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Admire, jeune apprenti !

Wow c’est déjà 
trop compliqué…
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Intervenants

Les enseignants de C++ sont:
● Henri Derycke (TP Apprentis GR3) — henri.derycke@univ-eiffel.fr
● Anthony Labarre (TP Initiaux GR1) — anthony.labarre@univ-eiffel.fr
● Victor Marsault (CM & TP Initiaux GR2) — victor.marsault@univ-eiffel.fr

Vous pouvez nous contacter par mail mais aussi sur Discord.

● Les supports du cours ont principalement été écrit par Céline Noël

41. Présentation du module
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Contenu du module

Séance supervisées:
● 3 cours magistraux pour présenter les segments
● 11 séances de TPs 

Travail en autonomie:
● 9 chapitres sur le site web du cours : 

➤ Questionnaire à la fin de chaque chapitre pour vérifier que vous avez compris
➤ Possibilité de l’envoyer à votre encadrant de TP qui vous fera un retour

● 1 TP de révision à réaliser en autonomie
● 2 à 3 heures par semaine

51. Présentation du module
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Modalités d’évaluation

Contrôle continu:
● TP noté de 2h à ⅓ du semestre (coef 2)
● TP noté de 2h à ⅔ du semestre (coef 2)
● TP noté final de 3h (coef 3)

Rattrapage: TP noté de 3h qui remplace la plus faible des trois notes !

Modalités:
● Utilisation du mode exam donc pas d’accès à internet
● Accès au site du cours et à la documentation du standard C++
● Tests automatiques

61. Présentation du module
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Déroulement du module

71. Présentation du module

S1
CM
Chapitre à lire
TP

S2
Chapitre à lire
TP

S3
Chapitre à lire
TP

S4
TP de révision
TP Noté

S5 CM

S6
Chapitre à lire
TP

S7
Chapitre à lire
TP

S8 
Chapitre à lire
TP

S9
TP de révision
TP Noté

S10 CM

S11
Chapitre à lire
TP

S12
Chapitre à lire
TP

S13 
Chapitre à lire
TP

S14 Révisions

S15 TP Noté final

— En autonomie
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Outils & Ressources

Ressources du cours:
● Site web du cours avec des exercices d’entraînement
● Miroir local de la documentation du standard C++
● Dépôt git des Tps 

Pour tester des snippets de code :
➔ Compiler Explorer  sur godbolt 

Pour développer des projets :
● Visual Studio Code  Visual Studio Codium
● CMake
● Git

81. Présentation du module
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Outils & Ressources

Ressources du cours:
● Site web du cours avec des exercices d’entraînement
● Miroir local de la documentation du standard C++
● Dépôt git des Tps 

Pour tester des snippets de code :
➔ Compiler Explorer  sur godbolt 

Pour développer des projets :
● Visual Studio Code  Visual Studio Codium
● CMake
● Git

91. Présentation du module

Certaines parties du site 
et des TPs pourraient ne 
pas être à jour
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Quelques avertissements

● Les notes ne sont pas entièrement compensables
➤ Le TP noté de rattrapage ne remplace qu’une seule note

● Le système de test automatique est assez punitifs
➤ Un test ne passe passe pas ne vaut généralement pas de points

● La difficulté augmente avec le temps
➤ Le TPN1 est plus facile

● La référence du cours est le site web et pas le CM
➤ Si vous ne lisez pas les chapitres, il vous manquera des notions

101. Présentation du module
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Quelques avertissements

● Les notes ne sont pas entièrement compensables
➤ Le TP noté de rattrapage ne remplace qu’une seule note

● Le système de test automatique est assez punitifs
➤ Un test ne passe passe pas ne vaut généralement pas de points

● La difficulté augmente avec le temps
➤ Le TPN1 est plus facile

● La référence du cours est le site web et pas le CM
➤ Si vous ne lisez pas les chapitres, il vous manquera des notions

111. Présentation du module

Travaillez tout au long du semestre
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Avant de continuer…

🤨 des questions sur le déroulement du module ?

121. Présentation du module
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Le C++, c’est quoi ?

Le C++ est un langage de programmation…

● Compilé
➔ Donc rapide à l’exécution.

● Orienté-objet
➔ Donc on peut architecturer des gros projets sans avoir trop envie de mourir.

● Générique
➔ Donc on peut facilement limiter le copier-coller d’algorithmes pour supporter différents types.

● Bien documenté
➔ Standard actif et grande base d’utilisateurs !

141. Hello, World!
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Le C++, c’est quoi ?

Le C++ est un langage de programmation…

● Compilé
➔ Donc rapide à l’exécution.

● Orienté-objet
➔ Donc on peut architecturer des gros projets sans avoir trop envie de mourir.

● Générique
➔ Donc on peut facilement limiter le copier-coller d’algorithmes pour supporter différents types.

● Bien documenté
➔ Standard actif et grande base d’utilisateurs !

● Quasi-rétro-compatible avec le C 
➔ Coexistence de types C et C++ 
➔ La syntaxe pour les concepts modernes pique un peu les yeux au début

151. Hello, World!

😈
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Fonction main

Identifiant — main
Arguments — () ou (int argc, char** argv)
Type de retour — int

int main()
{
    return 0;
}

162. Hello, World!
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Afficher du texte dans la console

#include <iostream>

int main()
{
    std::cout << "Hello World!" << std::endl;
    return 0;
}

172. Hello, World!
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Afficher du texte dans la console

#include <iostream>

int main()
{
    std::cout << "Hello World!" << std::endl;
    return 0;
}

182. Hello, World!

Donne accès aux symboles déclarés dans 
la section I/O (Input/Output, i.e. 
Entrées/Sorties) de la librairie standard.
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Afficher du texte dans la console

#include <iostream>

int main()
{
    std::cout << "Hello World!" << std::endl;
    return 0;
}

192. Hello, World!

Cible les symboles du 
namespace std (librairie 
standard)
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Afficher du texte dans la console

#include <iostream>

int main()
{
    std::cout << "Hello World!" << std::endl;
    return 0;
}

202. Hello, World!

Sortie standard.

Saut de ligne + flush.
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Compiler en ligne de commande

Pour compiler, depuis un terminal :

Puis, pour exécuter :

212. Hello, World!

g++ -std=c++17 hello-world.cpp -o hello-world

./hello-world
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Compiler en ligne de commande

Pour compiler, depuis un terminal :

Puis, pour exécuter :

222. Hello, World!

g++ -std=c++17 hello-world.cpp -o hello-world

./hello-world

Nom de la source
Nom de l’exécutable
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Ajouter un CMakeLists.txt

cmake_minimum_required(VERSION 3.16)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

232. Hello, World!
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

242. Hello, World!

Légende

Permet de générer un exécutable.
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

252. Hello, World!

Légende

Nom de l’exécutable.



Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

262. Hello, World!

Légende

Liste des sources.
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

27

Permet de sélectionner un set de 
fonctionnalités pour le langage.

Légende

2. Hello, World!
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

28

C++ 17
Légende

2. Hello, World!
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

29

Permet de passer des options au 
compilateur lors de la phase de 
compilation.

Légende

2. Hello, World!
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

30

Active un premier set de warnings.

Légende

2. Hello, World!
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

31

Active un second set de warnings.

Légende

2. Hello, World!
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cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

32

Considère les warnings comme des 
erreurs.

Légende

2. Hello, World!
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Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
    std::cout << "What's your name? " << std::endl;

    auto name = std::string {};
    std::cin >> name;

    std::cout << "Hello " << name << std::endl;
    return 0;
}

332. Hello, World!
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Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
    std::cout << "What's your name? " << std::endl;

    auto name = std::string {};
    std::cin >> name;

    std::cout << "Hello " << name << std::endl;
    return 0;
}

34

Construit une instance
de type std::string

2. Hello, World!
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Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
    std::cout << "What's your name? " << std::endl;

    auto name = std::string {};
    std::cin >> name;

    std::cout << "Hello " << name << std::endl;
    return 0;
}

35

Type déduit de ce qu’il y 
a à droite du symbole =

2. Hello, World!
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Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
    std::cout << "What's your name? " << std::endl;

    auto name = std::string {};
    std::cin >> name;

    std::cout << "Hello " << name << std::endl;
    return 0;
}

36

Entrée standard.

2. Hello, World!
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Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
    std::cout << "What's your name? " << std::endl;

    auto name = std::string {};
    std::cin >> name;

    std::cout << "Hello " << name << std::endl;
    return 0;
}

372. Hello, World!

🤨 Des questions?



Victor Marsault • 2025-2026

Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
    if (argc != 2u)
    {
        std::cerr << "Program expects one argument: " 

<< (argc - 1)
<< " were given." << std::endl;

        return -1;
    }

    std::cout << "Hello " << argv[1] << std::endl;
    return 0;
}

382. Hello, World!
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Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
    if (argc != 2u)
    {
        std::cerr << "Program expects one argument: " 

<< (argc - 1)
<< " were given." << std::endl;

        return -1;
    }

    std::cout << "Hello " << argv[1] << std::endl;
    return 0;
}

39

Nombre d’arguments
(+ 1 pour le chemin de l’exécutable) 

Chemin de l’exécutable, 
puis arguments.

2. Hello, World!
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Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
    if (argc != 2u)
    {
        std::cerr << "Program expects one argument: " 

<< (argc - 1)
<< " were given." << std::endl;

        return -1;
    }

    std::cout << "Hello " << argv[1] << std::endl;
    return 0;
}

40

Sortie d’erreurs.

2. Hello, World!
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Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
    if (argc != 2u)
    {
        std::cerr << "Program expects one argument: " 

<< (argc - 1)
<< " were given." << std::endl;

        return -1;
    }

    std::cout << "Hello " << argv[1] << std::endl;
    return 0;
}

412. Hello, World!

🤨 Des questions?
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Sommaire
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Types fondamentaux

433. Types

Les types hérités du C :
● Types entiers : int, short, long, unsigned int, …
● Types flottants : float, double.
● Types character : char, unsigned char.

Mais aussi :
● Type booléen : bool.
● Types entiers de taille fixe : int8_t, uint32_t, …
● Type taille : size_t.
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Définition de variables avec auto

443. Types

auto int_value = 3;
auto unsigned_value = 3u;
auto float_value = 3.f;
auto double_value = 3.0;
auto size_value = size_t { 3 };
auto return_value = fcn();
auto mavar = MaClasse{};
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Définition de variables avec auto

Avantages :
● Variables de types fondamentaux sont nécessairement initialisées.

int a; // Ici la valeur de a est n’importe quoi

● Pas de duplication dans le code (refactoring plus rapide)
MaClasse a = mafonction();

● Meilleure lisibilité quand les types sont complexes (templates)

Inconvénient :
● Si on n’a pas d’IDE, il est nécessaire de fouiller un peu et d’aller 

chercher le type de retour des fonctions pour connaître celui des 
variables.

453. Types
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Chaînes de caractères

463. Types

#include <string>

int main()
{
    auto empty_str = std::string { "" };    

    auto pouet = std::string { "pouet" };
    auto size = pouet.length();
    auto c0 = pouet.front();
    auto c3 = pouet[3];

    auto big_pouet = std::string {};
    for (auto c: pouet)
    {
        big_pouet += std::toupper(c);
    }

    auto half_pouet = pouet.substr(0, pouet.length()  / 2);

    return 0;
}
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Chaînes de caractères

473. Types

#include <string>

int main()
{
    auto empty_str = std::string { "" };    

    auto pouet = std::string { "pouet" };
    auto size = pouet.length();
    auto c0 = pouet.front();
    auto c3 = pouet[3];

    auto big_pouet = std::string {};
    for (auto c: pouet)
    {
        big_pouet += std::toupper(c);
    }

    auto half_pouet = pouet.substr(0, pouet.length()  / 2);

    return 0;
}

😠 Chaine de caractère C : char*
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Chaînes de caractères

483. Types

#include <string>

int main()
{
    auto empty_str = std::string { "" };    

    auto pouet = std::string { "pouet" };
    auto size = pouet.length();
    auto c0 = pouet.front();
    auto c3 = pouet[3];

    auto big_pouet = std::string {};
    for (auto c: pouet)
    {
        big_pouet += std::toupper(c);
    }

    auto half_pouet = pouet.substr(0, pouet.length()  / 2);

    return 0;
}

😃 Chaine de caractère C++:    
   std::string 
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Chaînes de caractères

493. Types

#include <string>

int main()
{
    auto empty_str = std::string { "" };    

    auto pouet = std::string { "pouet" };
    auto size = pouet.length();
    auto c0 = pouet.front();
    auto c3 = pouet[3];

    auto big_pouet = std::string {};
    for (auto c: pouet)
    {
        big_pouet += std::toupper(c);
    }

    auto half_pouet = pouet.substr(0, pouet.length()  / 2);

    return 0;
}

Les std::string sont des 
objets
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Chaînes de caractères

503. Types

#include <string>

int main()
{
    auto empty_str = std::string { "" };    

    auto pouet = std::string { "pouet" };
    auto size = pouet.length();
    auto c0 = pouet.front();
    auto c3 = pouet[3];

    auto big_pouet = std::string {};
    for (auto c: pouet)
    {
        big_pouet += std::toupper(c);
    }

    auto half_pouet = pouet.substr(0, pouet.length()  / 2);

    return 0;
}

🤨 Des questions?
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Tableaux dynamiques

513. Types

#include <vector>

int main()
{
    auto v1 = std::vector<int> {0,1,2};

    v1.emplace_back(4);
    v1.emplace_back(5);

    auto size = v1.size();
    for (unsigned i = 0; i<size; ++i)
    {
        std::cout << v1[i]
    }

    auto sum = 0;
    for (auto e: v1)
    {
        sum += e;
    }

    return 0;
}
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Tableaux dynamiques

523. Types

#include <vector>

int main()
{
    auto v1 = std::vector<int> {0,1,2};

    v1.emplace_back(4);
    v1.emplace_back(5);

    auto size = v1.size();
    for (unsigned i = 0; i<size; ++i)
    {
        std::cout << v1[i]
    }

    auto sum = 0;
    for (auto e: v1)
    {
        sum += e;
    }

    return 0;
}

On crée un vecteur avec 3 éléments
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Tableaux dynamiques

533. Types

#include <vector>

int main()
{
    auto v1 = std::vector<int> {0,1,2};

    v1.emplace_back(4);
    v1.emplace_back(5);

    auto size = v1.size();
    for (unsigned i = 0; i<size; ++i)
    {
        std::cout << v1[i]
    }

    auto sum = 0;
    for (auto e: v1)
    {
        sum += e;
    }

    return 0;
}

On ajoute 2 éléments en plus à la 
fin du tableaux v1

L’emplacement mémoire de 
v1 peut avoir changé
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Tableaux dynamiques

543. Types

#include <vector>

int main()
{
    auto v1 = std::vector<int> {0,1,2};

    v1.emplace_back(4);
    v1.emplace_back(5);

    auto size = v1.size();
    for (unsigned i = 0; i<size; ++i)
    {
        std::cout << v1[i]
    }

    auto sum = 0;
    for (auto e: v1)
    {
        sum += e;
    }

    return 0;
}

On parcourt v1 “à la main” et 
on affiche ses éléments
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Tableaux dynamiques

553. Types

#include <vector>

int main()
{
    auto v1 = std::vector<int> {0,1,2};

    v1.emplace_back(4);
    v1.emplace_back(5);

    auto size = v1.size();
    for (unsigned i = 0; i<size; ++i)
    {
        std::cout << v1[i]
    }

    auto sum = 0;
    for (auto e: v1)
    {
        sum += e;
    }

    return 0;
}

On parcourt v1 avec un “for each” et 
on calcule la somme de ses éléments
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Tableaux dynamiques

563. Types

#include <vector>

int main()
{
    auto v1 = std::vector<int> {0,1,2};

    v1.emplace_back(4);
    v1.emplace_back(5);

    auto size = v1.size();
    for (unsigned i = 0; i<size; ++i)
    {
        std::cout << v1[i]
    }

    auto sum = 0;
    for (auto e: v1)
    {
        sum += e;
    }

    return 0;
}

🤨 Des questions?
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Références

573. Types

#include <iostream>
#include <vector>

int main()
{
    auto a = 1;
    std::cout << a << std::endl; // 1

    auto& b = a;
    b = 3;
    std::cout << a << std::endl; // 3

    auto  vec = std::vector { 1, 2, 3 };
    auto& last = vec.back();
    last = 5;
    std::cout << vec[2] << std::endl; // 5

    return 0;
}

Une référence est un alias d’une 
variable, elle partage donc le 
même espace mémoire qu’elle.
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Références

583. Types

#include <iostream>
#include <vector>

int main()
{
    auto a = 1;
    std::cout << a << std::endl; // 1

    auto& b = a;
    b = 3;
    std::cout << a << std::endl; // 3

    auto  vec = std::vector { 1, 2, 3 };
    auto& last = vec.back();
    last = 5;
    std::cout << vec[2] << std::endl; // 5

    return 0;
}

Pour définir une référence, on place 
une esperluette (&) après le type.

Une référence est un alias d’une 
variable, elle partage donc le 
même espace mémoire qu’elle.
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Références

593. Types

#include <iostream>
#include <vector>

int main()
{
    auto a = 1;
    std::cout << a << std::endl; // 1

    auto& b = a;
    b = 3;
    std::cout << a << std::endl; // 3

    auto  vec = std::vector { 1, 2, 3 };
    auto& last = vec.back();
    last = 5;
    std::cout << vec[2] << std::endl; // 5

    return 0;
}

Une référence est un alias d’une 
variable, elle partage donc le 
même espace mémoire qu’elle.

Quand on modifie l’une l’autre est modifiée.
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Références

603. Types

#include <iostream>
#include <vector>

int main()
{
    auto a = 1;
    std::cout << a << std::endl; // 1

    auto& b = a;
    b = 3;
    std::cout << a << std::endl; // 3

    auto  vec = std::vector { 1, 2, 3 };
    auto& last = vec.back();
    last = 5;
    std::cout << vec[2] << std::endl; // 5

    return 0;
}

Une référence est un alias d’une 
variable, elle partage donc le 
même espace mémoire qu’elle.

Quand on modifie l’une l’autre est modifiée.
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Références

613. Types

#include <iostream>
#include <vector>

int main()
{
    auto a = 1;
    std::cout << a << std::endl; // 1

    auto& b = a;
    b = 3;
    std::cout << a << std::endl; // 3

    auto  vec = std::vector { 1, 2, 3 };
    auto& last = vec.back();
    last = 5;
    std::cout << vec[2] << std::endl; // 5

    return 0;
}

Une référence est un alias d’une 
variable, elle partage donc le 
même espace mémoire qu’elle.

🤨 Des questions?
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Références constantes

623. Types

int main()
{
    const auto const_var = 1;
    const_var = 3; // invalide

    auto        mutable_var = 1;
    const auto& const_ref   = mutable_var;
    const_ref = 3; // invalide

    return 0;
}

Pour définir une variable ou une 
référence constante, on place const sur 
le type.

Avantages :
● Facilite le debug (si c’est constant, 

c’est que ça ne changera pas)
● Facilite la compréhension du code.

Inconvénient :
● Verbeux, donc il faut s’habituer à la 

lecture.
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Référence pendante (dangling reference)

int main()
{
    auto v1 = std::vector<std::string> {"Hello","World"};
    auto& ref = v1[1];

    v1[1] = "Universe";
    std::cout << ref << std::endl; // Universe

    v1.emplace_back("My");
    v1.emplace_back("Name");
    v1.emplace_back("is");
    v1.emplace_back("World");

    std::cout << ref << std::endl; // ???
}

63
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Référence pendante (dangling reference)

int main()
{
    auto v1 = std::vector<std::string> {"Hello","World"};
    auto& ref = v1[1];

    v1[1] = "Universe";
    std::cout << ref << std::endl; // Universe

    v1.emplace_back("My");
    v1.emplace_back("Name");
    v1.emplace_back("is");
    v1.emplace_back("World");

    std::cout << ref << std::endl; // ???
}

64

ref est un alias vers la 
case 1 de v
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Référence pendante (dangling reference)

int main()
{
    auto v1 = std::vector<std::string> {"Hello","World"};
    auto& ref = v1[1];

    v1[1] = "Universe";
    std::cout << ref << std::endl; // Universe

    v1.emplace_back("My");
    v1.emplace_back("Name");
    v1.emplace_back("is");
    v1.emplace_back("World");

    std::cout << ref << std::endl; // ???
}

65

On modifie la case référencée, 
et on l’affiche

Aucun problème : c’est bien la 
nouvelle valeur qui s’affiche
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Référence pendante (dangling reference)

int main()
{
    auto v1 = std::vector<std::string> {"Hello","World"};
    auto& ref = v1[1];

    v1[1] = "Universe";
    std::cout << ref << std::endl; // Universe

    v1.emplace_back("My");
    v1.emplace_back("Name");
    v1.emplace_back("is");
    v1.emplace_back("World");

    std::cout << ref << std::endl; // ???
}

66

On ajoute des élément à v. 
Il a peut-être été 
déplacé.

Question: vers quoi pointe ref?
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Référence pendante (dangling reference)

int main()
{
    auto v1 = std::vector<std::string> {"Hello","World"};
    auto& ref = v1[1];

    v1[1] = "Universe";
    std::cout << ref << std::endl; // Universe

    v1.emplace_back("My");
    v1.emplace_back("Name");
    v1.emplace_back("is");
    v1.emplace_back("World");

    std::cout << ref << std::endl; // ???
}

67

🤨 Des questions?
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1. Présentation du module.
2. Hello, World!
3. Types.
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a. Définir une fonction.
b. Surcharger une fonction.
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Définir une fonction

694. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
    auto count = size_t { 0 };
    for (auto l: words)
    {
        if (l == letter)
        {
            ++count;
        }
    }
    return count;
}
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Définir une fonction

704. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
    auto count = size_t { 0 };
    for (auto l: words)
    {
        if (l == letter)
        {
            ++count;
        }
    }
    return count;
}

Type de retour.
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Définir une fonction

714. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
    auto count = size_t { 0 };
    for (auto l: words)
    {
        if (l == letter)
        {
            ++count;
        }
    }
    return count;
}

Identifiant de la fonction.



Victor Marsault • 2025-2026

Définir une fonction

724. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
    auto count = size_t { 0 };
    for (auto l: words)
    {
        if (l == letter)
        {
            ++count;
        }
    }
    return count;
}

Paramètres de la fonction.
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Définir une fonction

734. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
    auto count = size_t { 0 };
    for (auto l: words)
    {
        if (l == letter)
        {
            ++count;
        }
    }
    return count;
}

Passage de paramètre par copie

Passage de paramètre par 
référence constante
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Définir une fonction

744. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
    auto count = size_t { 0 };
    for (auto l: words)
    {
        if (l == letter)
        {
            ++count;
        }
    }
    return count;
}

Corps de la fonction.
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Surcharger une fonction

754. Fonctions libres

Vocabulaire :
● Signature — Identifiant + Types des paramètres.
● Surcharge (ou overloading) — Définir une fonction avec le même identifiant 

qu’une autre, mais une signature différente.
● Prototype — Signature + type de retour

La surcharge est possible si au moins l’une de ces conditions est vérifiée :
● Le nombre de paramètres est différent.
● La succession des types de paramètres est différente.
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Surcharger une fonction

764. Fonctions libres

Vocabulaire :
● Signature — Identifiant + Types des paramètres.
● Surcharge (ou overloading) — Définir une fonction avec le même identifiant 

qu’une autre, mais une signature différente.
● Prototype — Signature + type de retour

La surcharge est possible si au moins l’une de ces conditions est vérifiée :
● Le nombre de paramètres est différent.
● La succession des types de paramètres est différente.

🤨 Des questions?
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Surcharger une fonction

774. Fonctions libres

void print_sum(int e1, int e2)
{
    std::cout << e1 + e2 << std::endl;
}

void print_sum(int e1, int e2, int e3)
{
    std::cout << e1 + e2 + e3 << std::endl;
}

void print_sum(const std::string& e1, const std::string& e2)
{
    std::cout << e1 + e2 << std::endl;
}



Victor Marsault • 2025-2026

Passage de paramètres

784. Fonctions libres

int sum(int v1, int v2)
{
    v1 += v2;
    return v1;
}

int main()
{
    auto v1 = 3;
    auto v2 = 5;
    std::cout << sum(v1, v2) << std::endl; // 8
    std::cout << v1 << std::endl;          // 3

    return 0;
}

Passage par valeur (ou par copie)
➔ L’argument est copié au moment de l’appel.

Cet appel ne modifie pas le 
v1 dans main
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Passage de paramètres

794. Fonctions libres

int sum(int& v1, int v2)
{
    v1 += v2;
    return v1;
}

int main()
{
    auto v1 = 3;
    auto v2 = 5;
    std::cout << sum(v1, v2) << std::endl; // 8
    std::cout << v1 << std::endl;          // 8

    return 0;
}

Passage par référence.
➔ On crée un alias sur l’argument au moment de l’appel.

Cet appel modifie v1
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Passage de paramètres

804. Fonctions libres

Passage par référence constante.
➔ On crée un alias non-mutable sur l’argument au moment de l’appel.

std::string append5(const std::string& v1)
{
    return v1 + std::string{"five"};
}

int main()
{
    auto v1 = std::string { "three" };
    std::cout << append5(v1) << std::endl; // threefive
    std::cout << v1 << std::endl;          // three

    return 0;
} Dans le corps de append5, tout 

ce qui modifie v1 est interdit !
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Passage de paramètres

814. Fonctions libres

L’argument doit être modifié ?

Passage par 
référence.

L’argument est rapide à copier ?

Passage par 
valeur.

Passage par 
référence 
constante.

Oui Non

Oui Non
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Passage de paramètres

824. Fonctions libres

L’argument doit être modifié ?

Passage par 
référence.

L’argument est rapide à copier ?

Passage par 
valeur.

Passage par 
référence 
constante.

Oui Non

Oui Non

🤨 Des questions?
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Définir une classe

845. Classes

#include <string>

class Student
{
public:
    std::string   name;
    int           age = 0;
};

int main()
{
    auto student = Student {};
    student.name = "David";
    student.age = 22;

    return 0;
}
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Définir une classe

855. Classes

#include <string>

class Student
{
public:
    std::string   name;
    int           age = 0;
};

int main()
{
    auto student = Student {};
    student.name = "David";
    student.age = 22;

    return 0;
}

Nom de la classe.

Attributs de la classe.

Le constructeur par défaut est appelé
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Définir une classe

865. Classes

#include <string>

class Student
{
public:
    std::string   name;
    int           age = 0;
};

int main()
{
    auto student = Student {};
    student.name = "David";
    student.age = 22;

    return 0;
}

Oubli du modificateur  public
error: '<attribute>' is private within this context

Attention aux oublis !
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Définir une classe

875. Classes

#include <string>

class Student
{
public:
    std::string   name;
    int           age = 0;
};

int main()
{
    auto student = Student {};
    student.name = "David";
    student.age = 22;

    return 0;
}

Oubli du point-virgule (;)
error: expected ';' after class definition

Attention aux oublis !
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Définir une classe

885. Classes

#include <string>

class Student
{
public:
    std::string   name;
    int           age = 0;
};

int main()
{
    auto student = Student {};
    student.name = "David";
    student.age = 22;

    return 0;
}

Non initialisation des attributs de types 
fondamentaux.
Undefined behavior (à l’exécution)

Attention aux oublis !
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Définir une classe

895. Classes

#include <string>

class Student
{
public:
    std::string   name;
    int           age = 0;
};

int main()
{
    auto student = Student {};
    student.name = "David";
    student.age = 22;

    return 0;
}

🤨 Des questions?
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Définir des fonctions-membres

905. Classes

class Student
{
public:
    void set_attributes( const std::string& name,

              int                age)
    {
        m_name = name;
        m_age  = age; 
    }

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    auto student = Student {};
    student.set_attributes( "David",22);
    student.print();
    return 0;
}
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Définir des fonctions-membres

915. Classes

class Student
{
public:
    void set_attributes( const std::string& name,

              int                age)
    {
        m_name = name;
        m_age  = age; 
    }

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    auto student = Student {};
    student.set_attributes( "David",22);
    student.print();
    return 0;
}

Indique que la fonction 
ne modifie pas les 
attributs de l’instance.
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Définir un constructeur

925. Classes

class Student
{
public:
    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    auto student = Student {"David", 22};
    student.print();
    return 0;
}
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Définir un constructeur

935. Classes

class Student
{
public:
    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    auto student = Student {"David", 22};
    student.print();
    return 0;
}

Un constructeur a des 
paramètres comme une fonction
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Définir un constructeur

945. Classes

int main()
{
    auto student = Student {"David", 22};
    student.print();
    return 0;
}

Un constructeur a des 
paramètres comme une fonction

Et s’appelle comme ceci

class Student
{
public:
    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};
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Définir un constructeur

955. Classes

La liste d’initialisation 

int main()
{
    auto student = Student {"David", 22};
    student.print();
    return 0;
}

class Student
{
public:
    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};
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Définir un constructeur

965. Classes

La liste d’initialisation 
permet d’initialiser les 
attributs

int main()
{
    auto student = Student {"David", 22};
    student.print();
    return 0;
}

class Student
{
public:
    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};
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Définir un constructeur

975. Classes

int main()
{
    auto student = Student {"David", 22};
    student.print();
    return 0;
}

🤨 Des questions?

class Student
{
public:
    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};
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Implémentation par défaut du constructeur par défaut

985. Classes

class Student
{
public:
    Student() = default;

    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    const auto david = Student { "David", 22 };
    david.print();

    const auto default_student = Student {};
    default_student.print();

    return 0;
}
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Implémentation par défaut du constructeur par défaut

995. Classes

class Student
{
public:
    Student() = default;

    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    const auto david = Student { "David", 22 };
    david.print();

    const auto default_student = Student {};
    default_student.print();

    return 0;
}

Si on écrit un constructeur, le 
compilateur ne génère plus le 
constructeur par défaut
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Implémentation par défaut du constructeur par défaut

1005. Classes

class Student
{
public:
    Student() = default;

    Student(const std::string& name, int age)
        : m_name { name }
        , m_age { age }
    {}

    void print() const
    {
        std::cout << "Student called "  << m_name
                  << " is " << m_age << " years old"
                  << std::endl;
    }

private:
    std::string m_name;
    int         m_age = 0;
};

int main()
{
    const auto david = Student { "David", 22 };
    david.print();

    const auto default_student = Student {};
    default_student.print();

    return 0;
}

Rétablit l’implémentation 
par défaut du constructeur 
par défaut.
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Définir un opérateur de flux ami

1015. Classes

class Student
{
public:
  Student(const std::string& name, int age)
    : m_name { name }
    , m_age { age }
  {}

  friend std::ostream& operator<<(std::ostream& stream,
                                  const Student& student)
  {
    stream << "Student called "  << student.m_name
           << " is " << student.m_age << " years old.";
    return stream;
  }

private:
  std::string m_name;
  int         m_age = 0;
};

int main()
{
  const auto student = Student { "David",22 };
  std::cout << student << std::endl;
  return 0;
}
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Définir un opérateur de flux ami

1025. Classes

class Student
{
public:
  Student(const std::string& name, int age)
    : m_name { name }
    , m_age { age }
  {}

  friend std::ostream& operator<<(std::ostream& stream,
                                  const Student& student)
  {
    stream << "Student called "  << student.m_name
           << " is " << student.m_age << " years old.";
    return stream;
  }

private:
  std::string m_name;
  int         m_age = 0;
};

int main()
{
  const auto student = Student { "David",22 };
  std::cout << student << std::endl;
  return 0;
}

Ceci définit cela
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Définir un opérateur de flux ami

1035. Classes

class Student
{
public:
  Student(const std::string& name, int age)
    : m_name { name }
    , m_age { age }
  {}

  friend std::ostream& operator<<(std::ostream& stream,
                                  const Student& student)
  {
    stream << "Student called "  << student.m_name
           << " is " << student.m_age << " years old.";
    return stream;
  }

private:
  std::string m_name;
  int         m_age = 0;
};

int main()
{
  const auto student = Student { "David",22 };
  std::cout << student << std::endl;
  return 0;
}

Spécifie que la fonction est amie, c’est-à-dire 
peut accéder aux champs privés
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class Student
{
public:
  Student(const std::string& name, int age)
    : m_name { name }
    , m_age { age }
  {}

  friend std::ostream& operator<<(std::ostream& stream,
                                  const Student& student)
  {
    stream << "Student called "  << student.m_name
           << " is " << student.m_age << " years old.";
    return stream;
  }

private:
  std::string m_name;
  int         m_age = 0;
};

Définir un opérateur de flux ami

1045. Classes

⚠ Attention !

Une fonction amie est une fonction libre. Il faut 
donc lui passer une instance en paramètre pour 
accéder à ses membres (attributs et méthodes)
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Définir un opérateur de flux ami

1055. Classes

class Student
{
public:
  Student(const std::string& name, int age)
    : m_name { name }
    , m_age { age }
  {}

  friend std::ostream& operator<<(std::ostream& stream,
                                  const Student& student)
  {
    stream << "Student called "  << student.m_name
           << " is " << student.m_age << " years old.";
    return stream;
  }

private:
  std::string m_name;
  int         m_age = 0;
};

int main()
{
  const auto student = Student { "David",22 };
  std::cout << student << std::endl;
  return 0;
}

🤨 Des questions?
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Statique vs Dynamique

● Statique = au moment de la compilation 
○ Le mot-clef static n’a rien à voir

Ex:  La taille d’un entier est connue statiquement (32 ou 64 bit)

○ Dès lors qu’on alloue quelque chose sur la pile (variable), on doit 
connaître sa taille statiquement

● Dynamique = au moment de l'exécution
Ex:  Le nombre d’éléments dans un tableau dynamique n’est pas connu à la 
compilation

○ Allocation dynamique = allocation sur le tas (malloc ou new)

107Allocation dynamique
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Allocation dynamique

int main()
{
   auto words = std::vector<std::string>{};

while (true) {
   auto name = std::string {};
   std::cin >> name;

words.emplace_back(name);
}

}

108Gestion de la mémoire
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Cycle de vie

Un objet est
● alloué  ⟶ un segment de mémoire est attribué

○ ≈ malloc

● construit  ⟶ un constructeur est appelé pour remplir ce segment

…

● détruit  ⟶ un destructeur est appelée pour nettoyer
● désalloué  ⟶ la mémoire est rendu disponible

○ ≈ free

109Gestion de la mémoire
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Cycle de vie

Un objet est
● alloué  ⟶ un segment de mémoire est attribué

○ ≈ malloc 

● construit  ⟶ un constructeur est appelé pour remplir ce segment

…

● détruit  ⟶ un destructeur est appelée pour nettoyer
● désalloué  ⟶ la mémoire est rendu disponible

○ ≈ free

110Gestion de la mémoire

Il ne faut utiliser l’objet que 
pendant cette période

Une et une seule fois 
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Ownership (propriété?)

Problème: Gérer la mémoire est difficile !
● Fuite mémoire 
● Double désallocation
● Dangling référence/pointeurs

Dans la plupart des autres langages: gestion automatique via un garbage collector 

En C++: gestion semi-automatique via l’ownership
● On indique clairement qui a la charge de désallouer quoi  

○ Usuellement indiqué dans le type
○ On sait si un objet own un autre objet ou s’il l’observe

● Destruction automatique des ressources owned

● On n’observe que des ressources qui ont une durée de vie plus longue

111Gestion de la mémoire
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Ce qu’on va apprendre dans le segment 1

● Les types fondamentaux du C++ (int, bool,...)

● Quelques types de la bibliothèques standard (std::string, std::vector)

● Comprendre et corriger les messages d’erreurs les plus courants

● Bases des classes (membres, constructeurs, destructeurs)

● Copie  vs  Réference  vs  Référence constante  vs  Pointeurs

● Bases de la gestion de mémoire (Allocation, durée de vie, ownership)
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