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Abstract. In [9] we proved that for a word rewriting system with vari-
ables R and a word with variables w, it is undecidable if w is ground
reducible by R, that is if all the instances of w obtained by substituting
its variables by non-empty words are reducible by R. On the other hand,
if R is linear, the question is decidable for arbitrary (linear or non-linear)
w. In this paper we futher study the complexity of the above problem
and prove that it is co-NP-complete if both R and w are restricted to
be linear. The proof is based on the construction of a deterministic finite
automaton for the language of words reducible by R. The construction
generalizes the well-known Aho-Corasick automaton for string matching
against a set of keywords.

1 Introduction

This paper continues with the study undertaken in [9] where the following ques-
tion has been proved to be generally undecidable: Given a set of words with vari-
ables R and a word with variables (subject pattern) w, do all the instances of w
obtained by substituting its variables by non-empty words contain an instance
of a word from R as a factor? From the point of view of rewriting systems [2],
the question amounts to testing a well-known ground reducibility property [12]
which is at the core of the inductive completion methods for proving theorems
in the initial model of equational specifications. Here R is identified with the set
of left-hand sides of a rewriting system, and the rewriting systems under con-
sideration, called word rewriting systems with variables (WRSV), are rewriting
systems over a signature of a single associative binary symbol (concatenation)
and a finite set of constants (letters). The undecidability result above strength-
ens a result from [6] of undecidability of ground reducibility problem for term
rewriting systems over an associative function and a number of non-associative
ones. On the other hand, the result can be regarded as the undecidability result
for a particular fragment of positive V3-theory of free semigroups, and in this
sense generalizes the result of [11].

If the rewriting system R is restricted to be left-linear, the ground reducibility
problem is decidable regardless of the linearity of w. In this paper we study



the complexity of the problem and prove that it is co-NP-complete when w is
restricted to be linear too. This case can be viewed as the inclusion problem for
regular languages represented by regular expressions of a particular class, the
problem known to be PSPAC E-complete for general regular expressions [3].
Proving that the problem is in co-NP requires an analysis of the structure of a
deterministic finite automaton recognizing the words reducible by R. The key
idea is to prove that although the total number of states in such an automaton
is exponential on the size of R, the length of a loop-free path going from the
initial to a final state can be bounded polynomially. This allows us to construct
a non-deterministic polynomial-time algorithm for checking the existence of an
irreducible instance of a given subject word w. The automaton construction
generalizes the well-known Aho-Corasick automaton for string matching against
a set of keywords. Using similar techniques we prove that the related problem
of testing finiteness of the set of irreducible words is also co-N P-complete.

2 Notations

Given a finite alphabet A and an alphabet of variables X', we consider words over
AUX called words with variables (or patterns) and words over A called simply
words (or strings). A pattern is called linear if every variable occurs at most once
in it. A substitution ¢ is a mapping from X to AT.! It can be extended to a
homomorphism from (X U A)T to At (regarded as monoids) such that o(a) = a
for every a € A.

Word concatenation will be denoted either by - or just by jaxtaposition. ¢
denotes the empty string and |w| the length of a word w. A position of a symbol
(aletter or a variable) in a pattern w is a nonnegative integer in {0, ..., |w|—1}.If
p1, p2 are positions in w and py; < po, then by w[p; < p2] we denote the pattern
obtained by deleting all symbols at the positions {p1,...,ps — 1}.

Given a set R of words with variables, Inst(R) denotes the set of instances
of patterns from R, that is the set {o(w)|w € R} for all possible substitutions
o. We define Red(R) = {u1 - v - uzlv € Inst(R), up,us € A*}, and NF(R) =
AT\ Red(R). Our notation comes from the term rewriting system vocabulary.
Think of Red(R) as the set of strings reducible by a WRSV (see introduction)
with R being the set of left-hand sides of the rules. For this reason sometimes
we call elements of R rules without adding "the left-hand side of". Similarly,
NF(R) stands for the set of all normal forms (= irreducible words) for R. A
word with variables w is called ground reducible by R iff Inst({w}) C Red(R),
or equivalently, iff Red({w}) C Red(R).

3 Preliminary results

In [9] we proved the following result.

! Having in mind term rewriting system applications, we do not allow a variable to
be substituted by the empty string. This assumption is technical and does not affect
the soundness of the results.



Theorem 1 For a WRSV R and a word with variables w, it is undecidable if
w is ground reducible by R.

We even showed that the problem remains undecidable for a fixed and very
simple word w = axa where a is a letter and # a variable.

If R consists of linear patterns, every v € R can be written as
V= UpTIULLY ... Tply WheTe ug,u, € A%, u; € AT, 1< i<n-1, 2 €
X, 1 < i< nand all z; are different. Obviously in this case Red({v}) =
A*ugAtu AT . Atu, A 18 a regular  language and so s
Red(R) = |, cr Red({v}). If w is a linear pattern in addition, testing ground
reducibility of w by R amounts to testing the inclusion of regular languages
which is of course decidable.

We show now that the problem remains decidable for linear R and arbitrary
(non-linear) w. We need a notation to identify positions in o(w). Assume that
W = UgL1UI T2 . .. Tpty (Where variables #; may be equal). If p; is the position of
z; then by p? we denote the position in o(w) which corresponds to the beginning
of the substring corresponding to x;. Formally, we define recurrently py = p1,
and pf,; = pf + [o(@:)] + |ug| for 2 < i < n.

Lemma 1 For a linear WRSV R and an arbitrary word with variables w, it is
decidable if w 1s ground reducible w.r.t. R.

Proof: The idea of the proof is somewhat similar to that for ordinary term
rewriting systems [7, 10]. We show that a constant C'(R,w) can be computed
such that if w is not ground reducible w.r.t. R, then there exists a R-irreducible
instance o(w), and |o(z)| < C(R,w) for each variable # in w. We prove that if
for some variable # in w, |o(x)| exceeds the bound, then we can always modify
o(x) by reducing its length and preserving the irreducibility of o(w).

Let A be a deterministic automaton recognizing N F(R). To each position
p in a word u € NF(R) the automaton associates a state denoted A(u,p). We
will use the usual pumping lemma trick: if p;, po are positions in u, p; < ps and
A(u, p1) = A(u, p2), then u[p; < pa] is also recognized by A and therefore is not
R-reducible.

We show now that C'(R,w) can be set to |A|", where |A] is the number of
states of A and n is the maximal number of occurrences of a variable in w.
Assume that o(w) is not R-reducible and suppose |o(2)| > C(R,w) where » is
a variable in w. Assume that  occurs at positions py1,...,pm in w (m < n).
The idea is to find two distinct positions p’, p’’ in o(x) such that o’ (w) still be-
longs to NF(R) where ¢ is the substitution defined by ¢'(x) = o()[p’ + p"],
and o'(y) = o(y) if y # «. To do this, we choose p’,p” that satisfy the follow-
ing property: for every j, 1 < j < m, A(o(w),p] +p') = A(o(w),p] + p").
Note that with every position p in o(x) we can associate a m-tuple of states
< A(o(w),p]+p),..., Alo(w), pZ, +p) >. It is clear that there are at most [A|™
different tuples of this form. Since p has at least |.A|® + 1 possible values where
n > m, by the pigeon hole principle we conclude that positions p’, p”" with the
desired property must exist. a



It follows from the proof above that if w is linear, C'(R, w) is just the number
of states of 4. However, it is easy to see that in this case the proof remains valid
if C(R,w) is taken to be a constant which bounds the number of states along
any loop-free path in A going from the initial to a final state. This refinement,
important for the rest of the paper, is summarized as follows.

Corollary 1 Let R be a linear WRSV and w a linear paitern. Assume that A
is a deterministic automaton recognizing NF(R) and K is the mazimal length
of a loop-free path going from the initial to a final state in A. If w is not ground
reducible by R, then there is an irreducible instance o(w) such that |o(z)| < K
for every variable x of w.

4 Complexity Results

4.1 Complexity of Testing Ground Reducibility

Now we give a complexity analysis of the ground reducibility problem for a linear
WRSV R and a linear subject pattern w. We show, namely, that this problem
18 co-NP-complete. As usual, the proof consists of two parts. We first prove
that the problem is co-NP-hard by reducing to it the MONOTONE-ONE-IN-
THREE-SAT problem.

Lemma 2 Testing ground reducibility of a linear subject pattern by a linear

WRSV s co-NP-hard.

Proof: Let X be a finite set of variable symbols and C = C; ACs A...ACp, be a
conjunction of clauses each consisting of 3 variables of X (positive literals). Tt is
known [3] that the following problem, labeled MONOTONE-ONE-IN-THREE-
SAT, is NP-complete: Given C, does there exist a truth assignment ¢ : X —
{t, £} such that every clause C; contains exactly one variable mapped to t under
o?

Assume that {x1,...,2,} is the set of variables in C. We encode C into the
following string over the alphabet A = {1,... ,n}U{t, £} U {#} and a variable
set Y = {1,140, .}

w=#C1#CaF .. . H#Cn#

where each C; is obtained from C; by replacing an occurrence of a variable z;
in C; by two symbols y; ¢ where y; is a fresh variable occurring nowhere else
in w. (Two different occurrences of x; in C are replaced by y; ¢ and yi ¢ where
Y; 7 yr.) By construction, w is a linear pattern.

We construct now a linear WRSV R over A and X' = {«, ...} which applies to
all instances of w but those which correspond to the solutions of MONOTONE-
ONE-IN-THREE-SAT for C.

Firstly, we put into R the following two patterns:

s (D)
#l‘l#...#l‘n+1# (2)



These patterns reduce any instance of w that contains more than n + 1 occur-
rences of # and thus guarantee that every variable in an irreducible instance
must be substituted by a string from ({t,£}U{1,...,n})*.

Then, for every 4,j, 1<4,j <n, we add the pattern

ij (3)
Also, we add the four patterns
tt, tf, ft, £f (4)

To “prevent” variables in w to take values other than t,f we add for every
11,12, 83,14, 1<, 19,153,104 <n, the eight patterns schematized by the expression

il{t,f}iz{t,f}ig{t,f}i4 (5)

Patterns (3)-(5) “force” every variable y; in w to take one of the values {t, £}
under o.

For every 7, 1 <i <n, we add the following two patterns. They make reducible
any instance of w in which two variables corresponding to the same variable z;
in C are substituted by different values {t, f}.

tirfi (6)
firti (7)
tifi (8)
fiti (9)

Finally, for every 1,1is,13 1<1iy,1i2,i3 <n, we add the patterns

fi1fi0fi3 (10)
ti1tiafis (11)
ti1fiatis (12)
fi1ti0tis (13)
ti1tiatis (14)

Clearly, the instances of w that remain irreducible by the patterns above
correspond exactly to the solutions of MONOTONE-ONE-IN-THREE-SAT for
C. We have constructed O(n*) patterns of constant length and two patterns
(including w) of length O(n) over an alphabet of O(n) symbols. Tt is obvious
that the whole construction can be done in polynomial time. a

We are now to prove that the existence of an irreducible instance of a linear
pattern w w.r.t. a linear WRSV R can be tested in polynomial time on the
non-deterministic Turing machine. In order to simplify the presentation of this
part we will allow variables to be substituted by an empty string. We leave the
reader to make sure that this assumption does not affect the complexity.



Throughout the rest of this section we assume that R = {p1,...,pn} is a
set of patterns Where'each pj is of the form wjzlud .. .x{”_lu{” where u! €
At, 1<i<njand 2/ € X, 1< i< n; — 1 are pairwise distinct. (Note that a
linear variable at the beginning and/or at the end of a pattern can be omitted.)
A non-deterministic algorithm that tests whether there exists an irreducible

instance of w w.r.t. R consists of the following two steps.

1. guess a substitution ¢ assigning to every variable a string no longer than K,
where K is the constant from corollary 1,
2. test if o(w) is irreducible by {p1,...,pn}

Let C = max{|ug| [1<j<n,1<i<n;}and N = max{n; |1 <j<n}. Step 2
can be done deterministically in time O(n(|o(w)| + CN)) by using for each p;
the Knuth-Morris-Pratt string matching algorithm successively for u{, . .,u{”.
In order to prove that the whole algorithm is in polynomial time it is sufficient
to show that K can be bounded polynomially on the size of R. In this case the
size of a guess at step 1 and the run time of step 2 would be polynomial on
(IR] + ).

Recall that K is the length of the longest loop-free path going from the initial
to a final state in some deterministic automaton recognizing N F'(R). Note that
we can equivalently reason about a deterministic automaton for Red(R) since it
can be obtained from the one for N F(R) by changing the set of final states to its
complement. From semantical considerations it is clear that in a deterministic
automaton for Red(R):

— every transition from a final state leads to a final state,
— from every reachable state there is a path to a final state.

Therefore, K can be taken to be the length of the longest loop-free path in some
deterministic automaton recognizing Red(R).

In the rest of this section we construct a deterministic automaton for Red(R)
for which we show that although the total number of states is exponential on
|R|, the number of states along a loop-free path can be bounded polynomially.

Example 1 For k > 0, consider the system

R = {#a#eta#t, #aatedtaatt, ... #a" H#rfta"#)}

over the two-letter alphabet A = {a,#}. It can be shown that the minimal
deterministic automaton for Red(R) has the number of states exponential on k.
Informally, if the automaton reaches some non-final state after reading a word w,
then this state should “memorize” the set {i|1<i<k, #a'# is a subword of w}.
States corresponding to different sets cannot be factorized since for any two of
them, there is a word which leads to a final state from one but not from another.
The number of different such sets is 2¥.

On the other hand, the longest loop-free paths are of polynomial length. It
can be proved that the words spelled out by the longest loop-free paths in the au-
tomaton are of the form w = #a’* ##ta’2# . .. #a’* #4a*#, where (i1, s, ..., ix)



is an arbitrary permutation of (1,... k). The proof consists of two parts. First
we show that the automaton does not go twice through the same state during
its run on w. To show this, we prove that for any two distinct prefixes wy, wo of
w, there is a word v € A* such that wiv € Red(R) and wyv ¢ Red(R), or vice
versa. This implies that no two prefixes of w take the automaton to the same
state. At the second step, we show that any word longer than w has two distinct
prefixes wy, wq such that for every v € A*, wiv € Red(R) iff wav € Red(R).
This means that any such word makes the automaton visit twice the same state.
Both steps of the proof can done by exhaustive case analysis. We omit further
details.

In conclusion, the length of the longest loop-free paths is %. a

To explain the structure of the automaton let us start with a very particular
case when every pattern p; € R is just a string v; € AT. We come up then with
a well-known problem of matching against a set of keywords [1]. The well-known
Aho-Corasick algorithm is a generalization of the Knuth-Morris-Pratt algorithm
to the multiple-keyword case [1]. Similar to the Knuth-Morris-Pratt algorithm,
the Aho-Corasick algorithm preprocesses (in time O(|R])) the set R into an
automaton which allows one to perform pattern matching by scanning the input
string in linear time without backtracking. Let us recall very briefly the idea
of the construction. Think of the algorithm as scanning the input string and
moving a pointer in each v;. Clearly, a state in the automaton is associated with
a combination of pointer positions. However, it is not necessary to consider (a
potentially exponential number of) all possible combinations, as the following
argument shows. The position of each pointer is uniquely determined by the
suffix w of length max{|v;| |l <7< n} of the scanned part of the input string.
The pointer position in v; is then defined as the longest prefix of v; which is a
suffix of w. Moreover, it is sufficient to know the longest suffix of w which is at
the same time a prefix of some v;. But this shows that a state can be identified
with a prefix of some v; which shows that the number of states is bounded by
|R|. We essentially use this idea in the construction below.

We describe a deterministic automaton A that recognizes the strings matched
by at least one of the patterns. Let us first introduce some notations. Given a
word w, pref{w) (respectively suff(w)) denotes the set of prefixes (respectively
suffixes) of w. £ denotes the empty string. Given two words v, w, S(v, w) stands
for the longest word from suff(v) N pref(w). Finally, if ¢ is a state and v a word,
q - v denotes the state reached by A from the state ¢ after processing the word
.

The set of states ) of A is a set of triples

<(il,...,in),ﬂ',(/,tl,...,/,Ln)>

where 1 <i; <n;j+1,7€ U;L:1 pref(uf:j) and p; € pref(ugj) U {«}.
The initial state of the automaton is :

po=<(,....,1),e(,....e) >



Assume that a € A, ¢ =< (41,...,4), 7, (H1,..., ) >, and 4; < n; for
all j, 1 < j <n. We define q-a =< (&),...,i,), @ (¢, ..., p,) >, where
iyt wopl, .o pl are computed as follows. For every j, 1 < j < n, first

compute
S(ra,wd ) if py =
o = { (ra ulj') if p; = = (15)

S(pja,ul ) if g # *

L5

There are two cases:

1. (local transition) if there is no j, 1<j<n such that o; = u , then
) @ =1 forall j, 1<j<n,
) 71' is the longest string of {aq, ..., an},

¢) for every j, 1<j<n,

x ifa; = S(7',ul),
= {1, =) (1)

a; otherwise

(
(a
(b
(

2. (global transition) if there exists j, 1<j<n such that o; = u , then
( z]—l—llfoz]_u],
i otherwise
(b) 7' is the longest string of {a; | 1<j<n, a; # uﬁj},
(c) for every j, 1<j<n,

a) for every j, 1<j<n, i :{

e ifa; = ugj,
p; =< * ifa; # ufj and «; = S(ﬂ",uﬁj), (17)

a; otherwise

If a (global) transition results in a state ¢ =< (i1, ...,%), 7, (g1, ..., pin) >
such that ¢; = n; +1 for some j, 1<j<n, then ¢ is a final state. Every transition
from a final state leads to the same state. Clearly, the constructed automaton is
deterministic and complete.

Let us explain informally the construction above. As for the Aho-Corasick
algorithm, think of the automaton as simulating the process of moving a pointer

in every pattern p; = ujlx]l u]2 xﬁl _1u] . At each moment the pointer is located

in some u? , and the pointed prefix of u’ i) 84y Vj, is a suffix of the scanned part of
the input strmg After reading a letter a from the input, the pointer moves one
position right if @ is the letter which follows v; in u] _, and moves left or stays at
the same position otherwise. In the latter case the pomted prefix becomes equal
to the longest preﬁx of u ~which is a suffix of v;a. In both cases, the new pointed

preﬁx is S(vja,ul ) Once the pointer gets to the end of u , the following word

Zj+1 is entered, that is the pointer is placed at the begmmng of it.

The first component (éy,...,4,) of the state of the automaton indicates, for
every p;, the word ufj that the pointer is currently located in. We call ¢; the
j-th coordinate of the state. The second component 7 is maintained to be the
longest among all pointed prefixes. Unlike the Aho-Corasick algorithm, 7 does



1 n
i+ uf because they

have not been generally entered at the same moment. Formally, saying that 7
determines the pointer position in w; means that the pointed prefix is equal

not generally determine the pointer position in each of u

J

by

to S(m, ui]) In order to keep track of the pointer positions, a third component

(41, -+, ptn) 18 added to the state. If & determines the pointer position in ufj,
then the corresponding p; is set to *, otherwise y; is assigned the pointed prefix
of uij The states of the automaton are defined recursively. To compute a “new”
state ¢ -a from a “current” state ¢, auxiliary words a1, ..., oy, are first computed
which correspond exactly to the new pointer positions in ulll, oo

The next two lemmas show the correctness of the construction, i.e. that the
automaton recognizes precisely the words reducible by R.

Lemma 3 Assume that v € A* and ¢ = qo - v. Assume that no proper prefix
of v is accepted by the automaton (i.e. either q is not final or it is a final state
reached by the automaton for the first time during its run on v).

(1) If g =< (i1, .., 8n), ™, (p1, .- o, pin) >, then for every j, 1<j<n, there
exrists a decomposition

v = {u{ﬁ%ui]_lﬁf], {,...,6ijA* (18)
where ﬁ{ , 6%, .. .,62]? satisfy the following properties

(i) for every k, 1<k<i; —1, ui does not occur in ﬁiui as a factor except at
the suffiz position, '

(ii) ifi; #n; + 1, then ufj does not occur in BZ]] as a factor,

{S(ﬂ',ufj) if pj = *

iti) if i; £ nj + 1, then S(B1 ul ) = ,
( ) J J ( J ) 1y Zfﬂ];é*

7
(2) Conversely, for every j, 1< j<mn, let i;, 1 <i; <nj, and 6{, . .,62]?
be such that v admits decomposition (18) that satisfies conditions (i),(ii). Then

q=< (1, .. yin),®, (f1, ..., phn) >, where w pu1, ..., pn verify the following con-
ditions

(iv) w is the longest string of {S( gj,ugj) | 1<j<n},

€ if fj =c
(v) p; =< * zfﬁf] + ¢ and S(ﬂ',uﬁj) =5( Z]»j,ugj)
S( Z]»j,ugj) otherwise

Proof: First we note that part (2) of the lemma is stated correctly since a
decomposition of v satisfying (i),(ii) is unique and therefore 4;’s and BZ]] ’s are
well-defined.

We use induction on the length of v.

(1) For v = ¢ the lemma trivially holds. Assume that the lemma holds
for a word v and qp - v =< (i1,...,00), 7, (pb1,.- ., ftn) >. Let @ € A and



qo - va =< (i, ..., i), @ (py, ..., p1h) >. We have to show that va can be de-
composed according to the lemma where ¢1,...,%,, 7, 1, ..., 4 are replaced by
iyt woph Ll respectively.

Consider the a-transition from ¢o - v to ¢y - va and suppose it is a local
transition, l.e. it = 4; for all j. By assumption, ¢o - v is not final and thus ¢, - va
1s not ﬁnal either (1 e. z] + n] for all j). Take some j, 1<j<n. By induction

hypothesis v = 62 Z 1 ] y and conditions (i)-(iii) are verified. Let us
show that the decomp051t10n va = 3 6] uf _1@] , where 6j = ﬁj a satisfies
the lemma. Condition (i) is trivially Verlﬁed By mductlon hypothesw (condltlon

(iil))
i) = S(ﬂ'u)lfp]_*
S ')_{u] if pj # #

This implies that

; ; S(wa, u]) if gy = *
j JN_ j
S(ﬁija,uij)_ {S(u]a u )lf/,L] # "

LX)

The expression on the right is exactly a; defined by (15) Since the transition is
local, then «; is a proper prefix of u] i and therefore u]v 1s not a suffix of 6]
Thus, condition (ii) is also verified. By reading (16) from right to left, we have

Oﬁ_{S(ﬂ' u! )1fu]_*
T if pf #

Thus,

by

P S’ ul ) if pf = «
5(5gj,uf.):{ ( )1fﬂ]¢*
15 15

which proves condition (iii).

Assume now that the transition under consideration is global. For those j’s
that satisfy ¢; = z , the same decomposition and proof as in the case of local tran-
sition apply. Con51der j such that aj = u] and z =1; + 1. Then the decompo—

sition va = BJul B .. uf _162] ul ﬁl i1 satlsﬁes the lemma, where 6] = 6]
7

and 6 +1 =€ Note that this decomposition is correct since S(ﬁ] a, u] ) = u] ,

that is ulg is indeed a suffix of 6] a. Condition (i) of the lemma follows from the

J

induction hypothesis (condltlon (ii)) that 6]» does not contain u; as a factor.

Condition (ii) is trivial as 3! 41 = €. Condition (iii) is also tr1v1al as pi = ¢ by
(17).

(2) This part can be proved using similar arguments. ad

Let v € A*, |v] > 0. For some j, 1< j<n, consider the decomposition of v
according to lemma 3. The remarks below follow from the proof above.



Remark 1 If ¢ is a current state and the last transition was local, then

S( Z]»j,ugj) = «; where a;’s are computed according to (15) and correspond to

the last transition.

Remark 2 BZ]] = ¢ 1iff the last transition was global and modified the j-th coor-

dinate of the state from i; — 1 to v;. Otherwise |ﬁf]| 1s equal to the number of
transitions made after that modification.

Lemma 4 The language accepted by the automaton described above s

Red(R) = Jj_, A"w| A* ... Auj A"

Proof: Let w € A* be accepted by the automaton. Take the shortest prefix v of w

accepted by the automaton. Assume that qgo-v =g,
g=<(l1,...,0n), 7, (ph1, ..., pbn) >, and 7; = n; + 1 for some j, 1<j<n. From
part (1) of lemma 3 it follows that v can be decomposed as v = 62 % ﬁ]

(by remark 2, BZUH = ¢). Therefore v is reducible by p; = u J:]lujz x] j_lu{”

and so i1s w.

If w € Red(R), take the shortest reducible prefix v of w, and let p; =

ujlav]lu]2 x{”_lu{;j be a pattern which applies to v. Find a decomposition
v = ﬁ{ 16% .. Bﬁhu{” such that for every k, 1 <k < n;, v} does not occur
in Bju) as a factor except at the suffix position. This decomposition can be
obtajned by taking iteratively for each ]e, 1 <k < nj, the leftmost occurrence
of wj, which follows the occurrence of w},_,. By part 2 of lemma 3, v takes the

automaton to a final state, and therefore w is also accepted. a

The following lemma shows that after a bounded number of steps every u;
gets equal to * unless the j-th coordinate of the state is changed.

Lemma 5 Letv € A* and qo-v =< (i1,...,0n), 7, ({1, ..., ptn) >. Assume that
w3 .. .ugj_lﬁfj is the decomposition of v according to lemma 3 for some

Jy 1<j<n. Then |5} | > |u] | implies p1; = *.

Proof: Since |ﬁf]| > 0, the last transition did not change the j-th coordinate of
the state (remark 2). Together with (16), (17) this implies that proving pu; = *
amounts to proving «; = S(, uij) where «; corresponds to the last transition

on the path induced by v. On the other hand, «; = S( gj,ugj) according to

remark 1. Hence, we have to prove that S(m, uij) =5( Z]] , uij)

Recall that both 7 and ﬁj is a suffix of v. If 7 is longer than ﬁj , then every
suffix of 6] is also a suffix of . On the other hand, since |B] | > |u] |, every prefix
ofu which is a suffix of 7 is also a suffix ofﬁ] Therefore, S(7, ul ) =5( Z]j , ui])

If BZ]] is longer than 7, then every suffix of 7 is also a suffix of BZ]] On the other
hand, 7 is longer than or equal to S( gj,ugj) by definition of #. This implies



again S(ﬂ',ufj):S( Z]»j,ugj). a
Now we are in position to establish a bound for the loop-free paths in the
automaton.

Lemma 6 Assume that M =5 "_ nj and C' = maX{|u¥j||1§j§n, 1<i;<n;}.
Then the mazimal length of a loop-free transition sequence of A is bounded by

(n+ 1)MC.

Proof: Consider an arbitrary loop-free path in the automaton. It is clear that
any chain of transitions modifies the first tuple of the state at most
Z?Il(nj — 1)+ 1 times before reaching an accepting state.

Let us fix the tuple of coordinates to (i1, ...,i,). By lemmab and remark 2,
after at most C' transitions every p; gets equal to * and keeps this value unless
#; 1s modified. As soon as both the first and the third component is fixed, every
state 1s uniquely associated with the value of m. Since 7 1s a prefix of some word

of ulll, ..., ul , there are at most nC such states.
To sum up, the length of a loop-free path in the automaton is bounded by
M(IC+nC)=(n+1)MC. ]

Thus, the length of a loop-free path in a deterministic automaton which
recognizes Red(R) (NF(R)) can be bounded polynomially (quadratically) on
|R|. In conclusion, we obtain

Lemma 7 Testing ground reducibility of a linear subject pattern by a linear

WRSYV is in co-NP.
Finally, lemmas 2 and 7 prove the main result.

Theorem 2 Testing ground reducibility of a linear subject pattern by a linear

WRSV is co-NP-complete.

4.2 Complexity of Testing Finiteness of NF(R)

We use the technique of the previous section to show that if a WRSV R is
restricted to be linear, the problem of finiteness of the set N F(R) of irreducible
words is also co- NP-complete.

Assume we are given a linear WRSV R. From lemma 6 the length of all loop-
free paths in the automaton A constructed in the previous section is bounded by
a polynomial p(|R|). This implies that p(|R|)—1 bounds the length of irreducible
words in the case when their number is finite. Conversely, if every word of length
p(|R]) is reducible, then this is trivially the case for all longer words. Thus, to
test nondeterministically if NF(R) is infinite, guess a word of the length p(|R])
and check if it is irreducible. This proves that testing finiteness of NF(R) is in
co-NP.

Now we prove that the problem is complete for co-N P.

Lemma 8 Testing finiteness of NF(R) for a linear WRSV R is co-NP-complete.



Proof: By the remark above it remains to show that the problem is co- N P-hard.
We encode a formulaC = C; ACy A ... ACy, iInto a WRSV R over the alphabet
A=Al ...,n}U{t, £} U {#} and a variable set X = {z,...}. For technical
reasons we assume that all C; are different.

We first modify the WRSV constructed in the proof of lemma 2. We replace
pattern 2 by the patterns

v, T (19)
#i, forall 1<i<n (20)

We add further the patterns

#{e, thigt, e th{e £}j#, forall 1<i j<n (21)

It should be clear that words that remain irreducible are factors of words
from the regular language (({t,£}{1,...,n})3#)*.

Assume that C; encodes C; in the same way as in the proof of lemma 2.
Define C; C ({t,£}{1,...,n})? to be the set of all instances of C; which can be
obtained by applying some truth assignement. We add to R all the words from

n

({,21{1,....n*\ | J G (22)

i=1

Now, every 6-letter factor of an irreducible word occurring between two #’s
belongs to some C;. Finally, let C; = ({t,£}{1,...,n})3\C;. We add the patterns

vy, forall 1<i<n—1, veC;, v € Cipy (23)
v#’, forallv € C,, v € Cy (24)

If the set of irreducible words w.r.t. the constructed WRSYV 1is infinite, then
every sufficiently long irreducible word contains a factor #vy #va# . . . #v,# that
encodes a solution of the MONOTONE-ONE-IN-THREE-SAT problem for C.
Conversely, if #v1#ve#t .. #Hv,# encodes a solution of €, then all the words
(v1#vadt .. . Frug#E)* are irreducible. We conclude that N F(R) is infinite if and
only if C has a solution, and therefore testing finiteness of NF(R) for a given R
is co-N P-hard. ad

5 Remarks and Related Works

Note that theorem 2 remains valid even if the subject pattern w is assumed to
be fixed. Necessary modifications of the proof of lemma 2 are suggested by the
proof of lemma 8.

The ground reducibility problem we have considered in section 4.1 is the
inclusion problem for regular languages represented by regular expressions of a
particular class. The inclusion problem for general regular languages represented
by regular expressions is PSP AC E-complete [3]. Various complexity results for



formal language theory can be found in [5, 4]. For example, it is proven that
the inclusion of regular languages L1 C Ly remains PSP AC E-complete even if
Lj is fixed. On the other hand, we are unaware about results on complexity of
language inclusion (equivalence) for subclasses of regular languages similar to
the one considered in this paper.

Recently we proposed an efficient algorithm for testing the reducibility of a
word with respect to a linear WRSV [8]. This problem is equivalent to a string
matching problem for a specific set of patterns (strings with wvariable length
don’t-care symbols), and has various practical applications.
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