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Abstract

We study language-theoretical properties of the set of reducible ground
terms and its complement - the set of ground normal forms induced by a given
rewriting system. As a tool for our analysis we introduce the property of finite
irreducibility of a term with respect to a variable and prove it to be decidable.
It turns out that this property generalizes numerous interesting properties of
the language of ground normal forms. In particular, we show that testing reg-
ularity of this language can be reduced to verifying this property. In this way
we prove the decidability of the regularity of the set of ground normal forms,
the problem mentioned in the list of open problems in rewriting [Dershowitz et
al., 1991]. Also, the decidability of the existence of an equivalent ground term
rewriting system and some other results are proved.



1 Introduction

Although the term rewriting formalism has been studied for many years, very little is
known about language-theoretical properties of term sets induced by term rewriting
systems. In particular, in this paper we focus our interest on the properties of the
set of reducible ground terms Red(R) and the set of ground normal forms NF(R),
where R is an ordinary (non-conditional, non-equational) term rewriting system. It
turns out that these sets, regarded as tree languages [Gécseg and Steinby, 1984], have
a very interesting structure that is worth to be studying. In particular, it is useful
to relate this structure with classical notions from the formal language theory. Such
results would not only be of theoretical importance but also have a practical interest
in the application domains of term rewriting systems.

As a tool for our analysis in this paper we introduce a property of finite irre-
ducibility of a term by a given term rewriting system R with respect to a variable.
It means that if we consider the set of all irreducible ground instances of the term,
the set of different ground terms substituted for the variable is finite. In this pa-
per we show that we can effectively bound the depth of these ground terms. In
other words, given a term ¢ and a variable z, we give a bound depending on R,
t, and x such that if ¢ is finitely irreducible with respect to = and () is an ir-
reducible ground instance of ¢, then the depth of é(x) is smaller than this bound.
Using the bound we reduce the property of finite irreducibility to that of ground
reducibility which is known to be decidable [Kapur et al., 1987; Plaisted, 1985;
Comon, 1988]. In this way we show the decidability of the finite irreducibility prop-
erty.

It turns out that this property is closely related to many interesting properties
of the language of ground normal forms (or its complement, the set of reducible
ground terms). In particular, we show that for a rewriting system R, if the set of
reducible ground terms Red(R) is regular then every non-linear term ¢ in R is finitely
irreducible by R \ {t} with respect to all its non-linear variables. (In this paper we
identify a term rewriting system with the set of left-hand sides of the rules). On the
other hand, we show that the latter condition is implied by another one, namely the
existence of a left-linear term rewriting system £ such that Red(R) = Red(L). This
"linearizability property” was studied by one of the authors in [Kucherov, 1991] and
proved equivalent to the regularity of Red(R). In this paper we give a shorter proof
of this result that uses a well-known Ramsey’s theorem. Combining these results with
the decidability of finite irreducibility, we prove the decidability of the regularity of
ground normal form languages. This solves the problem 7 of the list of open problems
in rewriting [Dershowitz et al., 1991] (see also [Gilleron, 1990]).

Using similar ideas we show some other decidability results. In particular, we
prove that it is decidable whether a term rewriting system has an equivalent ! ground
system. The difference with the previous problem is that all variables and not only
the non-linear ones must be substituted by finite sets of ground terms. Also, we
show how the results obtained imply the decidability of finiteness of the set of ground

In this paper we call two rewriting systems equivalent if they have the same set of reducible
ground terms



normal form, the result proved previously in [Kapur et al., 1987; Plaisted, 1985].

The paper is organized as follows. Section 2 introduces some basic notions and
notations. In section 3 we give the definition of the finite irreducibility property and
then use it to express a necessary condition for the regularity of the ground normal
form language. Using these results we show that the regularity property is equivalent
to the existence of an equivalent linear rewriting system. In section 4 we give a bound
that restricts the size of substitution terms in the case when the finite irreducibility
property holds and we prove that the bound verifies the desired property. Then
we prove the decidability result for the finite irreducibility property. In section 5
we apply these results to prove the decidability of regularity of ground normal form
languages. As other applications, we obtain the decidability results for the existence
of an equivalent ground term rewriting system and for the finiteness of the set of
ground normal forms. Section 6 concludes the paper with some final remarks and
observations.

2 Preliminaries

We use standard basic notions of term rewriting system theory. Ty (X) stands for
the set of (finite, first-order) terms over a finite signature ¥ and an enumerable set
of variables X. Var(t) C X is the set of variables in ¢t € Ty(X). Ty denotes the
set of ground terms over ¥ that will also be naturally treated as finite labeled trees.
For t € Tx(X), Pos(t) denotes the set of positions in ¢ defined in the usual way as
sequences of natural numbers and VPos(t) = {x € Pos(t)|t|r € X} is the set of
variable positions in t. By ¢ we denote the empty sequence that corresponds to the
root position. For w1, my € Pos(t), m1 = my iff 72 is a prefix of 7y, and 71 = 7y iff
71 = 7wy and Wy ¥ m. 7 -7 denotes the concatenation of 7 and 7. As usual, for
7 € Pos(t), t|, is a subterm of ¢ at # and #[7 < s] is the result of replacement of ¢/,
by s in t.

A variable @ € Var(t) is said to be linear in ¢ if there exists only one position
7 € Pos(t) such that ¢|, = = and is said to be non-linear in ¢ otherwise. A term
t € Ty(X) is linear if all its variables are linear and is non-linear otherwise.

Given T € Pos(t), |7| stands for the length of 7. For ¢t € Tx(X) and S C Tx(X),
the depth of t and S, denoted by |[t]| and ||.S||, is defined by ||t|| = maa{|7||7 € Pos(t)}
and ||.S]| = maa{||t|| |t € S}. Substitutions and ground substitutions are defined in
the usual way.

We will deal with ordinary term rewriting systems defined as a finite set of rules
t — s, where t,s € Ty,(X) and Var(s) C Var(t). The only property of term rewriting
systems we will be concerned with in this paper is their "reduction power”, that is
the set of reducible ground terms. For a rewriting system R, a ground term ¢ € Ty
is (R-)reducible if there exist 7 € Pos(g) and a rule t — s in R such that ¢|. is a
ground instance of ¢, that is ¢g|, = 6(¢) for some ground substitution 6. Thus, we will
identify a term rewriting system R with the set of its left-hand sides and we will freely
mix up term rewriting systems and finite term sets. For example, we will say ”linear
rewriting system” or simply "linear set” instead of "left-linear rewriting system”.



Given a term rewriting system R, a term ¢t € Ty (X) is called (R-)ground reducible
(or ground reducible by R) iff for each ground substitution 6, 6(¢) is (R-)reducible.
By Gr(R) we denote the set of ground instances of R and by Red(R) the set of
R-reducible ground terms. Thus, ¢ is R-ground reducible iff Gr({t}) C Red(R).
NF(R) stands for the set of R-irreducible ground terms (ground normal forms), i.e.
NF(R) = Tk \ Red(R).

3 Finite Irreducibility, Regularity, and Linearity

A well-known problem related to the properties of Red(R) is the ground reducibility
problem that was proved decidable by several authors in the mid eighties. It consists
in testing whether all ground instances of a given term ¢ are reducible by a rewriting
system R, or, formally, if Gr({t}) € Red(R) holds. From the language-theoretical
point of view the ground reducibility problem is equivalent to the inclusion problem

for the languages Red(R).

Theorem 1 (generalized ground-reducibility problem) [Kapur et al., 1987;
Plaisted, 1985; Comon, 1988] It is decidable whether Red(R1) C Red(Ry) for given

arbitrary term rewriting systems Ry, Ro.

Another known result is the decidability of finiteness of N F(R). Note that Red(R)
is always infinite provided that R is not empty and T% is infinite.

Theorem 2 |[Kapur et al., 1987; Kounalis, 1990a] For an arbitrary rewriting system
R, it is decidable whether NF(R) is finite.

In this paper we are concerned with the regularity property of Red(R) (equiva-
lently, NF(R)), where Red(R) is regarded as a tree language. More specifically, our
objective is to prove the decidability of regularity of Red(R). First we recall the def-
initions of finite tree automaton and regular tree language. The following definition
of tree automaton follows [Gécseg and Steinby, 1984].

Definition 1 o Gliven a signature X, a bottom-up tree automaton A is a finite
Y-algebra A = (Q,Y), where elements of the finite carrier Q) are called states,
together with a distinguished subset Q)i C ) of final states.

o The language of ground terms L C Ty, recognized by A is defined by L = {t €
Ts|t* € Qyin}, where 4 denotes the interpretation of t in the algebra A. In
what follows we denote t* by A(t).

o A language L C Ty is called regular (or recognizable) iff there exists an automa-
ton A over X that recognizes L.

In this section we are going to express the regularity property of Red(R) in terms
of other "more syntactic" properties that are easier to test. In particular, we introduce
a property of finite irreducibility of a term with respect to a variable.



Definition 2 Let R be a rewriting system and t € Ty (X). t is said to be finitely
irreducible by R with respect to a variable @ € Var(t) iff there does not exist an
infinite sequence of ground instances {61(t), 62(t), 65(t),...} C NF(R) such that

o for everyi > 1, 6;(t) contains no proper subterm that is an instance of t,

o the set {61(x),02(x),63(x),...} is infinite.

A property complementary to finite irreducibility was called transnormality in
[Kounalis, 1990b]. The first condition in the definition can be interpreted by treating
t as a special rewrite rule that can be applied to every position of o(f) but the
root position. To give a simple example, suppose ¥ = {f, h,a}, R = {h(x)}, and
t = f(y,y). Then t is finitely irreducible with respect to y, but this would not be the
case if the first condition had been dropped. It should be noted that this condition
is purely technical, and the results of this paper concerning the analysis of finite
irreducibility property (cf section 4) are valid both with and without this condition.
In fact, the condition is natural for some application but is not needed for the others
(cf section 5). In the sequel we will assume this condition to be present and we will
mention explicitly when it is not taken into account.

Now we relate the property of regularity of the set of reducible ground terms to
that of finite irreducibility. It is the latter property that we will actually test after-
wards. The results of the rest of the section are based on the results proved by one of
the authors in [Kucherov, 1991] without using explicitly the finite irreducibility prop-
erty. Furthermore, we present here a new proof of the main proposition (theorem 4
below) that uses a more general technique. In particular, the well-known theorem of
Ramsey is used.

We need the following technical lemma.

Lemma 1l Let t € Tx(X). Let g1,92,95 € Tx, and 7 be a position that belongs to

Pos(g1), Pos(gz), and Pos(gs). If qi[r  ¢2lz], qilm ¢ galz], g2lm < gals] are
instances of t, then g9 is also an instance of t.

Proof: We proceed by case analysis of the location of 7 with respect to ¢.

Suppose that 7 is "outside" ¢, that is there exists 7 € VPos(t) such that 7 < =.
Assume that t|, = @ and 7 = 7-v. If z is linear in ¢, then since g3[7 + g¢3|,] is
an instance of ¢, then ¢, is also an instance of ¢. If x is non-linear in ¢, then since
g7 ¢2|x] and gi[7 < g¢3|;] are both instances of ¢, we conclude that ¢;[x <«
a2l-ll- = q1lm < ¢3]x]|- and therefore g2|, = g3|r. As soon as go[7 + g¢3|:] is an
instance of ¢, ¢, 1s also an instance of ¢.

Now suppose that 7 is "within'" ¢, that is 7 € Pos(t)\ VPos(t). Since 1|7 < g2]x]
is an instance of ¢, then g¢s|, is an instance of t|,. Denote VPos,(t) = {r|r €
VPos(t), = < 7}. If there is no non-linear variable @ € Var(t) located at some
position in VPos, (1) as well as at some position in VPos(t) \ VPos,(t), then since
g2[7 < g3|x] is an instance of ¢, g5 is also an instance of . Now assume that for some
variable & € Var(t), there exist 7y € VPos.(t), 2 € VPos(t) \ VPos.(t) such that
t|;, = t|r, = x. We prove that gs|;, = g2],. Since g1[7 ¢ ga|-] and g1[7 < g¢3|] both
are instances of ¢, we conclude that ¢1|,, = g2|-, and ¢1|-, = g3|-,- Hence, 2|+, = g3+, -



Since g7 < g3|,] is an instance of ¢, then ¢/, = gs|-, and hence gs|;, = g2|,. Since
x, 71, T2 were chosen arbitrary, we conclude that ¢, is an instance of ¢. a

The lemma above refines lemma A.7 from [Kapur et al., 1987| insofar as the ad-
ditional unnecessary conditions are removed from the latter (no additional condition
is imposed on the position 7 and the terms ¢; are not assumed to be irreducible,
otherwise the proof goes along the same lines). Lemma 1 plays an important role
as it gives a link between reasoning on terms and combinatorial reasoning, the latter
being necessary for proving the results of this paper.

In the combinatorial part of the proof below we use the following "infinite version"
of the well-known Ramsey theorem (see [Graham et al., 1980, page 16]).

Theorem 3 (Ramsey’s theorem, infinite version) Let [ be an infinite set and
n a natural number. Denote by P,(I) the set of all n-element subsets of I and assume
that P,(I) = P W Py. Then there exists an infinite subset J C [ such that either
Pu(J)C Proor Pu(J) C Ps.

Now we are in position to prove the main result of this section.

Theorem 4 For a rewriting system R, if the set Red(R) is a regular tree language,
then every non-linear term t € R is finitely irreducible by R\{t} with respect to all
its non-linear variables x € Var(t).

Proof: By contradiction, assume that there exists a non-linear term ¢ € R and a non-
linear variable # € Var(t) such that ¢ is not finitely irreducible by R\{t} with respect
to x. By definition, there exists an infinite set of ground substitutions {61, 62, ...}
such that for every 7, ¢ > 1, é,(t) is irreducible by R\ {t} and does not contain an
instance of ¢ as a proper subterm, and the set {61(x),0s(x),...} is infinite. Without
loss of generality we assume that for ¢,5 > 1, ¢ # j, é6;(x) # 6;(x).

Assume now that A is an automaton that recognizes Red(R). Since the set
of states @) of A is finite, and {61(x), 62(x),...} is infinite, assume without loss of
generality that there exists o € @) such that A(é;(x)) = ¢o for all ¢, ¢ > 1.

Let m be a position of = in t. Denote g;; = 6;(t)[x + 6;(x)]. Since A(é;(z)) =
A(6;(x)), then A(6;(t)) = A(gi;) and thus g;; must be reducible. We now contradict
this by proving that there exist 7,7 > 1, ¢« # j such that g;; is not reducible. Actually,
the statement we will prove is much stronger. We show that there exists an infinite
subset of indexes J such that g;; is not reducible for every 7,7 € J, 1 < j.

We observe that since 6;(x) # 6;(x) for ¢ # j, and x is non-linear in ¢, then g¢;; is
not an instance of {. Also, ¢;; can be potentially reducible only at a position above
7. Consider a position 7, 7 < 7 and a rule s € R. We assume that s # t whenever
7 = e. It follows from lemma 1 that if for distinct 1,172,253 the terms ¢, §iyiss Ginis
are reducible by s at 7, then g¢,,,, = 0;,() is also reducible by s at 7 and this would
contradict the assumption that every 6;(¢) is reducible only by ¢ at root. Therefore,
given s and 7 as above, among every three pairs (i1, 2), (¢1,3), (¢2,23) there exists at
least one such for which the corresponding term g;; is not reducible by s at 7.



Now we apply theorem 3 with n = 2 and [ being the set of natural numbers. We
identify uniquely every pair (¢,7), ¢ < j with the 2-element subset {¢,j}, and we split
the set of all such pairs into two subsets P, P, in the following way. A pair (1, j)
belongs to P iff ¢;; is reducible by s at 7, otherwise it belongs to P;. By theorem 3
there exists an infinite set of indexes .J such that either Py(J) C Py or Pa(J) C Ps.
By the above remark, the latter alternative is impossible even for a 3-element set J.
Thus, we get an infinite set of indexes J such that g;; is irreducible by s at 7 for
all 2,5 € J v < j. Since the number of rules in R and the number of positions in ¢
are finite, by applying theorem 3 iteratively for every s € R, 7 € Pos(t) (except for
s =1t,7 = ¢), we finally get an infinite set of indexes J such that g;; is R-irreducible
for all 7,57 € J, ¢ < j. Thus, we get a contradiction with the fact that every g,;
belongs to the language recognized by A. O

Now we show that for a given rewrite system R, the language Red(R) is regular
if and only if there exists a linear rewriting system £ such that Red(R) = Red(L).
The "if part" follows immediately from the following theorem proved in [Gallier and

Book, 1985].

Theorem 5 ([Gallier and Book, 1985]) If £ is a linear rewriting system, then
Red(L) is a reqular tree language.

Thus, we concentrate on proving the existence of a linear system £ equivalent to R
provided that Red(R) is regular. Moreover, we show that £ may be constructed by
instantiating the non-linear variables of R.

Definition 3 Given finite sets R C Tx(X), L C Tx(X), L is said to be an instan-
tiation of R iff every term of L is an instance of some term of R. We call L linear
(resp. ground,...) instantiation of R iff L is a linear (resp. ground,...) set in
addition.

In other words, £ is an instantiation of R iff £ can be obtained by instantiation or
deletion of terms of R. Furthermore, if £ is a linear instantiation of R then every
non-linear term in R either is deleted or has its non-linear variables substituted by
a finite number of ground terms. The following lemma relates the condition of finite
irreducibility and the existence of an equivalent linear instantiation.

Lemma 2 If for a rewriting system R, there exists a linear instantiation £ of R
such that Red(R) = Red(L), then every non-linear term t € R is finitely irreducible
by R\{t} with respect to all its non-linear variables x € Var(t).

Proof: By contradiction, if a non-linear term ¢ € R is not finitely irreducible by R\{¢}
with respect to some non-linear variable € Var(t), then there is an infinite sequence
{61(1), 62(1), 65(1), ...} of ground terms reducible only by ¢ and only at the root posi-
tion, and the set {61(x), 62(x), é3(x),...} is infinite. Clearly, if we replaced & by any
finite set of ground terms, infinitely many terms from {61(¢), é2(¢), 05(¢), ...} would
become irreducible, and thus the set of reducible ground terms would be changed.
Also, t cannot be deleted from R. Thus, an equivalent linear instantiation does not



exist and we have a contradiction. O

We note that the converse of the lemma above does not hold [Hofbauer and Huber,
1992b]. The reason is that the linearizability condition is a property of the whole
rewriting system that cannot be decomposed into a sum of local conditions imposed on
each of its terms. For example, suppose R = {h(f(x,v)), f(f(z,vy),2), f(x, f(y,2)),
flz,2), f(h(x),h(x))}, and the signature consists of f, h, and a constant a. It is easy
to see that Red(R) = Ts \ NF(R), where NF(R) = {h(a)]i > 0} U{f(h'(a),h(a))|
i,j >0, ¢ # j}. The term f(x,x) can be replaced by f(a,a) without changing
Red(R). Also, f(h(x),h(x)) can be simply dropped since it is subsumed by f(x,z).
However, both terms cannot be instantiated simultaneously, and thus the system
cannot be linearized as a whole.

Thus, linearizability of a system is a stronger condition than finite irreducibility
of its elements with respect to the non-linear variables. According to theorem 4, the
latter condition is also implied by the regularity of the language of reducible ground
terms. The following theorem proves equivalent the regularity and the linearizability.

Theorem 6 ([Kucherov, 1991]) For a rewriting system R, Red(R) is a regular
tree language iff there exists a linear instantiation L of R such that Red(R) = Red(L).

Proof: The "if part" follows immediately from theorem 5. Now suppose that Red(R)
is regular. Take a non-linear term ¢t € R and a non-linear variable « € Var(t). By
theorem 4, ¢ is finitely irreducible by R\ {¢} with respect to x. By definition 2 we can
transform ¢ into o1(?),...,0,(f) by replacing = by a finite number of ground terms
such that if 6(¢) is a ground instance of ¢ and no instance of ¢ is a proper subterm
of 6(1), then 6(¢) is either reducible by R \ {t} or is an instance of o;(¢) for some
i,1 < ¢ < n. Hence, it is easy to see that replacing ¢t by o1(t),...,0,(t) does not
affect the set of reducible ground terms. On the other hand, the transformation elim-
inates one non-linear variable. By iterating this transformation for each non-linear
term and each non-linear variable we obtain a linear system £ that satisfies the the-
orem. 0

Finally, we note that if we have a procedure for testing finite irreducibility and
computing a corresponding set of replacement terms, then the above theorem gives
an effective procedure for testing the existence of £ and computing it. Checking finite
irreducibility is the subject of the following section.

4 Substitution Bound for Deciding Finite Irredu-
cibility

In this section we prove the decidability of the property of finite irreducibility with
respect to a variable. Given a rewriting system R, a term ¢, and a variable € Var(?),
we give a bound on the depth of 6(x), where 6(¢) is irreducible and ¢ is finitely
irreducible with respect to z. Using this bound we reduce the property of finite
irreducibility to that of ground reducibility that is known to be decidable.

9



The technique that we use to construct the bound is similar to that of [Kapur et al.,
1987]. The idea is to give a bound such that if §(z) exceeds the bound, then a larger
substitution o can be constructed such that o(t) is irreducible. Obviously, in this way
we get an infinite number of such substitutions. In [Kapur et al., 1987] the attention is
focused on constructing another bound that is in a sense complementary to ours. Its
meaning is exactly the opposite: if §(x) exceeds the bound then a smaller substitution
o exists such that o(¢) is irreducible. However, the possibility of constructing a bound
in the sense of this paper was indicated in [Kapur et al., 1987] too, and the idea of the
construction was sketched. In section 6 we will make further remarks on the relation
between the two bounds.

Assume that we are given a term rewriting system R, a term ¢ € Ty (X) and a
variable € Var(t). Now we give a number B(R, 1, x) that we use in the proof of the
main theorem below. Actually, we will show that it bounds the depth of §(x) where
6(t) is an R-irreducible instance of ¢, and ¢ is finitely irreducible by R with respect
to .

Let card(R) denote the number of terms in R, mazarity(¥) the maximal arity
of function symbols in X, noce(x,t) and depth(x,t) respectively the number and the
maximal depth of positions of @ in t. Suppose C(R) = 3x(card(R)x||R||)!, D(R) =
C(R) x mazarity(S)RI AR, t,2) = D(R) x (card(R) x noce(t, x) x depth(z, 1)),
B(R,t,x) = ||R|| x A(R,t,x). Now we prove the following main theorem.

Theorem 7 Let a term rewriting system R, a term t € Tx(X) and a variable x €
Var(t) be given. A number B(R,t,x) can be computed that verifies the following
condition. If there exists a substitution ¢ such that 6(t) is R-irreducible and ||6(x)| >
B(R,t,x), then there exists a substitution o such that o(t) is irreducible and ||o(x)|| >

[6C)][-

We prove that the number B(R,t,x) defined in the above formula satisfies the
theorem. Before giving the proof we give the following technical proposition.

Proposition 1 Let g € Ty, t € Tx(X), and g is not an instance of t.

(i) Let w € Pos(g) and || = |[t]. Ifg1 € Tk, ¢’ = g[7 < q1], and ||¢']| = ||g][+]I2]].
then ¢' is not an instance of 1.

(i) Let m1,..., 7, € Pos(g) and |m;| > ||t|| for every ¢,1 < i < n. Assume that
Glry = -0 = glr,. Assume that g1,92 € Tx, ¢ = g[m1 < 1, 70 & q1],9" =
glm < g2y ..o T < ga]. If both ¢' and ¢" are instances of t, then g1 = gs.

Proof: (i) We suppose that ¢ and ¢t have the same function symbol at every
position from Pos(t) \ VPos(t). Otherwise the statement is trivial. Consider 7 &
VPos(t) such that 7 < 7. Let @ = t|,;. If « is linear in ¢, then the result is obvious.
Assume that « is non-linear and v € VPos(t) is another position of x. From ||¢’|| >
llgll + ||]| we conclude that 7 belongs to a longest path in ¢’. Hence, ||¢'|,]] >
Il = ll£] > llgll. On the other hand., g/l = gl || < gl Thercfore, ofl- # .
and ¢’ is not an instance of ¢.

(ii) This part generalizes lemma A.l from [Kapur et al., 1987]. Assume that ¢’
and ¢” are instances of {. Consider my,...,7, € VPos(t) such that 7, < x; for ev-
ery 1,1 <1 < mn, and let a; = t|,,. Clearly, if each of z,...,2, is linear in ¢, then
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g must be also an instance of ¢ which is a contradiction. Hence, among z4,...,z,
there is a non-linear variable. Moreover, among z1, ..., z, there is a non-linear vari-
able that occurs also at a position different from 7,...,7,. This follows from the
fact that equal subterms in ¢’ correspond to equal subterms in ¢, and if such a
variable does not exist, then ¢ must be also an instance of ¢. Assume that z; is a

non-linear variable which occurs at a position v € VPos(t), and v ¢ {m,..., 7.}
Obvously, ¢'|, = ¢"|, = ¢|,. On the other hand, ¢'|, = ¢'|,, and ¢"|, = ¢"|,,. Hence,
N =9"n, and g1 = ¢'|r, = 9"|x = g2 O

Now we are ready to give the proof.

Proof of theorem 7: Consider the term ¢(x) and a path of maximal length
in it. Since it is longer than B(R,t,x), find on this path A(R,t,x) + 1 positions
T0s-- > TA(Rt,z) Such that 7,y < 7 and |r| — |7_q| = [|R]| for every 1,1 < ¢ <
A(R,t,x). Fori,j,1 <i<j < A(R,t,x), denote by 6;; the substitution defined by
6ij(x) = 6(a)[r; « 6(x)|] and é;;(y) = 6(y) for y # x. Since 7;,7; belong to this
longest path, ||6;;(x)|| > ||6(x)||. We show that a substitution o verifying the theorem
can be chosen among §&;;. Similar to [Kapur et al., 1987] we distinguish global and

local reducibility.

Definition 4 A term g € Ty is said to be locally (respectively globally) reducible with
respect to a position 7 € Pos(g) iff it is reducible at some position m < 7 such that
7| = 7| < |IRI[ (respectively |7 — |x| > | R]]).

The proof consists of three parts. In the first part we show that each 6;;(x) is not
globally reducible with respect to 7;. In the second part we select a subset of pairs
(¢,7) such that 6;;(¢) is not reducible at any position preceding a position of x in ¢.
Finally, we prove that among the remaining pairs there exists a pair (7, j) such that
6;;(x) is not locally reducible with respect to 7;. Clearly, these three parts cover all
possibilities for ¢;;(¢) to be reducible and prove the theorem.

Part 1. Consider a pair (¢,7), 1 << j < A(R,t,2) and a position v < 7; such that
|7;:|—|v| > || R]|. Denote g = é(x)|, and ¢’ = 6;;(x)|,. Since v, 7; are both on the
longest path and |7;|—|m;| > ||R||, then ||¢'||—]lg|l = ||R]|. Since g is irreducible,
then ¢ € Gr(R) and by proposition 1(i), ¢' € Gr(R). Since v and (¢,j) were
chosen arbitrary, we conclude that for each (¢,7), 1 <i < j < A(R,t,x), 6;;(x)
is not reducible at any v < 7, |7;| — |v| > ||R||, i.e. is not globally reducible
with respect to 7;.

Part 2. Take a position v € VPos(t) of x in t and consider any position 7 < v. Note
that the subterm ¢|, may have several positions of x. Take s € R. Let 7 = v-7y.
Since 6;j(x)|r # bix(x)|x for 7 # k, by proposition 1(ii) for every ¢ > 1, there
exists at most one j > 7 such that 6;;(¢) is reducible by s at 7. Since the number
of positions of x in ¢ is noce(t,x) and the depth of any of them is bounded
by depth(xz,t), there are at most nocc(t,x) x depth(x,t) possible values of .
Consequently, given ¢, ¢ > 1, there are at most card(R)xnoce(t, x)xdepth(x,t)
indexes j, 7 > ¢ such that ¢;;(¢) is reducible at some 7 € Pos(t) by some s € R.
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Now we construct a subsequence {ly,...,Ipr)} C {1,...,A(R,1,2)} through
the following ”diagonalization procedure”. Take l; = 1. Delete from the se-
quence {2,...,A(R,t,x)} those j for which 6é,;(t) is reducible at some
7 € Pos(t). By the above remark, we have deleted at most card(R)xnoce(t, x)x
depth(x,t) numbers. Take [y to be the smallest element in the resulting se-
quence, and apply the same deleting procedure to the rest of it. By iterat-
ing this procedure D(R) times we construct a subsequence {ly,...,Ipr)} C
{1,...,A(R,t,z)}. Note that since at every step we delete at most card(R) x
noce(t, ) xdepth(x,t) indexes, and A(R,t,2) = D(R)x (card(R)xnoce(t, x) x
depth(x,t)), the procedure can be applied D(R) times and therefore is correctly
defined. Note finally that by construction for every I',1" € {ly,...,Ipr)}, I' <
I", the term &yyn (1) is not reducible at any 7 € Pos(t) by any s € R.

Part 3. Now we observe that the positions 7, , ..., 7, have at most mazarity ()R

different suffixes of the length ||R||, and hence among [y, ..., Ipr) there are at
least C'(R) indexes ki, ..., ko(r) such that for some p, [p| = ||R|[, 7o, = 7/, - p
for every i, 1 <i < C(R). Let (™, n € {ki,.. Skemyt, 1 <m <||R]|, be the
positions defined by 7(™) < 7, |7,| — [7{™)| = m. We prove that there exists a
pair k' k" € {ki,... kem)}, K" < k" such that éppn(2) is not reducible at any
7, 1 <m <||R|| by any s € R, which also means that () is not locally
reducible with respect to 74v. The proof of this is similar to that of theorem 4
but we use the "finite version” of Ramsey’s theorem.

Theorem 8 (Ramsey’s theorem, finite version) Let a finite set [ and nat-
ural numbers N,n be given. Let Ay,...,Ax be natural numbers, and A; >
2, 1 <i < N. Denote by P,(I) the set of all n-element subsets of I and assume
that P,(I) = PiW...W Py. Then there exists a number R(Ay,..., An;n) such
that if I contains at least R(Aq, ..., An;n) objects, then there existi, 1 <i < N
and a subset J C I such that J contains at least A; objects, and P,(J) C P;.

R(Aq,..., An;n) are called Ramsey numbers. We are going to apply the theo-

rem with n = 2, A; = ... = Ay = 3. It is known (see, for example, [Constan-

tine, 1987]) that the numbers Ry = R(3,...,3;2), N > 2 satisfy the recurrence
———

N
relation Ry =6, Ry < Nx(Ry-1— 1)+ 2. Hence, Ry <3x NI

Now we observe that for a given s € R and m, 1 < m < ||R||, if ¥, k", k" €
{k1, ... ko)t and &' < k" < k™, then either dpn(2) is not reducible at 77} by
8, or O () is not reducible at #i by s, or dpupm(2) is not reducible at 7},
by s. Otherwise by assuming g1 = 6(z)[rm,, 92 = 0(x)|rm, g3 = 6(2)[zm, and
applying lemma 1, we would conclude that é6(x) is reducible at 77} by s which
is a contradiction.

Now we apply Ramsey’s theorem. We identify uniquely every pair (&, k"),
KK € {ki, ... ko)t K < B with the 2-element subset {&", £}, and we split
the set of all such pairs into (card(R)x||R||+1) subsets Fo, Py, ..., Perar)x|IR||
in the following way. Each P;, 1 <1 < card(R)x||R|| is one-to-one associated
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with a pair s,m, s€R,1 <m <||R||. The way we distribute the pairs among
P; is the following. If P; corresponds to a pair s, m, then a pair (£, k") belongs
to P; iff dppn(x) is reducible by s at #7i. If there are several possibilities to
place (K, k"), we choose any of them. If there are no s,m as above such that
Op is reducible by s at w[l, we place (K, k") into Py. If no pair is finally
placed in Py, then since C'(R) = 3 x (card(R) x||R]|)!, by theorem 8 there
exists a 3-element subset J C {ky,..., kg(r)} such that Py(J) C P for some
i, 1 <1 < eard(R)x||R||. But this contradicts the above remark. Therefore,
there exists at least one pair &', k” such that éppn(x) is not reducible by any
s € R at any #fi, 1 < m < ||R||. Thus, dpr(x) is not locally reducible with
respect to mi». This completes the proof.

We remark that many ideas in the proof above were borrowed from [Kapur et al.,
1987]. Moreover, a slightly simpler proof of part 3 can be given which uses a minor
modification of lemma 5.4 from |[Kapur et al., 1987]. However, we have preferred
to give a longer proof not only in order to make the paper self-contained, but also
because it uses Ramsey’s theorem which embodies complex combinatorial reasoning
of |[Kapur et al., 1987]. Also, it was interesting for us to discover that the same
”"Ramsey’s theorem technique” is applicable for proving both principal results of this
paper - theorem 4 and theorem 7. We believe that Ramsey’s theorem, being a very
powerful combinatorial result, can be very fruitful in proving this kind of properties
of term sets.

The following corollary adapts theorem 7 to the first condition in the definition
of finite irreducibility.

Corollary 1 Let a term rewriting system R, a term t € Ty (X) and a variable x €
Var(t) be given. A number B(R,t,x) can be computed that verifies the following
condition. If there exists a substitution 6 such that 6(t) is R-irreducible, 6(t) has no
proper subterm that is an instance of t, and ||6(x)|| > B(R,t,x), then there exists a
substitution o such that o(t) is irreducible, ||o(x)|| > ||6(x)|, and o(t) has no proper
subterm that is an instance of t.

Proof: The proof of theorem 7 remains valid but we have to insert ¢ into R and to
treat it as a special rewrite rule that cannot be applied at the root position. This
particularity is relevant only to part 2. It is easy to see that the proof of part 2 still
works. The only modification is that if 7 = ¢, then every rule of R but ¢ is potentially
applicable. Thus, we have one less possibility of reduction and even more freedom in
choosing a suitable subsequence of positions.

We have to correct obviously the bound B by taking card(R) + 1 instead of
card(R) and ||R U {t}| instead of ||R]|. O

Corollary 2 Let B(R,t,x) be a bound verifying the condition of theorem 4 (resp.
corollary 1). Assume that 6(t) is R-irreducible (resp. R-irreducible and has no proper
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subterm that is an instance of t) and ||6(x)|| > B(R,t,x). Then there exists an infinite
number of substitutions oq,02,... such that for every ¢, « > 1, o;(t) is R-irreducible
(resp. R-irreducible and has no proper subterm that is an instance of t), and the set

{o1(x),09(x),...} is infinite.

Proof: By iterating the procedure of constructing a larger substitution described in
the proof of theorem 7 (resp. corollary 1), we obtain the required infinite sequence of
substitutions. O

In the rest of the paper we will assume that B(R,t,x) denotes the bound modified
according to the proof of corollary 1 unless the contrary is explicitly stated.

Theorem 7 allows us to prove the decidability of finite irreducibility of a term with
respect to a variable. Note that the proof uses the ground reducibility property that
is known to be decidable [Plaisted, 1985; Kapur et al., 1987; Comon, 1988].

Theorem 9 [t is decidable whether given a rewriting system R, a term t € Ty(X)
is finitely R-irreducible with respect to a variable x € Var(t).

Proof: Compute B(R,t,x) and compute all instances o4(t),...,0x(t) such that for
every 7, 1 <1 < K,

o oi(x) €Ty, and o,(y) =y for every y # x,
e 0;(t) is R-irreducible,
o ||oi(x)|| < B(R,t,z).

We show now that ¢ is finitely R-irreducible with respect to x iff ¢ is ground reducible
by RU {o1(t),...,0k(t)}. We use an easy observation that ¢ is ground reducible if
and only if for every ground instance 6(¢) in which no proper subterm is an instance
of t, (1) is reducible.

Assume that ¢ is finitely R-irreducible with respect to x. Let 6(¢) be a ground
instance of ¢ that has no instance of ¢ as its proper subterm. If ||6(z)|| < B(R,t, ),
then by construction of o;, 6(¢) is either reducible by R, or is an instance of o;(t)
for some ¢, 0 < ¢ < K. If ||6(2)]] > B(R,t,x), then 6(1) is reducible since oth-
erwise, by corollary 2, ¢ cannot be finitely irreducible. Thus, 6(¢) is reducible by
RU{o1(t),...,ox(t)} and therefore ¢ is ground reducible by R U {o1(t),..., 01 (1)}

Conversely, assume that ¢ is ground reducible by RU{oy(t),...,0x(?)}. Consider
a ground instance 6(¢) and suppose it contains no proper subterm that is an instance
of t. Assume that ||6(z)]| > B(R,t,x). 6(t) is not reducible by o1(t),...,0x(t) at
any position different from ¢ since ¢(¢) has no proper subterm that is an instance
of t. On the other hand, since ||o;(z)]| < B(R,t,x), 6(f) cannot be an instance of
o1(t),...,ok(t). Therefore, 6(t) is reducible by R. This proves that ¢ is finitely irre-
ducible by R with respect to x. O

The proof of theorem 9 gives a decision procedure for testing finite irreducibility
of ¢ with respect to . It consists in computing all substitutions o with o(x) € Ty,
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o(xz) < B(R,t,z), and o(y) = y for y # x, then selecting out those for which o(t)
is R-reducible, and then checking if ¢ is ground reducible by R U {oy(1),...,0r (1)},
where 04, ...,0x are the remaining substitutions.

It should be noted that theorem 9 is still valid if the first condition in the defini-
tion 2 is dropped. The decision procedure is now the following. At first, we compute
B(R,t,z) according to theorem 7. Then we compute all instances oq(t),...,0x(t)
such that for every z, 1 <1 < K,

e oi(y) =y for every y # z,
e 0;(t) is R-irreducible,

e o;(x) contains variables, ||o;(z)]| = B(R,t,x), and the height of each variable
in o;(x) is exactly B(R,t,x).

The following statement is a trivial consequence from theorem 7. ¢ is finitely R-
irreducible with respect to @ (where definition 2 of finite irreducibility is taken without
the first condition) iff for every 7, 1 < < K, o4(?) is ground reducible by R. This
gives the decision procedure.

5 Decidability Results

In this section we apply the above results to the analysis of several interesting prop-
erties of the set of ground normal forms.

5.1 Regularity of Red(R)

The decidability of the regularity of the set of reducible ground terms follows naturally
from the results of the previous sections.

Theorem 10 [t is decidable whether given a rewriting system R, the set Red(R) is
a reqular tree language.

Proof: The result follows from theorem 9. A decision procedure implied by the
proof of theorem 6 is the following. Starting from the initial system R, transform
it by iterating the following procedure. Take a non-linear term ¢ € R and a non-
linear variable @ € Var(t). Compute the bound B(R\{t},t,2). Substitute = by
all ground terms not deeper than B(R\{t},?,2) and select out those instances that
are R-irreducible. If o¢(?),...,0x(t) are the resulting terms, check if ¢ is ground
reducible by RU {o1(1),...,0r(t)}\ {t}. If this is the case, proceed with the system
RUA{o(t),...,o(t)}\ {t}.

If all ground reducibility tests succeed, then Red(R) is regular, otherwise Red(R)
is not regular. Note that in the first case the system is finally transformed into a
linear one. O

It should be noted that the decision procedure defined in the proof of theorem 6
treats subsequently each non-linear term and each non-linear variable in it. The
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straightforward way of applying the procedure makes the size of the system enormous.
The reason is that every time after instantiating a variable, the depth of the rewriting
system increases and we have to modify the bound for instantiating the next variable.
However, this modification turns out to be unnecessary and this follows from the
following general consideration [Hofbauer and Huber, 1992b]. Assume that we are
given a rewriting system R, a term ¢, and a variable @ € Var(t). Let N be a number
that can be taken to verify the finite irreducibility of ¢ by R with respect to x. It
means that N can be taken as a value of B(R,t,x) in theorem 7. If we consider
now another rewriting system R’ such that Red(R) = Red(R'), then N can be also
taken as a value of B(R',t,x). On the other hand, we remark that at every step
the algorithm instantiates one variable and does not affect the others. In particular,
the depth of the variables to be substituted is always bounded by the depth of the
initial system. Taking these two arguments into account, we conclude that if we
take the bound to be max{B(R\{t},t,z)|t € R,z € Var(t)}, then it can be used
throughout the whole run of the algorithm. Obviously, such a bound can be computed
by the formula given before theorem 4 where depth(x,t) and noce(x,t) are replaced
respectively by ||R|| and the maximal number of positions of a variable in a term in
R.

Furthermore, from the possibility of using a single bound it follows that we can
also instantiate all the non-linear variables simultaneously. In this way we construct
a system L by replacing the non-linear variables by ground terms of depth smaller
than the bound and then check if each term from R is L-ground reducible. This is
equivalent to Red(R) C Red(L) (cf theorem 1). Note that £ is always linear.

Obviously, since NF(R) =Ty, \ Red(R), it is also decidable if the set of ground

normal forms is regular.

5.2 Existence of an equivalent ground system

The results of the previous sections allow us to prove decidable the problem of whether
given a rewriting system, there exists an equivalent ground rewriting system.

Theorem 11 [t is decidable whether given a rewriting system R, there exists a finite
ground rewriting system G C Ty, such that Red(R) = Red(G).

Proof: Assume that a finite system G C Ty exists such that Red(R) = Red(G).
Consider the set G’ of subterms of terms in G that are reducible by R and have
no proper subterms reducible by R. Clearly, G C Gr(R). On the other hand,
Red(G') = Red(G), and hence, Red(G') = Red(R). Thus, we can always assume that
G C Gr(R), that is, every term of G is a ground instance of a term of R.

It is easy to see now that the existence of a finite set G C Gr(R) such that
Red(G) = Red(R) implies the finite irreducibility of every € R by R\{t} with re-
spect to every variable @ € Var(t). By analogy with the previous subsection, we can
test the existence of G by iterating the following procedure while the system contains
non-ground terms. Take t € R and @ € Var(t). Compute the bound B(R\{t},1,x).
Substitute @ by all ground terms not deeper than B(R\{t},?, x) and select out those
instances that are R-irreducible. If o¢(t),..., 0k (?) are the resulting terms, check if
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t is ground reducible by R U {o1(t),...,0r(t)} \ {t}. If this is the case, iterate the
procedure with the system R U{oq(t),...,ox(t)} \ {t}. O

Thus, testing the existence of a finite ground system equivalent to R is equivalent
to testing the existence of an equivalent finite ground instantiation of R, and is done
by checking the finite irreducibility of the terms in R with respect to all variables.
Note the only difference with the previous case: testing the regularity of Red(R) is
testing the existence of an equivalent finite linear instantiation of R, and is done
by checking the finite irreducibility of the terms in R with respect to the non-linear
variables. All the comments from the previous subsection concerning the bound and
the strategy of applying the decision procedure are valid for this case too.

5.3 Finiteness of NF(R)

It is known that the finiteness of the set of ground normal forms is a decidable
property [Kapur et al., 1987; Plaisted, 1985]. However, it is interesting to see that
this is a very particular case of the above results.

Theorem 12 [t is decidable whether given a rewriting system R, the set of ground
normal forms NF(R) is finite.

Proof: The finiteness of NF(R) can be expressed as the finite irreducibility of the
degenerate term ¢ = x by R with respect to z, where the definition of finite irre-
ducibility (definition 2) is taken without the first condition. By the remark at the
end of the previous section, this property is decidable. a

From the construction of B it follows that | NF(R)|| is bounded by 3 x ||R|* x
mazxarity(X) x (card(R) x ||R]|)! in the case when NF(R) is finite.

Obviously, if NF(R) is finite, then Red(R) is regular. Moreover, if NF(R) is
finite, then there exists a finite ground system G such that Red(R) = Red(G) (]|G]]
can be bounded by ||[NF(R)|| + 1). Consequently, the decidable properties we have
considered in this section induce the following classification of rewriting systems. Note
that every class is strictly embedded into the one below.

{RINF(R) is finite}
N
{R] there exists a finite G C Ty, such that Red(G) = Red(R)}
N
{R|Red(R) is regular}
N

all term rewriting systems

6 Concluding Remarks

We have introduced a property of finite irreducibility of a term with respect to a
variable and have proved it to be decidable. We have shown that various interesting
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properties can be expressed in terms of finite irreducibility, including the property of
regularity of the language of ground normal forms. Using these relations we proved
decidable the latter property as well as the property of existence of an equivalent
ground term rewriting system. The decision algorithms for all these properties use
the ground reducibility test.

Let us give some additional comments on the relation between the property of
finite reducibility and that of ground reducibility. Suppose that t is not ground re-
ducible. Suppose that we know « priori that the set of irreducible instances of ¢ is
finite, which obviously means that ¢ is finitely irreducible with respect to each of its
variables. In this case the bound that we gave in the paper guarantees that if 6(¢) is
irreducible, then ||6(z)]| < B(R,t,z) for every € Var(t). In other words, the bound
B allows us to compute in this case the set of irreducible ground instances and to
check if it is empty. If £ has a potentially infinite set of irreducible ground instances,
then to test the ground reducibility of ¢ we have to test in addition that there exists
no irreducible instance 6(¢) such that ||6(x)|| > B(R,t,x) for some & € Var(t). In
the proposed algorithm this is done by the ground reducibility test. Thus, if we try
to test ground reducibility using directly the proposed technique, we enter into a
vicious circle. However, it is important to note that this circle can be broken up by
giving another bound, say [(R,t, ), for the smallest depth of 6(x) in the case when
t is infinitely irreducible with respect to . Given such a bound, we could replace
the ground reducibility test by checking whether there exists an irreducible instance
6(t) such that 6(x) < I(R,t,x) for every x € Var(t), but 6(y) > B(R,t,y) for some
y € Var(t). Thus, the two bounds would provide the complete information for testing
finite irreducibility and we could apply this algorithm to testing all interesting prop-
erties relative to the set of ground normal forms including that of ground reducibility.
In fact, the meaning of the bound I is precisely the one of the bound of [Kapur et al.,
1987], but to use it we have to prove that the condition above holds which requires
some additional analysis.

Throughout the paper we identified term rewriting systems with the sets of left-
hand sides, and we considered two rewriting system equivalent if they had the same
set of reducible ground terms. The results of section 5 allow us to transform, if this
is at all possible, a rewriting system R into an equivalent ”"good” (linear or ground)
rewriting system £ by substituting some variables by ground terms. We remark that
this instantiation can be extended to the right-hand sides of R. Moreover, if R is
convergent, the system we obtain is equivalent to R in the classical sense, i.e. it
generates the same equivalence relation on Tx. More precisely, if R is convergent and
L is an instantiation of R such that Red(R) = Red(L), then +5=<% on Tx.

During the work on this paper we came to know of the work of D.Hofbauer and
M.Huber [Hofbauer and Huber, 1992a]. Using the approach of test sets, they proved
independently that the existence of an equivalent linear rewriting system (and there-
fore the regularity of the ground normal form language) can be effectively tested. Also,
after this work had been finished we became aware that theorem 10 was obtained in-
dependently by S.Véagvolgyi and R.Gilleron [Vagvolgyi and Gilleron, 1992] using a
very similar approach combining the results of [Kapur et al., 1987] and [Kucherov,

1991].
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