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Abstract. In this paper we study some natural problems related to
specifying sets of words and trees by patterns.

1 Introduction

Patterns are probably the most simple and natural way to specify non-trivial
families of combinatorial structures. Abstractly, let G be a class of combinatorial
structures with a substructure relation (such as graphs, trees, strings, etc.).
Usually, given G we can define in a natural way a notion of pattern, interpreted
as an under-specified structure of G, that is a structure with some “unspecified
parts”. A pattern defines a set of instances which are structures obtained by
instantiating the pattern’s unspecified parts by other structures. For example,
in case of graph structures, patterns could be defined as graphs with some “meta-
nodes” which can be instantiated by other graphs.

Using these informal definitions, we now introduce central notions of this
paper. For a set S of patterns, we denote by Inst(S) the set of structures which
are instances of patterns of S. By Cont(S) we denote the set of structures which
have a substructure in Inst(S). In the above example of graphs, if S is a set of
patterns (graphs with “meta-nodes”), Inst(S) is the set of instances of patterns
from S and Cont(S) could be defined as the set of graphs having a subgraph
that is an instance of a pattern of S. We will also study the complements of
sets Inst(S) and Cont(S), defined by Inst(S) = G\ Inst(S) and Cont(S) =
G\ Cont(9).

In this paper we consider two structures, which are probably the most widely
used data structures in computer science: words and trees. We will define the
notion of pattern for each of these structures and we will compare the complexity
of different natural problems related to patterns in the cases of words and trees.
In this perspective, we survey various known results and give several new ones.

2 Words, Trees and Patterns

Let us start with basic definitions. Given a finite alphabet A of letters, words
over A are defined in the usual way as finite sequences of letters. A* stands



for the set of words over A. From algebraic point of view, words over A are
elements of the free monoid generated by A. Word patterns over A are defined
as words over alphabet AU X, where X is an infinite alphabet of variables. For
example, v = abaababaabaab is a word over the alphabet {a,b} and assuming
that z,y € X, abazbayb, zabax,rarrazazr are patterns over {a,b}. A variable
occurring more than once in the pattern is called non-linear, otherwise it is linear.
A subword of a word is a fragment of its letter sequence. For example, baab is a
subword of v and abba is not. A substitution is a morphism o : (AU X)* — A*
such that o(a) = a for all @ € A. A substitution is non-erasing if o(x) # €, where
¢ is the empty word, and erasing otherwise. A word w € A* is an instance of a
pattern p € (AU X)* if w = o(p) for some substitution o. In this case we say
also that p matches w. A substitution can be simply seen as a mapping replacing
variable occurrences in the pattern by words such that the occurrences of the
same variable are replaced by the same word. For example, the word v is an
instance of each of the three patterns above.

A tree is a well-formed expression over a signature X of function symbols,
where each symbol is indexed by an integer number, called its arity. For example,
u = f(f(f(a,a),h(a)),h(a)) is a tree over the signature ¥ = {f, h,a}, where
symbols f, h,a have arity 2,1,0 respectively. The set of trees over X' is denoted
by T'(X). From algebraic point of view, T'(X) is a free X'-algebra generated by X.
Thus, we are dealing with node-labeled trees representing first-order terms over
a given signature. We will use the words tree and term interchangeably. Clearly,
we assume that the signature contains at least one O-arity (constant) symbol,
otherwise the set of terms is empty. A tree pattern is a tree over YUX , where X is
an infinite set of 0-arity symbols of variables. Thus, f(z, h(y)), f(f(f(y,a),z),x)
are tree patterns over {f, h,a}, where z,y are variables. A subtree of a tree t is a
subexpression of ¢t. In other words, a subtree of ¢ is a tree occurring at some node
of t. The subtrees of u are f(f(f(a,a),h(a)), h(a)), f(f(a,a),h(a)), f(a,a), h(a)
and a. Note that h(a) and a have several occurrences in u. A substitution is a
homomorphism o : (¥ U X) — T(X) such that o(a) = a for each constant a
from ¥. Again, if ¢ = o(p) for some term ¢, pattern p and substitution o, then
t is said to be an instance of p, and p is said to match t. Similar to words, a
substitution replaces variables in patterns by trees such that the same variable is
replaced by the same term. For example, term u is an instance of both patterns

f(z, h(y)) and f(f(f(y,a),x),z), but is not an instance of f(f(z,z),h(a)).

Note that words can be represented as trees in at least two ways. One way is
to map each letter to a distinct unary symbol, and to add to the signature one
constant symbol. Then a word can be naturally represented by a non-branching
tree. However, to represent a pattern consistently, we need to introduce variables
at internal nodes (second-order variables) which does not fit to our framework.
Another way is to map each letter to a corresponding constant symbol and use
one additional binary symbol for concatenation. In this case, however, one word
is represented by several trees, due to the associativity property of concatenation.
In general, words can be seen as trees over one associative function symbol. We



will see in this paper that this associativity property makes many problems on
words much more difficult than their counterparts for trees.

3 Problems

We now state the problems we will address in this paper. We assume that we are
given a set S of word (resp. tree) patterns. As defined in Introduction, Inst(S)
denotes the set of word (resp. tree) instances of patterns of S, and Cont(S)
denotes the set of words (trees) having respectively a subword (subtree) that is
an instance of a pattern from S. If S consists of a single pattern p, we will write
Inst(p) and Cont(p) as a short-hand for Inst({p}) and Cont({p}).

We are interested in the following problems for both words and trees. Below
w is a word (resp. tree), p is a word (resp. tree) pattern, and S is a set of patterns.

P1.1 u € Inst(p)?

P1.2 u € Cont(p)?

P2.1 is Inst(S) a finite set?
P2.2 is Inst(S) a regular set?
P3 Inst(p) C Inst(S)?

P4 Inst(p) C Cont(S)?

P5.1 is Cont(S) a finite set?
P5.2 is Cont(S) a regular set?

These questions are standard language-theoretic problems. P1.1 and P1.2 are
membership problems for Inst- and Cont-languages. Since Inst(S) and Cont(S)
are generally infinite, it makes sense to ask if these sets are co-finite. This justifies
problems P2.1 and P5.1. Problems P2.2 and P5.2 ask whether Inst(S) (respec-
tively Cont(S)) is a regular set of words (trees). If the notion of regular word
set (language) is well-known, the notion of regular tree language is probably less
standard. For readers who are not familiar with regular tree languages, we refer
to books [GS84,NP92]. Finally, problems P3 and P4 are also usual language in-
clusion questions, as Inst(S) = UpesInst(p), and Inst(S) C L iff for all p € S,
Inst(p) C L.

4 The Tree Case

We now start with the tree case and survey what is known here about the
questions above. This will motivate our study and will allow to compare these
results with their counterparts for the word case.

P1.1 is a trivial problem for the tree case. It asks whether a term is an
instance of a tree pattern, which can be easily done in linear time. It is sufficient
to check if the pattern coincides with the term at all non-variable positions,
and check that the subterms of the term corresponding to distinct occurrences
of the same variable in the pattern coincide. Clearly, this can be done in time
O(lul + Ip).



P1.2 is the subterm matching problem which has numerous applications in
functional and logic programming, automated deduction, term rewriting and
other areas related to symbolic computation. The problem consists of testing
whether a given pattern occurs in a given tree, that is matches one of its subtrees.
Usually, one wants also an algorithm to find all such subtrees, and not only to test
if there is one. The restricted version of this problem, when the pattern contains
only linear variables, is known under the name tree matching. In early 80’s, a
simple practical solution has been proposed [HO82]. More recently, a series of
work has been done to find the most efficient (in the worst-case) algorithm for
tree matching. We refer to the latest achievement [CHI99] which proposes an
O(nlog® n) deterministic algorithm, where n is the size of the tree (assumed to
be bigger than the size of the pattern). The algorithm (as well as previously
proposed theoretically efficient algorithms) is however rather complicated and
difficult to implement, and the problem of designing an efficient and practical
tree matching algorithm is still on the agenda. Now, if a pattern contains non-
linear variables, we can preprocess the subject tree by indexing its nodes in such
a way that if the subtrees rooted in two nodes are the same, then these nodes
have the same index. This preprocessing can be done in linear time (under the
assumption that the signature has a constant size) by a bottom-up traversal
of the tree. Then we can “forget” about repeated variables in the pattern and
consider all variable nodes to be labeled by distinct variables. We then run a
tree matching algorithm for linear patterns, and check, each time we find an
occurrence of the linear pattern, if the subterms corresponding to occurrences of
the same variable in the original pattern are equal (by looking at their indexes).
This comparison takes time proportional to the maximal number of occurrences
in the original pattern (O(|p|) in the worst case), which introduces a |p| factor
with respect to the theoretic complexity of linear pattern matching. We refer to
[RR92] for a detailed algorithm of subterm matching in presence of non-linear
variables.

Let us now turn to problem P2.1, and consider a generalization of it. Instead
of asking whether Inst(S) is finite, we ask if Inst(S) can be itself represented as
Inst(S") for some finite set of patterns S’. Such a set S’ is called a complement
representation of S [KP98]. Again, non-linear variables in patterns of S play
an important role. Consider the set S = {h(x), f(h(z),y)} over the signature
{f,h,a} as above. Then the set S’ = {a, f(a,z), f(f(x,y),2)} is a complement
representation of S. One can generalize this and prove that if all patterns in the
set are linear, a finite complement representation of this set can be constructed.
However, one can prove that the set S = {f(z,z)} does not have a finite com-
plement representation. The exhaustive analysis of the situation has been given
in [LM87]. The main result can be stated as follows.

Theorem 1 ([LMS8T7]). A set of patterns S has a finite complement represen-
tation iff there exists a set of linear patterns Sy, such that Inst(S) = Inst(Syy).
Moreover,

— if such a set Sy, exists, it can be obtained by instantiating the non-linear
variables in the patterns of S by terms,



— the property of having a finite complement representation is decidable.

Let us illustrate Theorem 1 by an example. Consider the set S =
{a, f(z,h(y)), f(z,z), f(z, f(y,2))}, still over the signature {f, h,a}. This set
contains a non-linear term f(x,z). However, a simple analysis shows that
f(z,x) can be replaced by f(a,a) without changing the set of instances. Thus,
Inst(S) = Inst(Syn), where Sy, is a set of linear patterns obtained from
S by substituting a to x in the term f(z,x). Furthermore, as Sy, contains
only linear patterns, a complement representation of Sj;;, can be constructed:

1in = {h(x), f(h(z),a), f(f(z,y),a)}. Theorem 1 asserts that this example is
typical: if a finite complement exists, the set is “linearizable”, that is non-linear
variables can be replaced by terms without changing the set of instances. The
decidability of this property, stated in Theorem 1, means that a bound on the
size of terms replacing non-linear variables can be effectively computed.

Recently, the study of finite complement representations has received a new
impulse [GP99,Pic99], motivated by its applications in different areas, and in
particular in logic programming. In [Pic99], it has been proved that testing if
a given set has a finite complement representation (see Theorem 1) is co-NP-
complete.

Coming back to problem P2.1, to check if Inst(S) is finite, we first check, ac-
cording to Theorem 1, if S has a finite complement representation. If the answer
is positive, we compute such a representation. If all patterns in the representa-
tion are terms (i.e. do not contain variables), then Inst(S) is finite. Otherwise,
if at least one pattern has a variable, Inst(S) is infinite. This shows that P2.1
is in co-NP. The NP-hardness of P2.1 follows from [KNRZ91], where it was
proved that deciding if Inst(S) = 0, is co-NP-complete. An easy modification
of the hardness part of this proof shows that P2.1 is co-NP-hard, and therefore
co-NP-complete.

Theorem 1 gives actually an answer to problem P2.2 too. It is an easy exer-
cise to prove that if a set S contains only linear patterns, Inst(S) is a regular
tree language [GS84,NP92]. Thus, when a set is “linearizable” in the sense of
Theorem 1, the set of instances is regular. On the other hand, if a set is not
linearizable, it can be shown using a pumping lemma argument that the set of
instances is not regular. This is however not easy to prove, but follows from the
work [Kuc91] that we will survey below. We summarize the discussion in the
following statement.

Proposition 2. In the tree case, P2.1 and P2.2 are co-NP-complete problems.

Now let us skip problem P3 for a moment and turn to problem P4 which
has now a more-than-ten-years history. The problem, known under the name of
ground reducibility problem, has attracted a lot of attention in the area of term
rewriting [DJ90] because of its application to automated inductive proofs [JK89].
The problem consists of testing if all instances of a given tree pattern p have a
subtree matched by one of the patterns of a given set S. Once again, non-linear
variables in patterns of S make the problem much more difficult. In the middle



and late 80’s, several authors observed that the problem is decidable if patterns
of S only contain linear variables. The problem was first proved decidable in
the general case by Plaisted [Pla85], and later by other authors independently
[KNZ87,Com88]. Recently, the problem was shown to be EXPTIME-complete
[CJ9T].

Problem P3 can be expressed in terms of P4 in the following way. Assume
we have a pattern p and a set of patterns S, and we want to test whether
Inst(p) C Inst(S). First delete from S those patterns which do not have the
same root symbol as the root symbol of p (obviously, these patterns cover no
instance of p). Then choose a new symbol « and replace the root symbol in p and
in all remaining patterns in S by a. Let p’ and S’ be the resulting pattern and
set respectively. It can be shown that Inst(p) C Inst(S) iff Inst(p') C Cont(S").
The latter property, which is a special instance of ground reducibility, can be
expressed as the so called sufficient completeness property for specifications with
free constructors (see [KNRZ91]). Deciding this property has been proved co-
NP-complete in [KNRZ91].

Proposition 3. In the tree case, P3 and PJj are both decidable problems. P3 is
co-NP-complete and P4 is EXPTIME-complete.

Finally, let us turn to problems 5.1 and 5.2. Problem 5.1 has been proved
decidable in [P1a85,KNZ87]. Concerning Problem 5.2, the following Theorem has
been proved in [Kuc91].

Theorem 4. For a set of patterns S, Cont(S) is a regular tree language iff there
exists a set of linear patterns Sy, such that Cont(S) = Cont(Syy,). Moreover,

— if such a set Sy, exists, it can be obtained by instantiating the non-linear
variables in the patterns of S by terms.

Theorem 4 is a lifting of Theorem 1 from the set of instances Inst(S) to
the set Cont(S) of terms containing instances of S as subterms. The latter
case is however much more difficult, and the proof of Theorem 4 used a non-
constructive combinatorial argument, based on Ramsey Theorem. Therefore, no
effective bound on the size of terms to be substituted for the non-linear vari-
ables, resulted from the proof, and the decidability of the regularity of Cont(S)
remained an open problem. This problem, considered important in the area
of rewriting, has appeared in the list of major open problems in rewriting in
[DJK91]. Soon after, the regularity of Cont(S) has been proved decidable by
three groups of authors [KT92,VG92,HH92]. The results of [KT95] provided
also a new proof of the decidability of problem 5.1, and even gave an effective
bound on the size of Cont(S) in the case it is finite. We then conclude this
section with the following

Proposition 5. In the tree case, P5.1 and P5.2 are both decidable problems.



5 The Word Case

The overview of the tree case given in the previous section shows that all the
problems are decidable, though the complexity of some of them appears to be
high. In this section we study these problems in the word case and see that most
of them, and even some restricted versions of them, turn out to be undecidable.
We also analyze the complexity of these problems in the case of linear patterns.
We first remark that in the tree case, Cont(S) is a “meta-notion” with re-
spect to Inst(S), due to the fact that the notion of subtree cannot be expressed
by means of patterns, as only first-order variables are allowed in patterns. In
contrast, in the word case Cont(S) can be expressed in terms of Inst(S):

Cont(S) = Inst({xzpy, zp,py, plp € S and z,y do not occur in p})

This implies that, in contrast to the tree case, the problem for Cont(S) is
simpler than its counterpart for Inst(S). In particular, if a problem is decidable
for Inst(S), it is also decidable for Cont(S). On the other hand, if a problem is
undecidable for Inst(S), the undecidability of its counterpart for Cont(S) may
be harder to prove. We will face this situation later in this section.

Note another difference with the tree case: in contrast to trees, we may allow
variables in word patterns to be substituted by the empty word. This gives rise to
two cases depending of whether this possibility is allowed or not. Following Kari
et al. [KMPS95], we call these cases erasing (E-case for short), if substituting by
the empty word is allowed, and non-erasing (NE-case), if it is not allowed. We
will generally speak about the NE-case, unless the E-case is explicitly mentioned.

An early result of Angluin [Ang80] asserts that problem P1.1 is NP-complete.
This implies that P1.2 is also NP-complete, as w € Inst(p) iff #w# €
Cont(#p+#) where # is a fresh letter. This NP-completeness result immediately
shows that the word case appears to be much more difficult, as P1.1 and P1.2
are polynomial problems in the tree case, of low polynomial degree. However, if
pattern p is linear, P1.1 and P1.2 can be solved in linear time, as they actually
reduce to the well-known string matching problem, and can be solved, e.g., by
the Knuth-Morris-Pratt algorithm [CR95]. In the general case, the naive algo-
rithm solving P1.1 is in O(|w|?) (respectively O(|w|2+?) for P1.2), where A is
the number of distinct variables in p. Néraud [Nér95] showed how this complex-
ity can be slightly reduced (roughly, the exponent can be decreased by 2) and
obtained some specialized efficient algorithms for P1.2 for the cases of low A (1
or 2).

Proposition 6. In the word case, problems P1.1 and P1.2 are NP-complete.
Both problems can be solved in linear time if pattern p is linear.

The difficulty of matching problems P1.1 in the case of words can be also
illustrated by the fact that if a word w is matched by a pattern p, that is w =
o(p), then substitution o does not have to be unique. For example, pattern zy can
match a word w in (Jw| — 1) different ways, corresponding to the factorizations
of w into two parts. It is easy to see that many patterns admit this situation



(e.g. all linear patterns), but not all of them — for example, patterns z, zx
(and more generally, one-variable patterns) have a unique way to match a word.
Formally, a pattern p is called non-ambiguous if there is a unique way for p
to match each word of Inst(p), and ambiguous otherwise. The ambiguity of
patterns was studied by Mateescu and Salomaa [MS94]. They introduced the
notion of degree of ambiguity of a pattern p defined as the maximal number of
ways for p to match a word from Inst(p) provided this number is finite; otherwise
the degree of ambiguity is co. It is easy to exhibit patterns with the degree of
ambiguity 1 or oo, and much more difficult with a finite degree of ambiguity
different from 1. In [MS94], it was shown that pattern p = zabzrbcayabcy has the
degree of ambiguity 2. For example, there are two ways for p to match the word
caabcabeaabebeabeabebe, and any word from Inst(p) is matched by p in at most
two ways. The authors also found a pattern of degree of ambiguity 3, and by
some composition technique, patterns of any degree 2™3". However, they state
it as an open question if every finite degree of ambiguity is realizable by some
pattern. The decidability status of determining if the degree of ambiguity of a
pattern is finite, is also open.

Let us now turn to problem P3. A striking result has been proved in [JSSY93]:
inclusion Inst(p) C Inst(S) is undecidable even if S consists of a single pattern.
This contrasts to the fact that the equivalence problem Inst(pi1) = Inst(p2) is
trivial: the equivalence holds iff p; and p, are equal modulo a variable renaming.
The latter is however true only in the NE-case, and for the E-case the decidability
status of the equivalence problem Inst(p;) = Inst(p2) is open. We also point out
to paper [Fil88] for some results about the inclusion problem Inst(p;) C Inst(pz)
in the E- and NE-case.

Proposition 7. In the word case, problem P3 is undecidable even if S consists
of a single pattern.

Formally, the undecidability result of [JSSY93] for problem P3 does not imply
the undecidability of problem P4 (see the discussion in the beginning of this
section). Problem P4 has been studied in [KR95b], where it has been proved
undecidable.

Proposition 8. In the word case, problem PJj is undecidable.

An interesting feature of the proof of [KR95b] is that it implies that the
problem Inst(p) C Cont(S) remains undecidable if p has a very simple form,
namely the form aza, where a is a letter and = a variable. It seems very difficult
(if at all possible) to further simplify p. We will come back to this issue below.

Based on the proof of the result of [KR95b], we now establish a new result.

Theorem 9. In the word case, problem P2.1 is undecidable.

Proof. We give a very general idea of the proof. To reconstruct the details, the
reader is referred to [KR95b].



First, we review the proof of [KR95b] of Proposition 8. To show that
Inst(aza) C Inst(S) is undecidable, the construction of S is based on the fol-
lowing idea. The instances of p = aza are assumed to encode runs of a given
deterministic Minsky (two-register) machine M on a given data d. Patterns of
S are designed in such a way that every instance of p which does not encode a
correct run of machine M on data d, contains some pattern from S. To put it
in another way, an instance of p which does not contain any pattern of S, must
encode a correct finite run of machine M on data d. Therefore, there exists an
instance of p which does not contain an instance of S iff M halts on d, which is
an undecidable property.

To prove Theorem 9, we modify the proof as follows. We modify the set of
patterns S in such a way that S encodes only a Minsky machine M, and does
not specify any input data d. Assume that S’ is the modified set of patterns.
Consider now the set of patterns

S={arla€ A, a#a}U{zala € A, a#a}U
{zpy|p € S" and z,y do not occur in p}, (1)

where a is the same letter as in the pattern p above. From the previous discussion,

it is clear that the words which are in Inst(S) are words of the form awa, which
are not instances of S’. By construction of S’ these are words which encode a
correct finite run of the machine M on some input data. Since it is undecidable
if a machine stops on a finite number of input data, it is undecidable if the set

Inst(S) is finite or not.

The decidability status of Problem P2.2 is open [KMPS95]. The inverse prob-
lem, whether a given regular language is expressible as Inst(S) is also not known
to be decidable. It is also open if it is decidable for a language Inst(S) to be
context-free. However, it was proved in [KMPS95] that it is undecidable if a
given context-free language is expressible as Inst(S).

Let us now consider problem P5.1. The proof of Theorem 9 above may suggest
that P5.1 is not so much different from P2.1 and must be also undecidable by a
similar proof. Indeed, all “important” patterns occur in the third set of (1), and
patterns in the first and the second sets are extremely simple — they consists
of a single letter followed or preceded by a variable. However, these “extremely
simple” patterns play a crucial role as they actually specify the first and last
letter in the words of the language, which is necessary for an undecidability proof
(see [KR95D]).

The decidability status of Problem 5.1 is open. Actually, it is the most general
version of the famous avoidability problem. The avoidability problem was studied
in the word combinatorics under a very restricted form — when S contains a single
pattern p, and moreover, p contains only variables and no letters. However, even
in this restricted form the problem turns out to be extremely difficult.

It is not known if testing the finiteness of Cont(p) is decidable or not. The
author of [Cur93] offered 100 US dollars® for a solution of this problem.

1'9278.78 russian rubles as for February 12, 1999



A pattern p is called unavoidable (blocking according to the terminology of
[Zim84]) if Cont(p) is finite, and avoidable otherwise. Clearly, p is avoidable iff
there exists an infinite word which does not contain (finite) subwords which are
instances of p.

Interestingly, a study of avoidability is historically at the origin of word com-
binatorics and formal language theory. Back to the beginning of the century,
Axel Thue obtained his famous construction of an infinite square-free word on
the three-letter alphabet and an infinite cube-free word on the two-letter alpha-
bet. In the terminology of pattern avoidance, a square-free and cube-free word
is a word which does not contain respectively the pattern za and xxz. Trivially,
zx is unavoidable on two letters and zzz is unavoidable on one letter. A pattern
which is avoidable on four letters but not on three letters has been described in
[BEMT9]. No pattern is known which is avoidable on k letters but unavoidable
on k — 1 letters for k£ > 4.

The above discussion shows that the size of the alphabet may be crucial in
avoiding patterns. We refer to [Cas94] for a survey of the state-of-the-art in pat-
tern avoidance. A key result in the area is an algorithm proposed independently
in [BEM79,Zim84], which decides if there ezists an alphabet on which a given
pattern can be avoided. However, as was mentioned above, it is not known if
for a fized alphabet one can decide, given a pattern, if it is avoidable on this
alphabet.

The rest of the paper is devoted to analyzing some of our problems in case
the set S consists of linear patterns. We already mentioned that problems P1.1
and P1.2 can be efficiently solved if p is a linear pattern. For the other problems
we will see that although they become decidable in the linear case, they remain
untractable.

Note that if S consists of linear patterns, the languages Inst(S) and Cont(S)
are regular languages specified by a regular expression of the form

i (AN wi A wya ... A wip, (A7), (2)

where w;;’s are words and parenthesis indicate that A* may or may not occur
in the beginning and the end of the expression. Thus, problems P2.2 and P5.2
are always positively answered. Note also that inclusion and equivalence of reg-
ular languages specified by general regular expressions is a PSPACE-complete
problem (cf [GJ79]).

In [KR95a] problems P4 and P5.1 have been studied under the condition that
the patterns of S are linear. As for P4, it has been proved that it is decidable
in this case, regardless if p is linear or not. If p is restricted to be linear too, the
problem has been proved to be co-NP-complete [KR95a]. The exact complexity
of the case when patterns of S are linear but pattern p is not, is not known to
us. However, if the maximal number of occurrences of a variable is bounded, the
problem remains co-NP-complete.

Proposition 10. Problem Pj of testing Inst(p) C Cont(S) is decidable if S
consists of linear patterns. If p is linear in addition, the problem is co-NP-
complete.



It was also proved in [KR95a] that if S is restricted to contain linear patterns
only, problem P5.1 is co-NP-complete too.

To move on, we need to sketch the co-NP-completeness proofs from paper
[KR95a]. Consider problem P4 for the case that pattern p and all patterns of
S are linear. The co-NP-hardness of this problem is easy to show. We refer to
[KR95a] for the reduction from MONOTONE-ONE-IN-THREE-SAT. However,
proving the membership in co-NP represents a non-trivial part. It amounts to
show that if Inst(p) € Cont(S), there is an instance of p of size polynomial on
(|S| + |p|) which does not contain any pattern from S. Of course, the language
Cont(S) and its complement Cont(S) are regular, as Cont(S) has form (2). The
proof of [KR95a] consisted of defining a compact deterministic finite automaton
(DFA) for these languages verifying the following key property: although the
total size (number of states) of this automaton is exponential in |S|, the length
of the longest loop-free path from the initial to the finite state is of polynomial
length. We refer to [KR95a] for further details.

This property of the automaton allowed to show that in case Inst(p) €
Cont(S), the minimal size of an instance of p which is not in Cont(S) has a
size polynomial on |S|. Similarly, if Cont(S) is finite (problem P5.1), we can
give a polynomial bound on the length of words in Cont(S). This provides a key
argument in the co-NP-completeness proof.

Here we use this argument to show the co-NP-completeness of two other
problems — P3 (in case p is a linear pattern) and P2.1.

Since P3 is a more general problem than P4 in the word case, P4 is co-NP-
hard if p is a linear pattern. Similarly, P2.1 is more general than P5.1 and is then
also co-NP-hard. To prove that both of them are in co-NP, we use an adaptation
of the deterministic automaton construction from [KR95a] from the language
Cont(S) to Inst(S). We skip the details of the construction which would require
us too much space, and summarize the results in the following statement.

Theorem 11. Assuming a linear pattern p and a set of linear patterns S, prob-
lems P2.1, P83, P4 and P5.1 are co-NP-complete.

Finally, for a linear pattern p, following [Shi82], we can build a DFA rec-
ognizing Inst(p) in polynomial (linear) time: if p = (xg)urx1 ... Tp—1un(Ty)
(u; € A%, z; € X), the idea is to build DFA’s Dy,..., D, recognizing respec-
tively Cont(uy),...,Cont(u,), and then to identify the final state of D; with the
initial state of D;11. This construction implies, in particular, that for the special
case of P3 and P4 where p is linear and S consists of a single linear pattern, a
solution can be obtained in polynomial time: the question Inst(p) C Inst(p')
is equivalent to the emptiness of the language Inst(p') N Inst(p) whose DFA is
easily derived in polynomial (quadratic) time [HU79].

Proposition 12. Assuming a linear pattern p and S = {p'} with p’ a linear
pattern, P3 and P/ can be checked in polynomial time.



6 Conclusions

In this paper we formulated several language-theoretic problems which are mean-
ingful for any combinatorial structure equipped with a notion of pattern and a
substructure relation. We then studied the algorithmic complexity of those prob-
lems for two particular structures — trees over a finite signature and words over
a finite alphabet. It turns out that the instances of these problems for words
and trees cover a large area of research, including seemingly quite unrelated
subareas. Some problems on trees have been studied in term rewriting theory,
with relation to the theory of tree languages. Some other problems, such as tree
matching, have received much attention in the area of algorithm development.
Applied to words, those problems have been studied in the area of word com-
binatorics and formal language theory, including the recent research stream on
pattern languages. Again, the matching problem for words has been subject of
intensive studies in the algorithmics area. We found it interesting that all these
problems can be expressed uniformly as classical problems on languages specified
by patterns.

We attempted to give a brief survey of considered problems, putting the
stress on comparing the tree and the word case. Moreover, we gave several new
results for the word case. We showed that all problems are easier on the tree case
than their counterparts for the word case. In particular, except for the matching
problem, all problems are decidable in the tree case and undecidable in the word
case. For the word case, we gave a special attention to the linear case, where the
problems become decidable but, as we have showed, remain of high algorithmic
complexity.

References

[Ang80] D. Angluin. Finding patterns common to a set of strings. J. Comput. System
Sci., 21:46-62, 1980.

[BEM79] D.R.Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable patterns in strings
of symbols. Pacific J. Math., 85(2):261-294, 1979.

[Cas94] J. Cassaigne. Motifs évitables et régularités dans les mots. These de doc-
torat, Université Paris VI, 1994.

[CHI99] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset
matching in deterministic o(nlog®n)-time. In Proceedings of the 10th An-
nual ACM-SIAM Symposium on Discrete Algorithms, Baltymore, Maryland,
January 17-19, 1999, pages 245-254. ACM, STAM, 1999.

[CJ9T7] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete.
In Proceedings, Twelth Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 26—-34, Warsaw, Poland, 29 June-2 July 1997. IEEE Computer
Society Press.

[Com88] H. Comon. Unification et disunification. Théories et applications. These de
Doctorat d’Université, Institut Polytechnique de Grenoble (France), 1988.

[CR95] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient
string searching. Algorithmica, 13:405-425, 1995.



[Cur93] J. Currie. Open problems in pattern avoidance. American Mathematical
Monthly, 100:790-793, 1993.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer
Science, volume B, chapter 6: Rewrite Systems, pages 244-320. Elsevier
Science Publishers B. V. (North-Holland), 1990. Also as: Research report
478, LRI

[DJK91] N. Dershowitz, J.-P. Jouannaud, and J. W. Klop. Open problems in rewrit-
ing. In R. V. Book, editor, Proceedings 4th Conference on Rewriting Tech-
niques and Applications, Como (Italy), volume 488 of Lecture Notes in Com-
puter Science, pages 445-456. Springer-Verlag, 1991.

[Fil88] G. Filé. The relation of two patterns with comparable languages. In R. Cori
M. Wirsing, editor, Proceedings of the 5th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS ’88), volume 294 of Lecture
Notes in Computer Science, pages 184-192, Bordeaux, France, February
1988. Springer.

[GJT79] M. Garey and D. Johnson. Computers and Intractability. A guide to the
theory of NP-completeness. W. Freeman and Compagny, New York, 1979.

[GP99] G. Gottlob and R. Pichler. Working with ARMs: Com-
plexity results on atomic representations of Herbrand models.
In  Proceedings of LICS’99, 1999. to appear, available from

http://www.dbai.tuwien.ac.at/staff/gottlob/arms.ps.

[GS84] F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiad6, Budapest,
Hungary, 1984.

[HH92] D. Hofbauer and M. Huber. Computing linearizations using test sets.
In M. Rusinowitch and J.-L. Rémy, editors, Proceedings 3rd Interna-
tional Workshop on Conditional Term Rewriting Systems, Pont-a-Mousson
(France), pages 145-149. CRIN and INRIA-Lorraine, 1992.

[HO82] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. Journal
of the ACM, 29(1):68-95, 1982.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley Publishing Company, Reading,
Mass., USA, 1979.

[JK89] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories
without constructors. Information and Computation, 82:1-33, 1989.

[JSSY93] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Inclusion is undecidable for
pattern languages. In Svante Carlsson Andrzej Lingas, Rolf G. Karlsson,
editor, Automata, Languages and Programming, 20th International Collo-
quium, volume 700 of Lecture Notes in Computer Science, pages 301-312,
Lund, Sweden, 5-9 July 1993. Springer-Verlag.

[KMPS95] L. Kari, A. Mateescu, G. Paun, and A. Salomaa. Multi-pattern languages.
Theoretical Computer Science, 141:253-268, 1995.

[KNRZ91] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang. Sufficient
completeness, ground-reducibility and their complexity. Acta Informatica,
28:311-350, 1991.

[KNZ87] D. Kapur, P. Narendran, and H. Zhang. On sufficient completeness and
related properties of term rewriting systems. Acta Informatica, 24:395-415,
1987.

[KP98] G. Kucherov and D. Plaisted. The complexity of some complementation
problems. submitted, 1998.



[KR95a]

[KR95b]

[KT92]

[KT95]

[Kuc91]

[LMS7]

[MS94]

[Nér95]
[NP92]
[Pic99]
[P1a85]
[RR92]

[Shis2]

[VG92]

[Zim84]

G. Kucherov and M. Rusinowitch. Complexity of testing ground reducibil-
ity for linear word rewriting systems with variables. In Proceedings 4th In-
ternational Workshop on Conditional and Typed Term Rewriting Systems,
Jerusalem (Israel), volume 968 of Lecture Notes in Computer Science, pages
262-275. Springer-Verlag, 1995.

G. Kucherov and M. Rusinowitch. Undecidability of ground reducibility
for word rewriting systems with variables. Information Processing Letters,
53:209-215, 1995.

G. Kucherov and M. Tajine. Decidability of regularity and related properties
of ground normal form languages. In M. Rusinowitch and J.-L. Rémy, edi-
tors, Proceedings 3rd International Workshop on Conditional Term Rewrit-
ing Systems, Pont-a-Mousson (France), pages 150-156. CRIN and INRIA-
Lorraine, 1992.

G. Kucherov and M. Tajine. Decidability of regularity and related properties
of ground normal form languages. Information and Computation, 118(1):91—
100, April 1995.

G. A. Kucherov. On relationship between term rewriting systems and reg-
ular tree languages. In R. V. Book, editor, Proceedings 4th Conference on
Rewriting Techniques and Applications, Como (Italy), volume 488 of Lecture
Notes in Computer Science, pages 299-311. Springer-Verlag, April 1991.
J.-L. Lassez and K. Marriot. Explicit representation of terms defined by
counter examples. Journal of Automated Reasoning, 3(3):301-318, 1987.
A. Mateescu and A. Salomaa. Nondeterminism in patterns. In P. Enjalbert,
E.W. Mayr, and K.W. Wagner, editors, Proceedings of the 11th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’94), Caen,
France, February 199/, volume 775 of Lecture Notes in Computer Science,
pages 661-668. Springer-Verlag, 1994.

J. Néraud. Detecting morphic images of a word: On the rank of a pattern.
Acta Informatica, 32:477-489, 1995.

M. Nivat and A. Podelski, editors. Tree Automata and Languages. Studies
in Computer Science and Artificial Intelligence 10. North-Holland, 1992.
R. Pichler. The explicit representability of implicit generalizations. submit-
ted, april 1999.

D. Plaisted. Semantic confluence and completion method. Information and
Control, 65:182—215, 1985.

R. Ramesh and I.V. Ramakrishnan. Nonlinear pattern matching in trees.
Journal of the ACM, 39(2):295-316, April 1992.

T. Shinohara. Polynomial time inference of pattern langages and its appli-
cations. In Proceedings of the 7th IBM Symposium on Mathematical Foun-
dations of Computer Science, Mathematical Theory of Computations/The
Complexity of Algorithms, pages 191-209, 1982.

S. V4gvolgyi and R. Gilleron. For a rewriting system it is decidable whether
the set of irreducible ground terms is recognizable. Bulletin of European
Association for Theoretical Computer Science, 48:197-209, 1992.

A L. Zimin. Blocking sets of terms. Math. USSR Sbornik, 47:353-364, 1984.
Original version in russian published in 1982, 119 (3), 363-375.



