word v and q� � v �� �i�� � � � � in�� 	� �
�� � � � � 
n� �� Let a � A and



q� � va �� �i��� � � � � i
�
n�� 	

�� �
��� � � � � 

�
n� �� We have to show that va can be de�

composed according to the lemma where i�� � � � � in� 	� 
�� � � � � 
n are replaced by
i��� � � � � i

�
n� 	

�� 
��� � � � � 

�
n respectively�

Consider the a�transition from q� � v to q� � va and suppose it is a local
transition
 i�e� i�j � ij for all j� By assumption
 q� � v is not �nal and thus q� � va
is not �nal either �i�e� i�j �� nj for all j	� Take some j� �
 j 
 n� By induction

hypothesis v � 
j�u
j
�


j
� � � �u

j
ij��


jij 
 and conditions �i	��iii	 are veri�ed� Let us

show that the decomposition va � 
j
�
uj
�

j
�
� � �ujij���

j
ij

 where �jij � 
jija satis�es

the lemma� Condition �i	 is trivially veri�ed� By induction hypothesis �condition
�iii		

S�
jij � u
j
ij
� �

�
S�	� ujij � if 
j � �


j if 
j �� �

This implies that

S�
jij a� u
j
ij
� �

�
S�	a� ujij � if 
j � �

S�
ja� u
j
ij
� if 
j �� �

The expression on the right is exactly �j de�ned by �
�	� Since the transition is

local
 then �j is a proper pre�x of ujij 
 and therefore ujij is not a su�x of 
jija�

Thus
 condition �ii	 is also veri�ed� By reading �
�	 from right to left
 we have

�j �

�
S�	�� ujij� if 


�
j � �


�j if 
�j �� �

Thus


S��jij � u
j
ij
� �

�
S�	�� ujij� if 


�
j � �


�j if 
�j �� �

which proves condition �iii	�
Assume now that the transition under consideration is global� For those j�s

that satisfy ij � i�j 
 the same decomposition and proof as in the case of local tran�

sition apply� Consider j such that �j � ujij and i
�
j � ij � �� Then the decompo�

sition va � 
j�u
j
�


j
� � � � u

j
ij��

�jiju
j
ij

jij�� satis�es the lemma
 where �jiju

j
ij
� 
jija

and 
jij�� � �� Note that this decomposition is correct since S�
jij a� u
j
ij
� � ujij 


that is ujij is indeed a su�x of 
jija� Condition �i	 of the lemma follows from the

induction hypothesis �condition �ii		 that 
jij does not contain ujij as a factor�

Condition �ii	 is trivial as 
jij�� � �� Condition �iii	 is also trivial as 
�j � � by

�
�	�
��	 This part can be proved using similar arguments� �

Let v � A�
 jvj � �� For some j� �
 j
n
 consider the decomposition of v
according to lemma �� The remarks below follow from the proof above�



Remark � If q is a current state and the last transition was local� then
S�
jij � u

j
ij
� � �j where �j
s are computed according to �	�� and correspond to

the last transition�

Remark � 
jij � � i� the last transition was global and modi�ed the j�th coor�

dinate of the state from ij � � to ij � Otherwise j

j
ij
j is equal to the number of

transitions made after that modi�cation�

Lemma � The language accepted by the automaton described above is
Red�R� �

Sn

j��A
�uj�A

� � � �A�ujnjA
�

Proof� Let w � A� be accepted by the automaton�Take the shortest pre�x v of w
accepted by the automaton� Assume that q� � v � q

q �� �i�� � � � � in�� 	� �
�� � � � � 
n� �
 and ij � nj � � for some j� �
 j
n� From

part �
	 of lemma � it follows that v can be decomposed as v � 
j�u
j
�


j
� � � �


j
nj
ujnj

�by remark �
 
jnj�� � �	� Therefore v is reducible by pj � uj�x
j
�u

j
� � � �x

j
nj��

ujnj
and so is w�

If w � Red�R�
 take the shortest reducible pre�x v of w
 and let pj �

uj�x
j
�u

j
� � � �x

j
nj��

ujnj be a pattern which applies to v� Find a decomposition

v � 
j�u
j
�


j
� � � �


j
nj
ujnj such that for every k� � 
 k 
 nj 
 u

j

k does not occur

in 
j
k
uj
k
as a factor except at the su�x position� This decomposition can be

obtained by taking iteratively for each k� � 
 k 
 nj
 the leftmost occurrence

of ujk which follows the occurrence of ujk��� By part � of lemma �
 v takes the
automaton to a �nal state
 and therefore w is also accepted� �

The following lemma shows that after a bounded number of steps every 
j
gets equal to � unless the j�th coordinate of the state is changed�

Lemma 	 Let v � A� and q� � v �� �i�� � � � � in�� 	� �
�� � � � � 
n� �� Assume that
v � 
j

�
uj
�

j
�
� � � ujij��


j
ij

is the decomposition of v according to lemma � for some

j� �
j
n� Then j
jij j � jujij j implies 
j � ��

Proof� Since j
jij j � �
 the last transition did not change the j�th coordinate of

the state �remark �	� Together with �
�	
 �
�	 this implies that proving 
j � �

amounts to proving �j � S�	� ujij � where �j corresponds to the last transition

on the path induced by v� On the other hand
 �j � S�
jij � u
j
ij
� according to

remark 
� Hence
 we have to prove that S�	� ujij � � S�
jij � u
j
ij
��

Recall that both 	 and 
jij is a su�x of v� If 	 is longer than 
jij 
 then every

su�x of 
jij is also a su�x of 	� On the other hand
 since j
jij j � jujij j
 every pre�x

of ujij which is a su�x of 	 is also a su�x of 
jij � Therefore
 S�	� u
j
ij
� � S�
jij � u

j
ij
��

If 
jij is longer than 	
 then every su�x of 	 is also a su�x of 
jij � On the other

hand
 	 is longer than or equal to S�
jij � u
j
ij
� by de�nition of 	� This implies



again S�	� ujij � � S�
jij � u
j
ij
�� �

Now we are in position to establish a bound for the loop�free paths in the
automaton�

Lemma 
 Assume that M �
Pn

j�� nj and C � maxfjujij jj�
j
n� �
 ij
njg�
Then the maximal length of a loop�free transition sequence of A is bounded by
�n � ��MC�

Proof� Consider an arbitrary loop�free path in the automaton� It is clear that
any chain of transitions modi�es the �rst tuple of the state at mostPn

j���nj � �� � � times before reaching an accepting state�
Let us �x the tuple of coordinates to �i�� � � � � in�� By lemma � and remark �


after at most C transitions every 
j gets equal to � and keeps this value unless
ij is modi�ed� As soon as both the �rst and the third component is �xed
 every
state is uniquely associated with the value of 	� Since 	 is a pre�x of some word
of u�i�� � � � � u

n
in

 there are at most nC such states�

To sum up
 the length of a loop�free path in the automaton is bounded by
M �C � nC� � �n� ��MC� �

Thus
 the length of a loop�free path in a deterministic automaton which
recognizes Red�R� �NF �R�	 can be bounded polynomially �quadratically	 on
jRj� In conclusion
 we obtain

Lemma � Testing ground reducibility of a linear subject pattern by a linear
WRSV is in co�NP�

Finally
 lemmas � and � prove the main result�

Theorem � Testing ground reducibility of a linear subject pattern by a linear
WRSV is co�NP�complete�

��� Complexity of Testing Finiteness of NF �R�

We use the technique of the previous section to show that if a WRSV R is
restricted to be linear
 the problem of �niteness of the set NF �R� of irreducible
words is also co�NP�complete�

Assume we are given a linear WRSVR� From lemma � the length of all loop�
free paths in the automatonA constructed in the previous section is bounded by
a polynomial p�jRj�� This implies that p�jRj��� bounds the length of irreducible
words in the case when their number is �nite� Conversely
 if every word of length
p�jRj� is reducible
 then this is trivially the case for all longer words� Thus
 to
test nondeterministically if NF �R� is in�nite
 guess a word of the length p�jRj�
and check if it is irreducible� This proves that testing �niteness of NF �R� is in
co�NP �

Now we prove that the problem is complete for co�NP �

Lemma � Testing �niteness of NF �R� for a linear WRSV R is co�NP�complete�



Proof� By the remark above it remains to show that the problem is co�NP �hard�
We encode a formula C � C� 
 C� 
 � � �
 Cm into a WRSV R over the alphabet
A � f�� � � � � ng � ft� fg � f�g and a variable set X � fx� � � �g� For technical
reasons we assume that all Ci are di�erent�

We �rst modify the WRSV constructed in the proof of lemma �� We replace
pattern � by the patterns

t�� f� �
�	

�i� for all �
 i
n ���	

We add further the patterns

�ft� fgi�� �ft� fgift� fgj�� for all �
 i� j
n ��
	

It should be clear that words that remain irreducible are factors of words
from the regular language ��ft� fgf�� � � �� ng������

Assume that Ci encodes Ci in the same way as in the proof of lemma ��
De�ne Ci 	 �ft� fgf�� � � �� ng�� to be the set of all instances of Ci which can be
obtained by applying some truth assignement� We add to R all the words from

�ft� fgf�� � � �� ng�� n
n�
i��

Ci ���	

Now
 every ��letter factor of an irreducible word occurring between two ��s
belongs to someCi� Finally
 let �Ci � �ft� fgf�� � � �� ng��nCi� We add the patterns

v�v�� for all �
 i
n� �� v � Ci� v
� � �Ci�� ���	

v�v�� for all v � Cn� v
� � �C� ���	

If the set of irreducible words w�r�t� the constructed WRSV is in�nite
 then
every su�ciently long irreducible word contains a factor�v��v�� � � ��vn� that
encodes a solution of the MONOTONE�ONE�IN�THREE�SAT problem for C�
Conversely
 if �v��v�� � � ��vn� encodes a solution of C
 then all the words
�v��v�� � � ��vn��� are irreducible� We conclude that NF �R� is in�nite if and
only if C has a solution
 and therefore testing �niteness of NF �R� for a given R
is co�NP �hard� �

� Remarks and Related Works

Note that theorem � remains valid even if the subject pattern w is assumed to
be �xed� Necessary modi�cations of the proof of lemma � are suggested by the
proof of lemma ��

The ground reducibility problem we have considered in section ��
 is the
inclusion problem for regular languages represented by regular expressions of a
particular class� The inclusion problem for general regular languages represented
by regular expressions is PSPACE�complete ���� Various complexity results for



formal language theory can be found in ��
 ��� For example
 it is proven that
the inclusion of regular languages L� 	 L� remains PSPACE�complete even if
L� is �xed� On the other hand
 we are unaware about results on complexity of
language inclusion �equivalence	 for subclasses of regular languages similar to
the one considered in this paper�

Recently we proposed an e�cient algorithm for testing the reducibility of a
word with respect to a linear WRSV ���� This problem is equivalent to a string
matching problem for a speci�c set of patterns �strings with variable length
don
t�care symbols	
 and has various practical applications�

Acknowledgements� We are grateful to Paliath Narendran for giving an
initial impulse to this study and to Valentin Antimirov for enlightening discus�
sions about Example 
�

References

�� A� V� Aho� Algorithms for �nding patterns in strings� In J� van Leeuwen� edi�
tor� Handbook of Theoretical Computer Science� Elsevier Science Publishers B� V�
�North�Holland�� �

��

�� N� Dershowitz and J��P� Jouannaud� Rewrite systems� In J� van Leeuwen� edi�
tor� Handbook of Theoretical Computer Science� Elsevier Science Publishers B� V�
�North�Holland�� �

��

�� M� Garey and D� Johnson� Computers and Intractability� A guide to the theory of

NP�completeness� W� Freeman and Compagny� New York� �
�
�
�� Harry B� Hunt III and Daniel J� Rosenkrantz� Computational parallels between

the regular and context�free languages� Theoretical Computer Science� �����

�
���� February �
���

�� Harry B� Hunt III� Daniel J� Rosenkrantz� and Thomas G� Szymanski� On the
equivalence� containment� and covering problems for the regular and context�free
languages� Journal of Computer and System Sciences� ����������� �
���

�� D� Kapur� P� Narendran� D� Rosenkrantz� and H� Zhang� Su�cient�completeness�
ground�reducibility and their complexity� Acta Informatica� ����������� �

��

�� D� Kapur� P� Narendran� and H� Zhang� On su�cient completeness and related
properties of term rewriting systems� Acta Informatica� ����
������ �
���

�� G� Kucherov and M� Rusinowitch� Matching a set of strings with variable length
don�t cares� In E� Ukkonen� editor� Proceedings of the �th Symposium on Combi�

natorial Pattern Matching� Helsinki� July �

�� to appear in Lect� Notes Comput�
Sci� Series�


� G� Kucherov and M� Rusinowitch� Undecidability of ground reducibility for word
rewriting systems with variables� Information Processing Letters� �����
�����
�

��

��� G� Kucherov and M� Tajine� Decidability of regularity and related properties of
ground normal form languages� Information and Computation� ���� �

�� to
appear�

��� S�S� Marchenko� Undecidability of the positive ���theory of a free semigroup�
Sibirskii Matematicheskii Zhurnal� �������
���
�� �
��� in Russian�

��� D� Plaisted� Semantic con�uence and completion method� Information and Con�

trol� ����������� �
���



This article was processed using the LATEX macro package with LLNCS style


