The Complexity of Some Complementation

Problems

David A. Plaisted Gregory Kucherov

Department of Computer Science LORIA/INRIA-Lorraine
University of North Carolina at Chapel Hill 615, rue du Jardin Botanique

Chapel Hill, NC 27599-3175 B.P. 101
USA 54602 Villers-les-Nancy France
e-mail: plaisted@cs.unc.edu e-mail: kucherov@loria.fr
Abstract

We study the computational complexity of the problem of computing a
complement representation for a set of terms. Depending on the classe of
sets considered, some sets are shown to have an exponential complement
representation in the worst case, and some are shown to have a polynomial
one. The complexity of deciding if a set has an empty complement is also
studied.
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1 Introduction

In this paper we study the following natural problem. Given aset S = {t1,...,t,}
of terms (or literals), find another set ¢(S) with the set of instances consisting
exactly of those ground terms which are not instances of terms of S. ¢(S) is
naturally called the complement representation of S.

Probably the first study of how to compute a complement representation has
been done by Lassez and Marriot [LM87] in the context of learning a set specified
by counter-examples. It can be easily observed that if terms of S contain only
linear terms (i.e. terms without repetitive occurrences of variables) then the
finite complement representation always exists. Lassez and Marriot proved that
S has a finite complement representation if and only if S is ”"equivalent” to a
set of linear terms, where ”equivalence” means having the same set of instances.
Moreover, this equivalence is decidable and such a set of linear terms can be
always obtained by instantiating non-linear variables in .S by some ground terms.

The notion of complement representation was (explicitely or implicitely)
used in various application fields, such as functional and logic programming,
automated deduction, machine learning. For example, in a logic program a



clause L :- Ly, Lo, ..., L, will only be invoked if no earlier clauses succeed. Thus
the set of goals for which this clause will be invoked is the intersection of the
instances of L and the complement of the earlier instances. If we can compute a
representation of the complement of the earlier instances, then we can compute
the set of goals that will cause this clause to be invoked. This permits us to
change the order of the clauses of the program without affecting its semantics.
This could have applications in concurrent execution of logic programs, since it
would be possible to attempt execution of all clauses at the same time without
concern about altering the semantics of the program. As another exemple, work
[FLI6] discusses the complement problem and its application to model building,
and gives an exponential algorithm. Computing a complement representation
can be also viewed from a more general logic perspective as negation elimination
in some class of equational formulae [Com91].

The notion of complement has particularly often occurred in the theory of
term rewriting [DJ90]. For example, in [Kuc88] an algorithm has been proposed
for proving inductive theorems in an equational theory, which is explicitely
based on computing a complement. A generalization of the complementation
for terms containing associative-commutative operations has also been studied
[KLP91, LM93]. The notion of complement stands also behind more general
notions studied in the term rewriting theory, such as sufficient completeness,
ground reducibility, test set, the set of normal forms. The latter, for example,
can be viewed as a generalization of the complement: a normal form is a ground
term which not only is not an instance of a term from a given set S, but also
does not contain a subterm which is such an instance.

There exists an extensive literature devoted to ground reducibility, the set
of normal forms and related issues (some sample references are [KNZ86, JK89,
BK&89, Com91, HH94]). Related complexity questions have also been studied
(see [Pla85, KT95, KNRZ91, KR95a, KR95b, CJ97]). However, to the best
of our knowledge, no work has been done on analyzing complexity problems
related to complement representation. The only result, trivially implied by the
Lassez and Marriot’s construction, is the exponential upper bound on the size of
the complement representation. In this paper, we answer some further related
complexity questions. We show that the size of the complement representation
is necessarily exponential, in the worst case, for a set of linear terms and, even
more restrictively, for a set of disjoint linear terms. On the other hand, we show
that in case of ground terms, as well as in the special case of hierarchical set
of linear terms, a polynomial complement representation exists. We also study
the complexity of deciding if a set has an empty complement, and show that
the problem is co-NP-complete for general sets of linear terms and polynomial
(linear) for sets of disjoint linear terms.

2 Basic Definitions

T(F,X) is the set of terms formed from function symbols in F' and variables
in X. T(F) is the set of ground terms formed from function (and constant)



symbols in F. A term ¢t € T(F, X) is linear if no variable of X occurs more than
once in t. We assume familiarity with basic notions of term rewriting [DJ90]
(such as position in a term, substitution, matching, unification).

If t is a term, then ||¢|| is the symbol size of ¢, which is the number of
occurrences of function and constant symbols in t. Thus ||f(a, f(a, f(b,2)))|| =
6. If T is a set of terms, then ||T']| is the sum of the symbol sizes of the terms in
T. The depth of a symbol in a term is its depth in the term tree. The depth of a
term is the maximal depth of a symbol in it. For example, the depth of variable
z in the term above is 3 which is the depth of the term itself. We consider the
order on positions in a term corresponding to the pre-order in the tree. For
example, the leftmost variable in a term means the variable occurring at the
smallest position with respect to the pre-order of positions.

Definition 2.1 If T is a set of terms, Gr(T) is the set of ground terms in T'(F')
that are instances of terms in 7.

3 The Complexity of Some Complement Prob-
lems

Definition 3.1 If T and U are sets of terms, we say that U represents the
complement of T if Gr(U) =T(F)\ Gr(T).

We first consider the version of the complement representation problem for
sets of ground terms. In this case, Gr(U) =T(F)\T.

Definition 3.2 If ¢ is a term and {z < f(x1,...,2,)} is a substitution and
the z; are distinct from x and do not appear in ¢, then {z < f(z1,...,2,)}
is an elementary substitution for t. t{z « f(xi,...,x,)} denotes the result of

applying {z < f(z1,...,z,)} to t.
The following notion will be very useful for our constructions.

Definition 3.3 Suppose T' C T'(F) is a finite set of ground terms. Let T+, the
set of prefizes of T be the set U C T'(F, X) such that

(i) z is in U for some variable z,

(ii) if ¢ is in U and y is the leftmost variable (with respect to the pre-order

of positions) in ¢, and {y + f(z1,...,z,)} is an elementary substitution
for ¢, and t{y < f(z1,...,2,)} matches some term in T, then t{y <«
flzy,...,z,)} isin U as well,

(iii) no other term is contained in U.

For examplea if Tis {f(a) b: 6), f(a) & d)} then Ti is {:L’, f(mla T2, 1‘3), f(aa T2, 1’3),
fla,b,z3), f(a,c,z3), f(a,b,e), f(a,c,d)}. Note that for every position « in any
t € T, there is a term s € T+ having a variable at position a.



Lemma 3.4 For any finite T C T(F), TV is finite and ||T*|| = O(||T||?).

Proof: The finiteness is obvious. The quadratic bound follows from the fact
that the function symbol f that we add to a term in TV according to (ii) of
Definition 3.3 can be mapped to a distinct symbol f of 7. Thus, only a linear
number of such symbols can be added. Each symbol addition comes with copy-
ing of an existing term. This implies the quadratic bound. O

Using the set of prefixes T+ we now define another set which we will prove
to be a complement representation for 7'.

Definition 3.5 Suppose T' C T'(F) is a finite set of ground terms. Let ¢(T") be
the set of terms u{z < f(z1,...,7,)} such that u € T+, x is the leftmost vari-
able in u, {zx «+ f(x1,...,2,)} is elementary for u, and u{x < f(z1,...,2n)}
does not match any term of T'.

Theorem 3.6 If T C T(F) is a finite set of ground terms then c(T) repre-
sents the complement of T. Moreover, assuming a constant size of F', c¢(T) is
computable in polynomial (quadratic) time on ||T||, and ||c(T)|| is polynomial
(quadratic) in ||T||.

Proof: Tt is clear that if s € T'(F) is an instance of some element of ¢(7T'),
then s is not in Gr(T), since elements of ¢(T') do not match any term of T'.
Conversely, if s € T'(F) \ T, then consider the smallest position a of s (with
respect to the pre-order) such that there exists a term in 7" which coincides with
s at all positions strictly smaller than «, but none of such terms has the same
symbol as s at position a. Note that position a exists in some term of 7. Let
t be an element of 7% which has its leftmost variable z at position a. By the
remark before Lemma 3.4, such a term ¢ exists. Then t{z < f(z1,...,z,)} is
an element of ¢(7") which has s as an instance.

The facts that ¢(T") is computable in quadratic time and of quadratic size
follow from Lemma 3.4. O

Note that the quadratic upper bound of Theorem 3.6 is tight, as any com-
plement representation of the set T = {h"(a)} has at least quadratic symbol
size.

We now consider the extension of this problem to linear terms with variables.

Theorem 3.7 There is a set T of linear terms such that any set U of terms
representing the complement of T is of exponential size.

Proof: Suppose the signature contains constant symbols a, b and ¢, and an
n-ary symbol f. Let T be the terms {a, b, ¢, f(c,xa,...,x,), f(21,¢,23,...,2,),

., f(x1,22,...,¢)}. Suppose U represents the complement of T'. Let u be a
term in U. Then w is of the form f(t¢y,...,t,) where the ¢; are variables, con-
stant symbols, or terms of the form f(y,...,y,). But no ¢; can be a variable,

since then U would not represent the complement of T'. (Such a term w is unifi-
able with a term of T" having ¢ as the i-th argument.) Therefore, all the ¢; must



be a or b or of the form f(yi,...,yn). All combinations must be present in or-
der to represent the complement of T', and this requires at least 3" terms in U. O

It is still possible that by placing more conditions on 7', we could obtain sets
of terms for which the complement problem is polynomially solvable. One can
easily note that the proof above essentially uses the property that terms of T
have common instances. Therefore, forbidding this would be a further natural
restriction.

Definition 3.8 We say a set T of terms is disjoint if no two distinct terms in
T are unifiable.

In other words, T is disjoint if for any t1,t2 € T, Gr({t:}) NGr({t2}) = 0. It
turns out that this condition is not enough to guarantee that the complement
problem is polynomially solvable.

Theorem 3.9 There are disjoint sets T of linear terms such that any set U of
terms representing the complement of T is of exponential size on ||T||.

Proof: Let ¢ be amapping from {(i,5) : 1 <i,j <n,i # j}to{1,2,...,n(n—
1)/2} such that ¢(i,5) = ¢(k,1) iff {i,j} = {k,l}. Let m =n(n —1)/2. Let T
be a set of n linear terms {ry,...,r,} where r; is of the form f(¢1,...,%¢,) and
tojr) = ai if j =i or k=1, and t4(; ) is a distinct variable otherwise.

The idea is that the arguments of f represent edges of an undirected complete
graph on n vertices, with £4(; ) representing the edge between vertices j and k,
and r; has a; at all the positions corresponding to edges incident to the vertex
i, and variables elsewhere.

Now, this is a disjoint set of terms, because r; and r; have a; and a;, respec-
tively, as the ¢(i, ) argument of f.

Suppose that U represents the complement of 7. We claim that U has an
exponential number of elements.

First we observe that every term « in U which is not a constant is of the form
f(t1,...,tm), and at least [n/2] of the terms ¢; are not variables. Otherwise
there would exist j such that t4(; ) is a variable for all 1 < k < n,k # j, in
which case v would be an instance of r;.

Let us consider all terms of the form f(¢i,...,t,) in which the ¢; are in the
set {a1,as,...,a,}. There are n™ such terms altogether. By the above remark,
each element u of U matches at most n™~["/2] of them, since at least [n/2] of
the arguments of f are constants in u. How many terms are not instances of
terms of T'? It is n™ —n-n™~ ("= gince T is disjoint and each term r; in 7" has

n — 1 arguments non-variable. If U contains [ terms f(t1,...,ty), we obtain
the inequation n™ —n - n™~ (=1 > [.pm=[7/2] which implies the exponential
lower bound Q(n"/?) for 1. O

Finally, we consider more restrictive sets of linear terms in which the com-
plement can be represented by a set of polynomial size.



Definition 3.10 We say that a set T of terms is hierarchical if T has at most
one element, or there is some position « such that all terms ¢ in 7" have a non-
variable symbol at position « and coincide at all positions ancestor to «, there
are at least two terms t1,t> in T' that have different symbols at position «, and
the subsets of T" having a given symbol at position « are also hierarchical.

For example, the following set of terms is hierarchical:

{f(a7 b7 .’I:),f(a/, C7 y))f(b7 .’I:, c))f(b7y7a)7g(x7y7 Z)}

This set is hierarchical because all terms have a non-variable at the top
position, and those terms having a g at this position form a set of one element,
which is hierarchical. Those terms having an f at the top position form a
set of four elements that is also hierarchical, since the first arguments of all
terms in this set {f(a,b,z), f(a,c,y), f(b,x,c), f(b,y,a)} are all non-variable
symbols. Those having an a in the first argument ({f(a,b,x), f(a,c,y)}) are
also hierarchical, based on the second argument, and those having a b in the first
argument ({f(b,z,c), f(b,y,a)}) are hierarchical, based on the third argument.
Note that hierarchical sets are useful in automated deduction (cf [BR93]), as
they allow a natural application of case analysis in deduction procedures.

Theorem 3.11 Suppose T is a hierarchical set of linear terms. Then T is
disjoint, and moreover, the complement of T has a polynomial representation.

Proof: The fact that T is disjoint follows readily from the definition of
hierarchical. The fact that it has a polynomial size representation of the com-
plement follows by an algorithm similar to that for Theorem 3.6 above, but
instead of considering the pre-order of positions in 7', we consider them in the
order given by the hierarchy. O

However, even if a set is hierarchical, it may take some work to detect this
fact. Note that the union of hierarchical sets is not hierarchical, since any
singleton set is hierarchical, and any set can be expressed as a union of singleton
sets.

We finish with some results about how hard it is to test if the complement
is empty. The following theorem is equivalent to a result proved in Section 3 of
[KNRZ91] in the context of testing sufficient completeness of a rewriting system
over free constructors.

Theorem 3.12 ([KNRZ91]) Given a set T of terms, it is co-NP-complete to
determine if Gr(T) = T(F).

Note that Theorem 3.12 was proved in [KNRZ91] for any set of terms, con-
taining possibly non-linear terms. However, the co-NP-hardness was proved for
sets of linear terms, which implies that the problem is still co-NP-complete for
this restricted case.

However, this problem becomes easier if the set T is required to be disjoint.



Theorem 3.13 Given a disjoint set T of linear terms, there is a polynomial
(linear) time algorithm to test if Gr(T) = T(F).

Proof: For any natural n, define Q(n) C T(F,X) as follows. Q(n) consists
of all those linear terms which have each non-variable symbol at the depth at
most n, and each variable, if any, at the depth exactly (n + 1). Note that for
any n, Gr(Q(n)) = T(F). On the other hand, it can be easily seen that any
two distinct terms in Q(n) are disjoint.

Let d be the maximal depth of terms in T', and consider (d). For any t; € T,
to € Q(d), either ¢; and ¢, are not unifiable, or ¢, is an instance of ¢;. This is
implied by the linearity of t; and by the fact that any variable in ¢; is deeper
than the depth of ¢;. This observation further implies that Gr(T) = T(F) if
and only if every term of Q(d) is matched by a term from 7. Since T is also
disjoint, no term of Q(d) can be matched by distinct terms of T'. Therefore, it
is sufficient to count the number of terms of @(d) matched by each term of T'
and to check if these numbers sum up to |Q(d)|.

|Q(n)| can be computed by induction. Note that |Q(0)| = |F|. Let Fy,
k > 0, be the symbols of F of arity k, and |F}y| their number. Then |Q(n)| =
|Fol + > i1 |Fkl - (1Q(n — 1)])*. Assuming the signature of constant size and
a constant time of arithmetic operations, values |Q(n)| for n = 1..d can be
computed in time O(d).

Let t € T, and assume ¢t has [ variables occurrences at the delpths di,...,d.
Then the number of terms of Q(d) matched by ¢ is M(t) = [[,_, |Q(d — d;)|.
To check that Gr(T') = T'(F) we have to check that ), M (t) = |Q(d)|. This
test takes O(||T'||) operations altogether. O

4 Discussion

We have studied the complexity of some complement problems involving finite
sets of terms. It would be interesting to extend this work in two ways. One
area of interest is to find more applications where these results would be useful.
Another possibility is to find new classes of terms for which one can prove lower
or upper bounds on the complexity of the complementation problem. It would
also be possible to investigate the complexity of the complementation problem
relative to various equational theories. In general, the study of disunification to
date has emphasized completeness results rather than results about the size of
the representation of the complement set. Perhaps other disunification problems
could be studied to determine bounds on the sizes of the sets of disunifiers
returned.
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