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1 I n t r o d u c t i o n  

Given an alphabet  A, a pattern p is a sequence (v l , . . .  ,vm) of words from A* called 
keywords. We represent p as a single word vl@..  �9 @vm, where @ ~ A is a distinguished 
symbol called variable length don't care symbol. Pattern p is said to match a text t E A* 
if t = UoVlUa...um_xv,~u,~ for some u0 , . . . ,u ,~  E A' .  In this paper  we address the 
following problem: given a set P of patterns and a text t, test whether one of the 
patterns of P matches t. 

Quoting Fisher and Paterson in the concluding section of [10], "a good algorithm 
for this (problem) would have obvious practical applications". For instance, as it was 
reported by Manber and Baeza-Yate s [13], the DNA pat tern TATA often appears after 
the pat tern CAATCT within a variable length space. It may therefore be interesting to 
look for the general pat tern CAATCT@TATA. If we are given a set of such general pat- 
terns, it is desirable to have an algorithm that  searches for all of them simultaneously 
instead of searching consecutively for each one. 

In this paper  we propose an algorithm that  solves the problem in t ime O(([t[ + 
[P])log IP[), where ]t I is the length of the text and [P[ is the total  length of all 
keywords of P.  

Several variants of the problem have been considered in the literature�9 Matching 
set of strings with "unit  length don't  care symbols" that  match  any individual letter, 
was studied in [10, 15]. Bertossi a~d Logi [5] have proposed an efficient parallel 
algorithm for finding in a text the occurrences of a single pat tern with variable length 
don't-care symbols. Their algorithm has an O(log ]t[) running t ime on O([t[[P[/log [tl) 
processors. 

Our problem can also be viewed as testing membership of a word in a regular lan- 
guage of type '~ �9 i �9 i �9 �9 i �9 tJi=lA u lA  u2A .. Note that  any �9 A u,~A . regular expression where 
the star operation only applies to the subexpression A (i.e. the union of all letters) 
can be reduced to the above form by distributing concatenation over union. An 
O(]t[[Z[/log [t I) solution for the case of a general regular expression E has been given 
by Myers [14]. 

The algorithm we propose here reads the text and the patterns from different 
tapes in the left-to-right fashion. The text is searched on-line, which means that  
the match is reported immediately after reading the shortest matched portion of the 
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text. Moreover, every pattern is read in the on-line fashion too, in the sense that 
the algorithm starts reading a keyword in a pattern only when all previous keywords 
of this pattern have been found in the text. This allows keywords to be specified 
dynamically, possibly depending on the search situation, for example on the keyw6rds 
of other patterns that have been found by that moment. This feature of the algorithm 
makes it, we believe, particularly useful for some applications. 

In contrast to most of the existing string matching algorithms(see [1]) our algo- 
ri thm is not composed of two successive stages - preprocessing the pattern (rasp. the 
text) and reading through the text (rasp. the pattern) - but has these two stages 
essentially interleaved. The basic data structure used in the algorithm is the DAWG 
(Directed Acyclic Word Graph) [6, 7]. The DAWG is a flexible and powerful data 
structure related to suffix trees and similar structures (see [1, section 6.2] for refer- 
ences and [17] for one of the most recent works). In particular, the DAWG was used 
in [6, 7] as an intermediate structure for constructing in linear time the minimal fac- 
tor automaton for a (set of) word(s). An elegant linear time on-line algorithm for 
constructing the DAWG was proposed in these papers. Independently, the DAWG for 
a single word was studied by Crochemore [8, 9] under the name of suffix automaton. 
In particular, in [9] he has extended the DAWG to a matching automaton, similar to 
the well-known Aho-Corasick automaton, to derive a new string matching algorithm. 
The algorithm we propose in this paper uses on the one hand, Crochemore's idea of 
using the DAWG for string matching and on the other hand, the efficient DAWG 
construction given in [6, 7]. 

The paper is organized as follows. In Section 2 we present the DAWG and define 
on top of it our basic data structure. Section 3 explains how to modify the DAWG, 
namely how to append a letter to a keyword and how to unload a keyword from 
the DAWG. In Section 4 the DAWG is further extended to be used as a matching 
automaton for solving the variable length don't care problem. The pattern matching 
algorithm is then detailed, its correctness is proved, and its complexity is evaluated. 
Finally, concluding remarks are made in the last section. 

2 T h e  D A W G  

2.1 Definitions and main properties 

Our terminology and definitions of this section basically follow [7]. 
Iv[ denotes the length of v 6 A*. If v = vlwv2, then w is said to occur in v at 

position Iv1[ and at end position [vlw[. For D = {v l , . . . , v~} ,  a position (rasp. end 
position) of w in D refers to a pair < i , j  >, where j is a position (rasp. end position) 
of w in vi. end-pOSD(W ) is the set of all possible end positions of w in D. pref(v) 
(rasp. pref(D)) stands for the set of prefixes of v (rasp. prefixes of the words fl'om 
D). Similarly, surf(v) (surf(D)) and sub(v) (sub(D)) denote the set of suffixes and 
subwords respectively, e denotes the empty word. 

Our basic data structure is the Directed Acyclic Word Graph (DAWG) [6, 7]. 

Def in i t ion  1 Let D = {v~,. . . ,v~} C A*. For u,v 6 sub(D), define u - n  v iff 
end-pOSD(U) = end-posD(v). [U]D denotes the equivalence class of u w.r.t. =--D. The 
DAWG AD for D is a directed acyclic graph with set of nodes {[U]D[U 6 sub(D)} and 
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set of edges {([U]D, [ua]D)lU, ua 6 sub(D), a 6 A}. The edges are labeled by letters in 
A so that the edge ([u]m, [ua]m) is labeled by a. The node [e]D is called the source of 
.AD. 

An example of a DAWG is given in Appendix A0. Viewed as a finite automaton 
with every state being accepting, the DAWG is a deterministic automaton recognizing 
the subwords of D. Moreover, except for accepting states, the DAWG is isomorphic 
to the minimal deterministic automaton recognizing the suffixes of D, where syntac- 
tically equal suffixes of different keywords are considered to be different. Formally, 
this automaton can be obtained by appending at the end of each vi E D a distinct 
fresh symbol $~, then constructing the minimal deterministic automaton for the suf- 
fixes of the modified set, and then forgetting the accepting sink state together with 
all incoming $i-transitions. This construction ensures the uniqueness of the DAWG, 
the property that will be tacitly used throughout the paper. If D consists of a single 
keyword, this automaton called sufftz automaton is just the minimal deterministic 
automaton recognizing the suffixes of D [8, 9]. 

The reader is referred to [6, 7] for a more detailed analysis of the DAWG, in 
particular for linear bounds on its size and the relationship between the DAWG and 
the suffix tree. The following property allows us to define an important tree structure 
on the nodes of AD. 

P r o p o s i t i o n  1 For u,v E surf(D), if end-posm(u ) M end-posm(v ) # O, then either 
u 6 surf(v) or v E surf(u). This implies that 

(i) every =--a-equivalence class has a longest element called the representative of 
this class, 

(ii) if end-pOSD(U ) O end-posD(v ) # O, then either end-posD(u ) C end-posm(v ) or 
end-pos~(v) c end-pos~(u). 

Property (ii) ensures that the subset relation on equivalence classes defines a tree 
structure on the nodes. If end-poso(u ) C end-pOSD(V ), and for no w 6 sub(D), 
end-pOSD(U) C end-posm(w) C end-posD(v ), then we say that there exists a suffix 
pointer going from [u]D to [V]D. [U]D is said to be a child of [v]o and [V]D the parent 
of [u]o. The source of .AD is the root of this tree. The sequence of suffix pointers going 
from some node to the source is called the suffix chain of this node. The following 
lemma clarifies the relation between two nodes linked by a suffix pointer. 

L e m m a  1 ([7]) Let u be the representative of [u]o. Then any child of [u]o can be 
expressed as [au]o for some a 6 A. 

If au E sub(D) (rasp. ua 6 sub(D)) for some a 6 A, u 6 A' ,  then we say that a is 
a left context (resp. right context) of u in D. The lamina above shows tha t  if u is the 
representative of [U]D, then every child of [U]D corresponds to a distinct left context 
of u in D. This implies that each node has at most IAI children. In contrast, edges 
of the DAWG refer to the right context: for every right context a of u 6 sub(D), the 
DAWG contains the edge ([u]D, [ua]D) labeled by a. 

The following fact related to lamina 1 is also enlightening. 
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L e m m a  2 u E sub(D) is the representative of [U]D iff either u is a prefix of some 
keyword in D, or u has two or more distinct left contexts in D. 

The edges of the DAWG are divided into two categories: Assume that  u is the 
representative of [u]D. The edge ([u]D, [ua]D) is called primary if ua is the represen- 
tative of [ua]D, otherwise it is called secondary. The primary edges form a spanning 
tree of the DAWG rooted at the source. This tree can be also obtained by taking in 
the DAWG only the longest path from the source to each node. With each node [u]D 
we associate a number depth([u]D) which is defined as the depth of [u]D in the tree of 
primary edges. Equivalently, depth([u]D) is the length of the representative of [U]D. 
Note that  if the edge ([u]D, [ua]D) is primary, then depth([ua]D) = depth([u]D) + 1, 
otherwise depth([ua]D) > depth([u]D) + 1. 

If w e pref(vi) for some vi E D, then we call [W]b a prefix node for v~. Note that 
by lemma 2, w is the representative of [W]D. Besides, if w = vi for some vi C D, then 
the node [W]D is also called a terminal node for vi. 

2 . 2  D a t a  s t r u c t u r e  

We assume that each node a of the DAWG is represented by a data structure providing 
the following attributes: 
out(a,  a): a reference to the target node of the edge issuing from a and labeled by a; 

out(a,  a) = undefined when there is no such edge, 
type(a, a): type(a, a) = primary if the edge issuing from a and labeled by a is primary, 

otherwise type(a, a) = secondary, 
suf-pointer(a): a reference to the node pointed by the suffix pointer of a;  

suf-pointer(a) = undefined if a is the source, 
depth(a): depth(a), 
terminal(a): terminal(a) = nuJ[ if a is not a terminal node, otherwise terminal(a) 

refers to a list of keywords for which a is terminal (we do not assume that  
all keywords are different and therefore a node can be terminal for several 
keywords). The list will be defined more precisely in section 4.2. 

origin(a): a reference to the node that the primary edge to a comes from, 
last-letter(a): the label of incoming edges to a (equivalently, the last letter of any 

word in a),  
number-of-children(a): has three possible values {0, 1, more-than-one}. 

number-of-children(a) = 0 (respectively number-of-children(a) = 1, 
number-of-children(a) = more-than-one) if there are no (respectively 
one, more than one) suffix pointers that  point to a,  

child(a): refers to the only child of a when number-of-children(a) = 1, 
prefix-degree(a): the number of keywords in D for which a is a prefix node. 

prefix-degree(a) = 0 if a is not a prefix node. 

out and type implement the DAWG itself, the other attributes are needed for 
different purposes that will become clear in the following sections. We will use the 
same denotation .41) for the whole data structure described above. An example of the 
data structure is given in Appendix A0. 

We always assume the alphabet to be of a fixed size. We assume the uniform RAM 
model of computat ion and then assume that retrieving, modifying and comparing any 
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attribute values as well as creating and deleting a DAWG node is done in constant 
time. 

3 M o d i f y i n g  a D A W G  

3.1  A p p e n d i n g  a l e t t e r  t o  a k e y w o r d  

A.Blumer, J.Blumer, Haussler, McConnell and Ehrenfeucht [7] (BBHME for short) 
proposed an algorithm to construct .AD for a given set D in time O([DI). The algo- 
rithm processes consecutively the patterns of D such that if {v l , . . . ,  vl} have been 
already processed, then the constructed data structure is .A{.a,...,~ }. Processing a pat- 
tern vi+x (equivalently, extending .A(. 1 ...... ~} to .A{~ a ...... ,,~+1}) is called loading vi+a (to 
A(~I ...... 0)" Loading vi+a to .4(.~ ...... ~} is done by scanning vi+l from left to right such 
that if w E pref(vi+a) is an Mready processed prefix of vi+x, then the constructed data 
structure is A{~I,...,~,~, ). Therefore, processing patterns in the set as well as letters in 
the pattern is done in the on-line fashion, and a basic step of the algorithm amounts 
to extending .A{. 1 ...... i,~o} to A(v~ ...... i,~} for some a E A. 

The BBHME data structure has only attributes out, type and suf-pointer. However, 
the BBHME algorithm can be easily extended to maintain the additionM attributes 
that we need for our purposes. Since the BBHME algorithm is fundamental for this 
paper, we give its pseudocode in appendix A1. We shortly comment the algorithm 
below. 

Function APPEND-LETTER implements the main step. It takes the terminal node 
of w in .A{~ ...... ~,~} and a letter a and outputs the terminal node for wa in .A(~ ...... ,~o~}. 
APPEND-LETTER creates, if necessary, a new node for [wa](.l,...,v,~,~}, and then tra- 
verses the suffix chain of the node [w]{~ ...... ~,~} (installing secondary edges to the new 
node) up to the first node with an outcoming a-edge. If this edge is primary, no 
further traversals have to be done. If it is secondary, the function SPLIT is called 
which creates another new node, installs its outcoming edges, updates suffix pointers, 
and then continues the traversal unless a node with a primary outcoming a-edge is 
found. Thus, at most two new nodes are created and the suffix chain of [w]{~ ...... ,~} 
is traversed up to the first primary outcoming a-edge. 

In the paper we will be modifying the BBHME algorithm. In particular, some 
instructions will be added to the SPLIT function, which is indicated at line 4 of its 
code in appendix A1. 

Functions APPEND-LETTER and SPLIT maintain additional attributes origin, 
last-letter, depth, number-of-children and child. As for origin, last-letter and depth, 
this is explicitely shown in the algorithm, number-of-children and child are updated 
every time the tree of suffix pointers is modified (lines 12,14,15 in APPEND-LETTER 
and lines 6,7 in SPLIT). Maintaining number-of-children is trivial, child can be im- 
plemented by organizing the set of children of each node in a double-linked list and 
keeping a pointer to the first child in the list. Deleting a child then takes time O(1). 

LOAD-KEYWORD(v) loads a keyword v by scanning it and iterating the 
APPEND-LETTER function. Also, LOAD-KEYWORD maintains the prefix-degree at- 
tribute. Maintaining terminal will be considered later. 

The remarkable property of the algorithm, shown in [6, 7], is that it builds the 
DAWG for a set D in time O(IOl) by iterating LOAD-KEYWORD(v) for every v E D, 
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start ing with a one-node DAWG. Actually, loading an individual keyword v into atD 
takes t ime linear on Ivl regardless of  the set D. 

Lemma 3 LOAD-KEYWORD(v) runs in time O(lvl). 

3.2 Unloading a keyword 

In this section we give an algorithm that  unloads a keyword vi+l from A{~ 1 ...... ,v~+l}. 
Starting from the terminal node [vi+a]{vl ...... ,v,+~}, the algorithm traces back the chain 
of pr imary  edges and at each step undoes the modifications caused by appending a 
corresponding letter. Thus, the main step is inverse to APPEND-LETTER and amounts 
to transforming at{~l ...... ,,~o~) into A{ ........ ,~} for wa E pref(vi+l). The modifications 
to be applied to the nodes of at{ ........ ~,~} are described in the following l emma which 
is in a sense inverse to l emma 2.1 from [6]. 

L e m m a  4 (i) wa is not the representative of an equivalence class w.r.t. =--{v~ ...... ,~} 
iff either we ~ sub ( {v l , . . . , v i ,  w}) or wa has only one left context in 
{ v l , . . . ,  v,, w} (and hence has only one child) and wa ~ p r e f ( { v l , . . . ,  v,, w}). 
In the first case the class [wa]{v~ ...... , ,~} is deleted. In the second case this class 
is merged with its child. 

(it) Let wa = uau2a and u2a is the representative of the class pointed to by the suffix 
pointer of [wa]{v~ ...... , ,~}. Then u2a is not the representative of  an equivalence 
class w.r.t. =-{v~ ...... ,,w) iff u2a has only one left context in { v a , . . . , v i , w }  and 
u2a ~ pre f ( {va , . . . ,  vi, w}). In this case [u2a]{~a ...... , ,~} is merged with its single 
child. 

(iii) There are no other modifications in the equivalence classes except those given in 
(i) and (ii). 

The transformation of at{,~ ...... ~,~=} into A{~ ...... ~,~} is done by modifying the DAWG 
according to l emma 4. The algorithm is given in appendix A2. Its short account 
follows. 

Let activenode be [wa]{~ ...... ~,~}. A main function DELETE-LETTER takes 
activenode, finds the node [w]{~ ...... ~,w~} called newactivenode by retrieving 
odgin(activenode), and then proceeds by case analysis. If activenode is a prefix node 
for a keyword other than vi+a, or has two or more children, then no more work has 
to be done. If activenode is not a prefix node of any other keyword and has only 
one child, then it should be merged with this child which is done by an auxiliary 
function MERGE. Finally, if activenode has no children and is not a prefix node of any 
other keyword, this means that  wa q~ {ca , . . . ,  vi, w} and therefore activenode should 
be deleted. Before it is deleted, the suffix chain of newactivenode is traversed and 
outcoming secondary a-edges leading to activenode are deleted. Let varnode be the 
first node on the suffix chain with outcoming pr imary a-edge. It can be shown that  
varnode is actually [u2]{~, ...... , ,~} ( lemma 4(ii)), and the node that  this edge leads to, 
called snffixnode, is [u2a]{~ ...... ,,~}. Once suffixnode is found, activenode is deleted 
together with its suffix pointer pointing to suffixnode. If suffixnode is a prefix node 
or has more than one child left, the algorithm terminates.  Otherwise suffixnode has 
to be merged with its single child which is done by the MEP~GE function. MERGE 



2 3 6  

acts inversely to the SPLIT function (see appendix A2 for details). Note that MERGE 
continues the traversal of varnode up to the first node with outcoming primary a-edge. 

Similarly to the loading case, we will be extending the algorithm afterwards. In 
particular, instructions will be added to DELETE-LETTER and MERGE at line 9 and 2 
respectively. 

Maintenance of additional attributes origin, last-letter, depth, number-of-children 
and child is done similarly to the loading case. 

UNLOAD-KEYWORD([O]D) unloads pattern v E D from .AD by iterating 
DELETE-LETTER. Also, UNLOAD-KEYWORD maintains the prefix-degree attribute. 
Like in the case of insertion, UNLOAD-KEYWORD runs in time O(Ivl) regardless of  
D. 

Lemma 5 UNLOAD-EEYWORD([v]) runs in time O(Ivl). 

The proof goes along the same lines as for the case of insertion. 

4 M a t c h i n g  a set  o f  s tr ings  w i t h  variable  l ength  
don' t  cares 

4.1 Extending the DAWG for string matching 
Crochemore noticed [9] that in the case of one keyword the DAWG can be used as a 
string matching automaton similar to that of Aho-Corasick, where suffix pointers play 
the role of failure transitions. The idea is to extend the current state currentnode with 
a counter length updated at each transition step. The procedure below describes a ba- 
sic step of the algorithm, current le t ter  is assumed to be the current letter in the text. 

UPDATE-CURRENT-NODE(currentnode, length, current le t ter)  
1 while out(currentnode, currentletter) = undefined do 
2 if currentnode = source then 
3 re turn  < currentnode, O > 
4 else eurrentnode := suf-pointer(currentnode) 
5 length := depth(eurrentnode) 
6 currentnode := out(currentnode, eurrentletter) 
7 length := length + 1 
8 re turn  < currentnode, length> 

The meaning of currentnode and length is given by the following proposition 
which is an extension of Proposition 2 of [9] for the multiple keyword case. 

P ropos i t i on  2 Assume that D is a set of keywords and t = t l . . . t n  is a text. Con- 
sider.AD and iterate UPDATE-CURRENT-NODE(currentnode, length, current let ter)  on 
t with initial values currentnode = source, length = O, and current le t ter  = 11. At  
any step, if Q . . .  1i is the prefix of I scanned so far, and w is the longest word from 
suff  ( { t l . . .  t,} ) f3 sub(D), then w belongs to currentnode (regarded as an equivalence 
class} and length = Iwl. 
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Crochemore used proposition 2 as a basis for a linear string matching algorithm in 
the case of a single keyword. An occurrence of the keyword is reported iff currentstate 
is terminal and, in addition, the current value of length is equal to depth(currentnode). 
The current position in the text is then the end position of the keyword occurrence. 
The linearity of the algorithm of proposition 2 can be shown using the same arguments 
as for the Aho-Corasick algorithm. 

However, this idea does not extend to the multiple keyword case, since one or sev- 
eral keywords may occur at the current end position in the text even if eurrentnode is 
not terminal. This is the case for the keywords that are suffixes of t l . . . t i  shorter 
than the current value of length. To detect these occurrences, at every call to 
UPDATE-CURRENT-NODE the suffix chain of currentnode should be traversed and 
a match should be reported for every terminal node on the chain. A naive implemen- 
tation of this traversal would lead to a prohibitive O(ItllD]) search time. 

One approach to the problem would be to attach to each node a pointer to the 
closest terminal node on the suffix chain. When the set of keywords is fixed once 
for all, this approach amounts to an additional preprocessing pass which can be done 
in time O(IDI) and therefore does not affect the overall linear complexity bound. 
However, when the set of keywords is changing over time, which is our case, this ap- 
proach becomes unsatisfactory, since modifying a single keyword may require O(ID[) 
operations. 

String matching for a changing set of keywords has been recently studied in the 
literature under the name of dynamic dictionary matching. Several solutions have 
been proposed [2, 3, 11, 4]. All of them, however, had to face a difficulty similar 
to the one described above. In terms of data structure, the problem amounts to 
finding for a node of a dynamically changing tree (in our case, tree of suffix pointers) 
the closest marked ancestor node (in our case, terminal node), where nodes are also 
marked and unmarked dynamically. 

In this paper we borrow the solution proposed in [3] which consists in using the 
dynamic trees of Sleator and Tarjan [16]. The tree of suffix pointers is split into a 
forest by deleting all suffix pointers of terminal nodes. Thus, every terminal node in 
the tree becomes the root node of a tree in the forest. The forest is implemented using 
the dynamic trees technique of [16]. For shortness, we will call the DAWG augmented 
with this data structure the extended DAWG. Since finding the closest terminal node 
on the suffix chain of a node amounts to finding the root of its tree in the forest, 
this operation takes O(log ID]) time. We will denote by CLOSEST-TERMINAL(a) a 
function which implements this operation. It returns the closest terminal node on the 
suffix chain of a if such a node exists, and returns undefined otherwise. 

On the other hand, creating, deleting and redirecting suffix pointers takes no longer 
a constant time, but time O(log]D]). Since both APPEND-LETTER and 
DELETE-LETTER requires a constant number of such operations, we restate lemmas 3 
and 5 as follows. 

L e m m a  6 On the extended DAWG, LOAD-KEYWORD(v) and UNLOAD-KEYWORD([v]) 
run  in  t i m e  O(tvl log JD[). 



238 

4.2 Pattern matching algorithm 

Assume that  P is a finite set of strings {Pl , - - . ,Pn}  over A y {@}, where each pi E 
i i i A*. P is written as v~@vi2@...@vi,,,, for some v~,v2, . . . ,vm, �9 According to our 

terminology, pi's are called patterns and vj's keywords. A pat tern pi matches a text 
t �9 A*, if t = ulv]u~. . ,  um, v~iu,~+ 1 for some ul, u2 , . . . ,  umi, u~n,+l �9 A'.  We address 
the following problem: given a set of patterns P and a text  t = t l . . .  tk,  test whether 
one of the patterns of P matches t. 

We assume that  the text  and every pat tern is read from left to right from a separate 
input tape. 

Let us first give an intuitive idea of the algorithm. At each moment  of the text scan, 
the algorithm searches for a group of keywords, one from each pattern,  represented 
by the DAWG. The search is done using the DAWG as an automaton similar to 
proposition 2. Every t ime a keyword is found, it is unloaded from the DAWG and the 
next keyword in the corresponding pat tern is loaded instead. The crucial point is that  
the loading process is "spread over time" so that  loading one letter of the keyword 
alternates with processing one letter of the text. In this way the correctness of the 
algorithm is ensured. Thus, unlike the usual au tomata  string matching technique, the 
underlying automaton evolves over t ime adapting to the changing set of keywords. 

Let us turn to a formal description. Let t[1 : l] = Q . . .  tl be a prefix of t scanned 
so far. For every pl i i i = vl@v2@... @vm, �9 P, consider a decomposition 

t[1 : I] i i i i i = ulv lu2 . . ,  vji_luj, (1) 

i " . . . , u t  �9 A ' ,  such t ha t  for ji �9 [1, ml], ul, u~, ~, 

i �9 for every r �9 [1,ji - 1], v~ ~ sub(u~v~) \ suff(u,v~),i i 

�9 vj, sub(u ,) 

Clearly, under the conditions above, decomposition (1) is unique. The intuition 
is that  the leflmost occurrence of each pat tern  is looked for, that  is the leftmost 
occurrence of every keyword that  follows the occurrence of the preceding keyword. 

Consider decompositions (1) for every i �9 [1, n]. We now define the state of the 
matching process after l letters of the text have been processed. We first introduce 
some terminology. For every i �9 [1, n], v~, is called an active keyword. If lug, I < IvY, I 
for i �9 [1, n], then both the pat tern pi and its active keyword v~.~ are said to be under 
loading. For each i �9 [1,n], define ~j, = vj,[1 : q] where q = min(l~i,I, Ivj, I). Thus, if 
pi is under loading then ~j, is the prefix of vj, of length lug, I, otherwise ej~ = vj,. The 
current situation of the matching process is represented by a data  structure consisting 
of three components given below together with their invariant conditions: 

1. The extended DAWG for the set V = { ~ , . . . , ~ , ) ,  defined as in Sections 2, 
4.1, except tha t  if vj-, is a keyword under loading, then the node [~j,]v is not 
considered terminal.  We call these nodes port nodes. Intuitively, a port node 
refers to a node in the DAWG to which the next letter of the corresponding 
keyword under loading should be appended. If vj~ has been completely loaded, 
that  is ~j, = vii, then [~j,]v is terminal  for vj, and the list terminal([~j,]) contains 
a reference to pl. In other words, if a is a terminal  node, terminal(a) is the list 
of patterns Pi such that  a is terminal for the active keyword of pi. 
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2. A distinguished node in the DAWG called currentnode, together with a counter 
length, currentnode is the node [w]y, where w is the longest word in 
s ff(t[l: l]) n jo}), and length = twt. 

3. A double linked list of patterns under loading each element of which has a 
reference to the corresponding pattern pi and a reference to the corresponding 
port node in the DAWG. 

A basic step of the algorithm consists of three stages. First, for each keyword 
under loading, the next letter is inserted into the DAWG using the APPEND-LETTER 
procedure and the port node is updated. If the keyword has been loaded completely, 
then the corresponding port node becomes terminal and the corresponding pattern is 
deleted from the list of patterns under loading. Secondly, currentnode and length are 
updated using the UPDATE-CURRENT-NODE procedure. Finally, the suffix chain of 
currentnode is traversed looking for terminal nodes. Each such node corresponds to 
one or several active keywords that occur at the current end position in the text. Each 
detected matching keyword is unloaded from the DAWG using the UNLOAD-KEYWORD 
algorithm, and the following keyword in the pattern becomes under loading with the 
source being the port node. 

To define the algorithm, functions SPLIT, UNLOAD-KEYWORD and MERGE from 
Section 3 should be slightly modified. The reason for modifying SPLIT is that the 
node which has to be split (targetnode in the SPLIT algorithm) may happen to be the 
actual value of currentnode, currentnode should then be updated so that condition 
2 above be preserved. The following instruction has to be inserted into the SPLIT 
algorithm at line 4 (Appendix A1). 

4.1 if currentnode = targer then  
4.2 if length < depth(newtargeinode) then currentnode := newtargetnode 

Similarly, each of the functions DELETE-LETTER and MERGE may be led to delete 
a node which is actually currentnode, in which case currentnode must be updated. 
Again, the new value is computed in order to preserve condition 2. The following 
instructions have to be inserted into the DELETE-LETTER algorithm at line 9 (Ap- 
pendix A2). 

9.1 if currentnode = activenode then 
9.2 currentnode := suf-pointer(activenode) 
9.3 length := depth(eurrentnode) 

The instruction below has to be inserted into the MERGE algorithm at line 2 (Ap- 
pendix A2). 

2 if currentnode = targetnode then currentnode := newtargetnode 

Note that modified functions SPLIT, DELETE-LETTER and MERGE may now change 
currentnode and length as a side effect. The modifications will be further discussed 
in Section 4.3. 

We are now ready to give the complete algorithm, t denotes a subject text and 
READ-LETTER(t) returns the scanned letter. For a pattern p under loading, 
READ-LETTER(p) returns the next letter of p, and PORT-NODE(p) refers to the corre- 
sponding port node. 
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MATCH(t, P = {P l , - . .  ,Pn))  
1 create a node currentnode 
2 length := 0 
3 set the list of patterns under loading to be {Pl ,- . . ,P~} 
4 for each Pi do PORT-NODE(pi) :----- currentnode 
5 while  the end of t has not been reached do  

%STAGE 1 
6 for each pattern under loading Pi do 
7 portnode := PORT-NODE(pi) 
8 patternletter := rtF.AD-LETTErt(pi) 
9 newportnode := APPEND-I.ETTER(portnode, patternletter) 
10 prefix-degree( newportnode ) := prefix-degree( newportnode ) + 1 
11 if  all letters of the active keyword of Pi have been read t h e n  
12 delete p/from the list of patterns under loading 
13 mark newportnode as a terminal node unless it was already the case 
14 and add Pi to the list terminal(newportnode) 
15 else PORT-NODE(pl) := newportnode 

%STAGE 2 
16 currentletter :---- READ-LETTER(t) 
17 < currentnode, length >:=  

UPDATE-CURRENT-NODE(currentnode, length, eurrentletter) 
%STAGE 3 

18 if  currentnode is terminal and  deptb(eurrentnode) = length t h e n  
19 closestterminal := currentnode 
20 else closestterminal := CLOSEST-TERMINAL(CUrrentnode) 
21 whi le  closestterminal ~ undefined do 
22 unmark closestterminal as a terminal node 
23 currentterminal := elosestterminal 
24 elosestterminal := CLOSEST-TERMINAL(closestterminal) 
25 for each Pi from the list terminal(eurrentterminal) do 
26 if  all keywords of pl have been read t h e n  
27 output "p; occurs in t" and s top  
28 else UNLOAD-KEywoltD(currentterminal) 
29 add Pi to the list of patterns under loading 
30 PORT-NODE(pi) := source 
31 output "t does not have occurrences of P" 

4 . 3  C o r r e c t n e s s  o f  t h e  a l g o r i t h m  

To prove the correctness and completeness of MATCH we verify by induction tha t  
conditions 1-3 of Section 4.2 are invariant under  the  main whi le- loop.  More precisely, 
we prove tha t  the  set { ~ 1 , ' " , ~ , } ,  currentnode, length, and the list of pa t te rns  
under loading satisfy conditions 1-3 at  every step of the algorithm. The correctness 
and completeness would then follow from decomposit ion (1). Below we give an outline 
of the proof. 

We first consider conditions 1 and 3. Consider decomposit ion (1) for some i E [1, n] 
and assume tha t  u(~ = vii-4 = ~. (In other  words, consider the  first s tep when vii is 
active.) Since one let ter  is read from the text  at  every i terat ion (line 16), u~, in 
decomposit ion (1) is extended by one le t ter  (unless an occurrence of vi, is found, see 
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below). While vj~ is under loading, ~ ,  is extended by one letter at every iteration too 
(line 8). Therefore, the algorithm keeps ~ to be a proper prefix of vii of length lug-, I. 
When all letters of vj~ axe loaded, then �9 = v~, and since lu}.l = ]9j- I, then vj should 
cease to be under loading (condition 1). This corresponds to instruction 12 in the 
algorithm that  deletes pl from the list of pat terns  under loading as soon as vj~ has been 

is unloaded, read completely. At subsequent iterations, ~ does not change, unless vii 
3i 

which happens iff [vjJ is on the suffix chain of currentnode. Since by condition 2 the 
member  of currentnode (regarded as an equivalence class) of length length is a suffix 
of the text  read so far, then so is v~. With  respect to decomposition (1), this means 
that  ji is incremented by 1 with u~,+l = r This completes the induction. The above 
arguments  together with the uniqueness of the DAWG (Section 2.1) shows that  at 
every moment  the values of 9j~'s and the list of pat terns  under loading are correct. 

We now prove that  currentnode and length verify condition 2 at every step of the 
algorithm. Assume that  condition 2 is verified at the beginning of the iteration of the 
while-loop. Let V -1 -~ = {vA, . . .  , v j , )  be the current underlying set of words and w be 
the longest word from surf(t[1 : l]) VI pref(V), where t[1 : l] is the prefix of the text 
read so far. By condition 2, currentnode is [w]v and length = ]w]. 

The first stage extends the DAWG to a set 1~ = {t71,..., v-~}, where each ~,- is 
either i~j~ or ~j~a for some a E A. During this stage, currentnode is kept to be the 
equivalence class of w w.r.t, the changing set V. The  only point when currentnode 
may need to be updated is when this node is split into two by the SPLIT function. 
In this case we should decide which of the two resulting classes contains w and then 
becomes a new value of currentnode. This is decided according to the value of length. 
The update  of currentnode is done by instruction 4 added to SPLIT in the previous 
section. The correctness follows from a more detailed analysis of SPLIT that  can be 
found in [6]. 

At the second stage, the next letter is read from the text, which means that  index 
l in condition 2 is incremented, and then currentnode and length axe updated by 
UPDATE-CURRENT-NODE. We have to show tha t  after that ,  currentnode and length 
verify condition 2, which means that  currentnode is [tb]9 , where ~b is the longest word 
from surf(t[1 : l + 1]) N pref(V), and length is I@l. The proof of this part  is similar 
to that  of proposition 2. 

At the third stage the keywords are detected which occur at the current end po- 
sition in the text. Clearly, all these keywords are suffixes of w. w itself is a keyword iff 
currentnode is a terminal node and w is its representative, that  is 
depth(currentnode) = length. The keywords which are proper suffixes of w have 
their terminal nodes on the suffix chain of w. Thus,  all matching keywords are de- 
tected by the algorithm. Each matching keyword, when detected, is unloaded from 
V. We have to show again that  condition 2 is preserved under this transformation. 
Consider an elementary deletion step (DELETE-LETTER) which consists in transform- 
ing the DAWG from some set 12 = { ~ , , . . . ,  ~_~,  ~,a} to I?' = { ~ , . . . ,  ~_~,  ~,~}. If 
w 6 suff(5~a) and w ~ sub(l?'), then w should be reset to its longest suffix which 
belongs to sub(l?~). The corresponding modification of currentnode and length is 
done by the instructions added to DELETE-LETTER in the previous section. The in- 
struction added to MERGE updates currentnode whenever this class is merged with 
another one. This modification is inverse to the one done by the SPLIT function. 

We summarize the discussion above in the following theorem. 
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T h e o r e m  1 The algorithm MATCH(t~P) is correct and complete, i.e. it detects an 
occurrence of patterns of P in t i f f  there is one. 

It is important to note that the correctness of the algorithm is essentially due to 
the fact that the process of keyword loading is synchronized with the text scan. If a 
whole keyword had been loaded immediately after the previous one has been found, 
a correct maintenance of currentnode would become impossible. 

4.4 Complexity of the algorithm 
In this section we evaluate the time complexity of MATCH(t,P). Define 

n i n IPI = ~=1 ~j=l  Ivil and d = ~i=1 max{lull I J E [1 : nl]). Distinguishing d and 
IPI in the complexity analysis is useful for applications in which patterns of P are 
long sequences of short keywords. 

Let us first focus on the time taken by stage 2, that is on the total time of executing 
UPDATE-CURRENT-NODE (instruction 17). One can show that this time is O(It]) using 
a standard argument of amortizing the number of iterations of the while-loop in 
UPDATE-CURRENT-NODE over all letters of t (cf [1]). 

Let us analyse stage 3 now. CLOSEST-TERMINAL(a) runs in time O(]ogd), and 
within one execution of stage 3 there is one more call to CLOSEST-TERMINAL than ter- 
minal nodes on the suffix chain of currentnode. Therefore, each call to 
CLOSEST-TERMINAL but one is followed by unloading at least one keyword. Each 
iteration of the for-loop (line 25) either unloads one keyword or stops the whole run 
of the algorithm. Clearly, every keyword of P can be loaded and unloaded at most 
once during the run of MATCH. Unloading a keyword v~ using UNLOAD-KEYWORD 
takes O(]v~l log d) time by lemma 6. Since the list of patterns under loading is im- 
plemented as a double linked list, instruction 29 as well as instruction 12 of stage 1 
is done in time O(1). To sum up, the time spent on stage 3 during the whole run of 
MATCH can be evaluated as O([t[ log d + ~,~=a ~j"~l [vii log d) = O(([t[ + [PI)log d). 

Now let us turn to stage 1. Each iteration of the for-loop (line 6) calls to 
APPEND-LETTER (line 9) which is the only individual step taking non-constant time. 
Thus, it remains to evaluate the complexity of the loading process. Here, however, we 
face a difficulty. To describe it, we forget for a moment about the auxiliary dynamic 
tree structure defined in Section 4.1 which introduces a logd factor in appending a 
letter (lemma 6). The problem is that although by lemma 3, loading a keyword takes 
time linear on its length, this result does not generally hold for our mode of loading. 
The reason is that in our case, loading letters of a keyword alternates with loading 
letters of other keywords and unloading some keywords, while the proof of lemma 3 
in [6] assumes tacitly that the DAWG does not change between loadings of two con- 
secutive letters of a keyword. In the rest of this section we outline a solution to this 
problem which takes linear time with respect to the set of all loaded keywords. The 
complete description of the solution is far too long to be given here, and is left to the 
full version of the paper. 

Recall from section 3.1 that calling APPEND-LETTER(a, a) provokes a traversal of 
the suffix chain of a up to the first node with an outcoming primary a-edge. During 
stage 1, such a traversal is made for the port node a and the current letter a of 
every keyword under loading. The solution consists in synchronizing the traversals 
and imposing an order of traversing parts of the suffix chains of the port nodes. 
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Assume that the same letter a is appended to two port nodes al  and a2, and 
assume that the suffix chains of al  and a2 have a common part. A careful analysis 
of possible situations shows that after both loadings the branching node will have an 
outcoming primary a-edge and all other nodes of the common part will have outcoming 
secondary a-edges going to the same node as the primary one does. This suggests the 
principle that common parts of the suffix chains of nodes extended by the same letter 
can be treated once. 

It is not too difficult to see how this principle can be implemented. The simplest 
way is to perform the traversal in two passes, In the first pass the suffix chain of every 
port node is traversed and the visited nodes are marked with the letter to be appended 
to the port node. The traversal stops if the node is already marked with the same 
letter. This node is additionally marked as a branching node. In the second pass the 
loading process is performed using the marking so that the common parts (delimited 
by branching nodes) are traversed once. A more complicated task is to prove that 
the above principle preserves linearity. The idea of the proof is to amortize all suffix 
chain traversals over the total length of all keywords under loading. In this way we 
show that the total time taken by loading keywords during the matching algorithm is 
O([Pl). 

If the auxiliary dynamic tree structure of suffix pointers has to be maintained 
(Section 4.1), appending each letter requires additional O(log d) time, and the whole 
loading time is then O(tP I log d). 

Summarizing the complexity of al] stages, we state the following resu]t : 

T h e o r e m  2 MATCH(t, P) runs in time O((Itl + IPI)logd). 

5 Concluding Remarks  

In this paper we have designed an efficient algorithm for matching a text against 
a set of patterns with variable length don't cares. Note that this problem can be 
considered as a generalization of the dynamic dictionary matching (DDM) problem 
[2, 3, 11, 4] in that the dictionary (underlying set of words) changes during the text 
search, tn particular, the technique of using the DAWG as a matching automaton 
together with the algorithms of modifying the DAWG used in this paper, constitute 
yet another solution of the DDM problem, that matches the same complexity bounds 
as in [2, 3, 11]. Also, our method meets a similar obstacle as the DDM algorithms (see 
section 4.1), which gives rise to the log d factor in the complexity bound (theorem 2). 
The obstacle amounts to the detection of keywords that are prefixes (in case of [3, 4]) 
or suffixes (in our case) of a given subword of another keyword. In [4] a new solution 
to this problem was proposed, based on the reduction to the parenthesis maintenance 
problem, which improved the complexity bounds by the log log d factor. This solution 
can be plugged into our algorithm, allowing a similar improvement. 

Note that our algorithm detects the leftmost occurrence of the patterns in the text. 
This is an obvious drawback for those applications that require to find all occurrences. 
However, it can be easily seen tha* even for a single pattern the number of occurrences 
may be exponential, which makes impossible an efficient algorithm that outputs all of 
them. Note however that the number of occurrences may be computed in polynomial 
time using the dynamic programming technique. 
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A 0  E x a m p l e  of  a D A W G  

o, . -  . . . .  - - " ' - , .  
; a b : 

~xx " '", ,  

xa x x 

~\x xxt  
. . .  - ._  

This is tile DAWG for the set {ba, bbaa}. Nodes 1-7 correspond respectively to 
the equivalence classes {e}, {a}, {b}, {ba}, {bb}, {bba}, {aa, baa, bbaa}. Primary 
edges are drawn with normal arrows, secondary edges with dashed arrows, and suffix 
pointers with dotted arrows. Depth of nodes 1-7 is 0, 1, 1, 2, 2, 3, 4 respectively. 
Nodes 3, 4, 5, 6, 7 are prefix nodes with prefix-degree(3) = 2 and prefix-degree(4) = 
prefix-degree(5) = prefix-degree(6) = prefix-degree(7) = 1. Nodes 4 and 7 are terminal 
nodes. 
number-of-children(l) = number-of-children(2) = more-than-one, 
number-of-children(3) = number-of-children(4) = 1, 
number-of-children(5) = number-of-children(6) = number-of-children(7) = 0 
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A1 Extending the DAWG 

APPEND-LETTER(activenode~ a) 
1 i f  out(activenode, a) ~ undefined t h e n  
2 i f  type(activenode, a) = primary t h e n  
3 r e t u r n  out(activenode, a) 
4 e l se  r e t u r n  SPLIT(activenode, out(activenode, a)) 
5 e l se  create  a new node newactivenode and set number-of-children(newactivenode) := 0 
6 c rea te  a new pr imary  a-edge (activenode, newactivenode) and set 

origin( newactivenode ) := aetivenode, last-letter( newactivenode ) := a, 
depth(newactivenode) := depth(activenode) + 1 

varnode := suf-pointer(activenode) 
w h i l e  varnode ~ undefined a n d  out(varnode, a) = undefined d o  

create a new secondary a-edge (varnode, newactivenode) 
varnode := suf-pointer(varnode) 

i f  varnode = undefined t h e n  
create a suffix pointer  from newactivenode to  source 

e l s e i f  type(varnode, a) = primary t h e n  
create a suffix pointer  from newactivenode to  out(varnode, a) 

e l se  create a suffix pointer  from newactivenode 
to SVLIT( varnode, out( varnode, a) ) 

r e t u r n  newaetivenode 

7 
8 
9 
i0  
11 
12 
13 
14 
15 

16 

SP LIT( ori ginnode , tar getnode ) 
1 create a new node newtargetnode 
2 appendedletter := last-letter(targetnode) 
3 replace the  secondary edge (originnode, targetnode) by a pr imary  edge 

(originnode, newtargetnode) with the  same label and  set 
origin( newtar getnode ) := originnode, last-letter( newtar getnode ) := appendedl etter , 
depth(newtargetnode) := depth(originnode) + 1 

4 instructions are added at this line in section 4.2 

5 for every outcoming edge of targetnode, create a secondary outcoming 
edge of newtargetnode with the  same label and  going to the  same node 

6 create a suffix pointer  of newtargetnode point ing to suf-pointer(targetnode) 
7 redirect the  suffix pointer of targetnode to point  to  newtargetnode 
8 varnode := suf-pointer(originnode) 
9 w h i l e  varnode # undefined a n d  type(varnode, appendedletter) = secondary d o  
10 , redirect the  secondary edge of varnode (labeled by appendedletter) 

to point  to newtargetnode 
11 varnode := suf-pointer( varnode) 
12 r e t u r n  newtargetnode 

LOADiKEYWORD(V = Vl... Vn) 
1 activenode := source 
2 for  i := 1 t o  n d o  
3 activenode := APPEND-LETTER(activenode, vi) 
4 preflx-degree(activenode) := prefix-degree(aetivenode) + 1 
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A2 Reducing the DAWG 

DELETE-LETTER( ac~ivenode ) 
1 newaetivenode : =  origin(aetivenode) 
2 deletedletter : =  last-letter(activenode) 
3 if preflx-degree(activenode,)>O or number-of-children(aetivenode) = more-than-one then  
4 r e t u r n  newactivenode 
5 e lse i f  number-of-children(aetivenode) = 1 then  
6 MERCE(activenode, newactivenode, deletedletter) 
7 r e t u r n  newactivenode 
8 else delete the primary edge (newaetivenode, activenode) labeled by deletedletter 
9 instructions are added at this line in section 4.2 

10 varnode := suf-pointer( newactivenode) 
11 whi le  varnode # undefined and type(varnode, deletedletter) = secondary do 
12 delete the secondary edge (varnode, activenode) labeled by deletedletter 
13 varnode := suf-pointer( varnode) 
14 delete activenode 
15 if varnode ~ undefined then  
16 suffiznode := out( varnode, deletedletter ) 
17 if prefix-degree(suffixnode) = 0 and numher-of-children(sufflxnode) = 1 then  
18 MERGE(suffiznode, varnode, deletedletter) 
19 r e t u r n  newactivenode 

MERGE( targetnode, originnode, deletedletter) 
1 newtargetnode := child(targetnode) 
2 instructions are added at this line in section 4.2 

3 replace the primary edge (originnode, targetnode) labe]ed by deletedletter 
by a secondary edge (originnode, newtargetnode) with the same label 

varnode : =  suf-pointer(originnode) 
while  varnode # undefined and type(varnode, deletedletter) = secondary do 

redirect the secondary edge (varnode, targetnode) labeled by deletedletter 
to newtargetnode 

varnode : =  suf-polnter( varnode) 
redirect the suffix pointer of newtargetnode to point to suf-pointer(targetnode) 
delete the suffix pointer of targetnode 
delete targetnode 

7 
8 
9 
10 

UNLOAD-KEYWOaD(terminalnode) 
1 activenode := terminalnode 
2 whi le  aetivenode # source do 
3 prefix-degree(aetivenode) := prefix-degree(activenode) - 1 
4 activenode := DELETE-LETTER(ac~ivenode) 


