

., Université
Do (

Gustave Eiffel

Sommaire

Présentation du module
Hello World!

Types

Fonctions libres

Classes

Gestion de la mémoire

A A

2 Victor Marsault ® 2025-2026

., Université

Sommaire)2 Gustave Eiffel

1. Présentation du module.
a. Intervenants
b. Déroulement du module
c. Outils & ressources

Hello, World!

Types.

Fonctions libres.
Classes.

Gestion de la mémoire

OOk

K] Victor Marsault ® 2025-2026

Intervenants et

Les enseignants de C++ sont:
e Henri Derycke (TP Apprentis GR3) — henri.derycke@univ-eiffel.fr
e Anthony Labarre (TP Initiaux GR1) — anthony.labarre@univ-eiffel.fr
e Victor Marsault (CM & TP Initiaux GR2) — victor.marsault@univ-eiffel.fr

Vous pouvez hous contacter par mail mais aussi sur Discord.

e Lessupports du cours ont principalement été écrit par Céline Noél

1. Présentation du module 4 Victor Marsault ® 2025-2026

Contenu du module >Z< g:is\fc:/?éiffel

Séance supervisées:
e 3 cours magistraux pour présenter les segments
e 11séances de TPs

Travail en autonomie:

e 9 chapitres sur le site web du cours :
> Questionnaire a la fin de chaque chapitre pour vérifier que vous avez compris
> Possibilité de I'envoyer a votre encadrant de TP qui vous fera un retour

e 1TP de révision a réaliser en autonomie
e 2 a 3 heures par semaine

1. Présentation du module Victor Marsault ® 2025-2026

Modalités d'évaluation et

Controdle continu:
e TP noté de 2h a %5 du semestre (coef 2)
e TP noté de 2h a % du semestre (coef 2)
e TP noté final de 3h (coef 3)

Rattrapage: TP noté de 3h qui remplace la plus faible des trois notes !

Modalités:
e Ultilisation du mode exam donc pas d’acces a internet
e Acceés au site du cours et a la documentation du standard C++
e Tests automatiques

1. Présentation du module Victor Marsault ® 2025-2026

Déroulement du module

S1

CM

Chapitre a lire

TP

S2

Chapitre a lire

TP

S3

Chapitre a lire

TP

S4

TP de révision

TP Noté

— En autonomie

1. Présentation du module

S5 CM

Chapitre a lire
S6 .

TP

Chapitre a lire
S7

TP

Chapitre a lire
S8

TP

TP de révision
S9

(]
r o

S10

CM

S11

Chapitre a lire

TP

S12

Chapitre a lire

TP

TP Note

-

S13

Chapitre a lire

TP

S14

Révisions

S15

TP Noté final

Victor Marsault ® 2025-2026

)V(Université
Gustave Eiffel

Outils & Ressources et

Ressources du cours:

e Sife web du cours avec des exercices d'entrainement
e Miroir local de la documentation du standard C++

e Deépdt qit des Tps

Pour tester des snippefs de code .
-> Compiler Explorer sur godbolt

Pour développer des projets :

o MisuvatStoate-Ccode Visual Studio Codium
e CMake

o Gif

1. Présentation du module 8 Victor Marsault ® 2025-2026

Outils & Ressources et

Ressources du cours:

e Sife web du cours avec des exercices d'entrainement
e Miroir local de la documentation du standard C++

e Deépdt qit des Tps

Pour tester des snippefs de code .
-> Compiler Explorer sur godbolt

Pour développer des projets :
o MisualStodie-Ceode Visual Studio Codium

e CMake Certaines parties du site
o G it M et des TPs pourraient ne

pas étre a jour

1. Présentation du module 9 Victor Marsault ® 2025-2026

Quelgues avertissements)2C Gustave Eiffe

e Les notes ne sont pas entierement compensables
> Le TP noté de rattrapage ne remplace qu’une seule note

e Le systeme de test automatique est assez punitifs
> Un test ne passe passe pas ne vaut généralement pas de points

e La difficulté augmente avec le temps
> Le TPN1 est plus facile

e La référence du cours est le site web et pas le CM
> Si vous ne lisez pas les chapitres, il vous manquera des notions

1. Présentation du module 10 Victor Marsault ¢ 2025-2026

Quelgues avertissements)2C Gustave Eiffe

e Les notes ne sont pas entierement compensables
> Le TP noté de rattrapage ne remplace qu’une seule note

e Le systeme de test automatique est assez punitifs
> Un test ne passe passe pas ne vaut généralement pas de points

e La difficulté augmente avec le temps
> Le TPN1 est plus facile

e La référence du cours est le site web et pas le CM
> Si vous ne lisez pas les chapitres, il vous manquera des notions

Travaillez tout au long du semestre

1. Présentation du module Victor Marsault ® 2025-2026

Avant de continuer...)2 o el

2 des questions sur le deroulement du module 7

1. Présentation du module Victor Marsault ® 2025-2026

Sommaire >Z< g:is\:c:/itéiffel

1. Présentation du module
2. Hello, World!

a. Le C++, c’est quoi?

b. Fonctionmain

c. Afficher du texte dans la console

d. Compiler avec ou sans CMakeLists.txt
e. Lire du texte depuis la console

f. Utiliser les arguments du programme

3. Types

4. Fonctions libres

5. Classes

6. Gestion de la mémoire

13 Victor Marsault ® 2025-2026

Le C++, c'est quoi ¢)2 Gustave Eiffel

Le C++ est un langage de programmation...

e Compilé
-> Donc rapide & I'exécution.

e Orienté-objet
= Donc on peut architecturer des gros projets sans avoir trop envie de mourir.

e Générique
- Donc on peut facilement limiter le copier-coller d'algorithmes pour supporter différents types.

e Bien documenté
- Standard actif et grande base d’utilisateurs |

1. Hello, World! Victor Marsault ® 2025-2026

Le C++, c'est quoi ¢)2 Gustave Eiffel

Le C++ est un langage de programmation...

e Compilé
-> Donc rapide & I'exécution.

e Orienté-objet
= Donc on peut architecturer des gros projets sans avoir trop envie de mourir.

e Générique
- Donc on peut facilement limiter le copier-coller d'algorithmes pour supporter différents types.

e Bien documenté
- Standard actif et grande base d’utilisateurs |

‘e Quasi-rétro-compatible avec le C :
: - Coexistence de types C et C++ : '
| |
1 |

= La syntaxe pour les concepts modernes pique un peu les yeux au début

1. Hello, World! Victor Marsault ® 2025-2026

Fonction main) anversite

Gustave Eiffel

ldentifiant — main

Arguments — () ou (int argc, char** argv)
Type de refour — int

int main ()

{

return O;

2. Hello, World!

Victor Marsault ® 2025-2026

Afficher du texte dans la console ys (Universite

Gustave Eiffel

(]
r o

#include <iostream>

int main ()
{

std: :cout << "Hello World!" << std::endl;
return O;

2. Hello, World!

Victor Marsault ® 2025-2026

Afficher du texte dans la console et

Donne acces aux symboles déclarés dans
la section I/O (Input/Output, i.e.
T T Entrées/Sorties) de la librairie standard.

2. Hello, World! Victor Marsault ® 2025-2026

Afficher du texte dans la console et

—————— ————-=

:stdzﬁcout << "Hello World!"™ <<:std:qendl;
l J

_____ =

Cible les symboles du
namespace std (librairie
standard)

2. Hello, World! Victor Marsault ® 2025-2026

Afficher du texte dans la console et

Sortfie standard.

std: :dlcout, << "Hello World!" << std::endl;

Saut de ligne + flush.

2. Hello, World! Victor Marsault ® 2025-2026

Pour compiler, depuis un terminal :

gt++ —-std=c++17 hello-world.cpp -o hello-world

Puis, pour exécuter :

./hello-world

Pour compiler,"depuis un terminal :

A\

Ajou’rer un CMakel.ists.txt et

cmake minimum required(VERSION 3.16)
project (cours-1)

add executable (hello-world
hello-world.cpp

)

target compile features (hello-world PRIVATE cxx std 17)
target compille options (hello-world PRIVATE

-Wall

-Wextra

—-Werror

2. Hello, World! Victor Marsault ® 2025-2026

A\

Ajou’rer un CMakel.ists.txt et

‘ Permet de générer un exécutable.

add executable (hello-world
hello-world.cpp

)

2. Hello, World! Victor Marsault ® 2025-2026

A\

Ajou’rer un CMakel.ists.txt et

‘ Nom de I'exécutable.

add executable (hello-world
hello-world.cpp

)

2. Hello, World! Victor Marsault ® 2025-2026

A\

Ajou’rer un CMakel.ists.txt et

Liste des sources.

add executable (hello-world

hello-world.cpp «
)

2. Hello, World! Victor Marsault ® 2025-2026

Ajou’rer un CMakel.ists.txt et

Permet de sélectionner un set de
fonctionnalités pour le langage.

¥

target compile features(hello-world PRIVATE cxx std 17)

2. Hello, World! Victor Marsault ® 2025-2026

A\

Ajou’rer un CMakel.ists.txt et

C++ 17

4

target compile features(hello-world PRIVATE cxx std 17)

2. Hello, World! Victor Marsault ® 2025-2026

Ajou’rer un CMakel.ists.txt et

Permet de passer des options au
compilateur lors de la phase de
compilation.

¥

target compille options (hello-world PRIVATE
-Wall
-Wextra
-Werror

2. Hello, World! Victor Marsault ® 2025-2026

Ajou’rer un CMakel.ists.txt et

Active un premier set de warnings.

target compille options (hello-world PRIVATE
-Wall
-Wextra
-Werror

2. Hello, World! Victor Marsault ® 2025-2026

Ajou’rer un CMakel.ists.txt et

Active un second set de warnings.

target compille options (hello-world PRIVATE
-Wall

» -Wextra

-Werror

)

2. Hello, World! Victor Marsault ® 2025-2026

Ajou’rer un CMakel.ists.txt et

Considere les warnings comme des
erreurs.

target compille options (hello-world PRIVATE
-Wall
-Wextra

» -Werror

)

2. Hello, World! Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Lire du texte depuis la console

#include <iostream>
#include <string>

int main ()

{
std: :cout << "What's your name? " << std::endl;

auto name = std::string {};
std::cin >> name;

std::cout << "Hello " << name << std::endl;
return 0O;

2. Hello, World! Victor Marsault ® 2025-2026

Lire du texte depuis la console)2 Gustave Eiffel

Constfruit une instance
de fype std::string

2. Hello, World! Victor Marsault ® 2025-2026

Lire du texte depuis la console)2 Gustave Eiffel

Type déduit de ce qu'ily
a 4 droite du symbole =

' auto name = std::string {};

2. Hello, World! Victor Marsault ® 2025-2026

Lire du texte depuis la console)2 Gustave Eiffel

Entrée standard.

i 1
std:h01n|>> name;

| I |

2. Hello, World! Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Lire du texte depuis la console

#include <iostream> > .
#include <string> Des questions?

int main ()

{
std: :cout << "What's your name? " << std::endl;

auto name = std::string {};
std::cin >> name;

std::cout << "Hello " << name << std::endl;
return 0O;

2. Hello, World! Victor Marsault ® 2025-2026

Utiliser les arguments du programme)2 Gustave Eiffel

#include <iostream>

int main(int argc, char** argv)
{
if (argc !'= 2u)
{
std::cerr << "Program expects one argument: "
<< (argc - 1)
<< " were given." << std::endl;
return -1;

}

std::cout << "Hello " << argv[l] << std::endl;
return 0O;

2. Hello, World! Victor Marsault ® 2025-2026

Utiliser les arguments du programme)2 Gustave Eiffel

/—6\) Chemin de I'exécutable,
F--=-—-==- F--------L-- puis arguments.

int ma1n01nt argc;'char** argvo

————————————

Nombre d’'arguments
(+ 1 pour le chemin de I'exécutable)

2. Hello, World! Victor Marsault ® 2025-2026

A\

Utiliser les arguments du programme)2 Gustave Eiffel

Sortie d'erreurs.

std: icerr: << "Program expects one argument: "
m << (argc - 1)
<< " were given." << std::endl;

2. Hello, World! Victor Marsault ® 2025-2026

)V< Université

2\ Gustave Eiffel

Utiliser les arguments du programme

#include <iostream> Des questions?

int main(int argc, char** argv)
{
if (argc !'= 2u)

{

std::cerr << "Program expects one argument:

<< (argc - 1)
<< " were given." << std::endl;

return -1;

}

std::cout << "Hello " << argv[l] << std::endl;
return 0O;

Victor Marsault ® 2025-2026

2. Hello, World!

Som mC“re)V< Université

Gustave Eiffel

(]
r o

1. Présentation du module.
2. Hello, World!

3. Types.
a. Types fondamentaux.
b. Définition de variables avec auto.
c. Chaines de caracteres.
d. Tableaux dynamiques.
e. Références.

f. Variables et références constantes.
4. Fonctions libres.

Classes.
6. Cycle de vie et Ownership

.

42 Victor Marsault ® 2025-2026

A\

Types fondamentaux yo(Jniversite

Les types hérités du C :

e Typesentiers: int, short, long, unsigned int, ...
o Typesflottants : f1oat, double.

e Types character: char, unsigned char.

Mais aussi :
e Type booléen : bool.
e Types entiers de taille fixe : int8 t, uint32 t, ...
o Typetaille:size t.

3. Types 43 Victor Marsault © 2025-2026

Définition de variables avec auto

., Université
Do (

Gustave Eiffel

auto
auto
auto
auto
auto
auto
auto

3. Types

int value = 3;

unsigned value = 3u;

float value = 3.f;

double value = 3.0;

size value = size t { 3 };
return value = fcn();
mavar = MaClasse{};

44

Victor Marsault ® 2025-2026

A\

Définition de variables avec auto et

Avantages .
e Variables de types fondamentaux sont nécessairement initialisées.
int a; // Ici la valeur de a est n’importe quoi

e Pas de duplication dans le code (refactoring plus rapide)
MaClasse a = mafonction ()

e Meilleure lisibilité quand les types sont complexes (templates)

Inconvénient :
e Sionn'apas d'IDE, il est nécessaire de fouiller un peu et d'aller
chercher le type de retour des fonctions pour connaitre celui des
variables.

3. Types 45 Victor Marsault © 2025-2026

Chaines de caractéres et

#include <string>

int main ()

{
auto empty str = std::string { "" };

auto pouet = std::string { "pouet" };
auto size = pouet.length();

auto c0 = pouet.front();

auto c3 = pouet[3];

auto big pouet = std::string {};
for (auto c: pouet)
{

big pouet += std::toupper(c);

auto half pouet = pouet.substr (0, pouet.length() / 2);

return 0;

Victor Marsault ® 2025-2026

Chaines de caractéres et

#include <string>

| | r\ (9 Chaine de caractére C ;: char*
int main ()
{

——
auto empty str = std::string { [""I};
auto pouet = std::string { FéBGéEFI
auto size = pouet.length(); -
auto c0 = pouet.front();

auto c3 = pouet[3];

auto big pouet = std::string {};
for (auto c: pouet)

{
big pouet += std::toupper(c);
}
auto half pouet = pouet.substr (0, pouet.length() / 2);

return 0;

Victor Marsault ® 2025-2026

Chaines de caractéres et

#include <string>

int main ()
{ . \
auto empty str = std: :string:{ "y @ Chaine de caractére C++:

auto pouet =rsEd__s_t;1?1g_| { "pouet" }; Std: :Strlng
auto size = pouet.length():

auto c0 = pouet.front();

auto c3 = pouet[3];

auto big pouet =Istd::stringl {};

for (auto c: pouet)

{
big pouet += std::toupper(c);
}
auto half pouet = pouet.substr (0, pouet.length() / 2);

return 0;

Victor Marsault ® 2025-2026

Chaines de caractéres et

#include <string>

int main ()

{
auto empty str = std::string { "" };

auto pouet = std :string ‘ "pouet" };

auto size = poueﬁ.length(); .. .
auto o0 = pouet.FrstiT)s ~ Les std::string sont des
auto c3 = pouet[3]; ObjetS

auto big pouet = std::string {};
for (auto c: pouet)

{

big_pouet:+=:std::toupper(c);
} -

auto half pouet = poueﬁ substr 0, pouet.length() / 2);

return 0;

Victor Marsault ® 2025-2026

Chaines de caracteres yx(Universits

Gustave Eiffel

#include <string> : .
it main) Des questions?

{
auto empty str = std::string { "" };

auto pouet = std::string { "pouet" };
auto size = pouet.length();

auto c0 = pouet.front();

auto c3 = pouet[3];

auto big pouet = std::string {};
for (auto c: pouet)
{

big pouet += std::toupper(c);
}

auto half pouet = pouet.substr (0, pouet.length() / 2);

return 0;

Victor Marsault ® 2025-2026

Tableaux dynamiques)2 Gt €

Gustave Eiffel

#include <vector>

int main()
{
auto vl = std::vector<int> {0,1,2};

vl.emplace back{);
vl.emplace back(®);

auto size = vl.size();
for (unsigned 1 = 0; i<size; ++1i)
{
std::cout << v1[i]
}

auto sum = 0;
for (auto e: vl)
{

sum += e;

}

return 0O;

Victor Marsault ® 2025-2026

Tableaux dynamiques)2 Gt €

Gustave Eiffel

#include <vector>

ot main() On crée un vecteur avec 3 éléments

U
:;uto vl = std::vector<int> {0,1,2}; |\\\//\\\\\\\\\—//////////1
———————————————————— o

vl.emplace back(®);

auto size = vl.size();
for (unsigned 1 = 0; i<size; ++1i)
{
std::cout << v1[i]
}

auto sum = 0;
for (auto e: vl)

{
sum += e;

}

return 0O;

3. Types 52

Victor Marsault ® 2025-2026

Tableaux dynamiques)2 Gt €

Gustave Eiffel

#include <vector>

int main()
{
auto vl = std::vector<int> {0,1,2};

vi.emplace back@)7 | On ajoute 2 éléments en plus a la
e fin du tableaux v1

auto size = vl.size();
for (unsigned 1 = 0; i<size; ++1i)

(L'emplacement mémoire de
std::cout << v1[i] . ,
} v1 peut avoir changé

auto sum = 0;
for (auto e: vl)
{

sum += e;

}

return 0O;

3. Types 53

Victor Marsault ® 2025-2026

Tableaux dynamiques)2 Gt €

Gustave Eiffel

#include <vector>

int main()
{
auto vl = std::vector<int> {0,1,2};

vl.emplace back{);
vl.emplace back(®);

lauto size = vl.size();
I for (unsigned i = 0; i<size; ++1i)
Iy
|

On parcourt v1 “ala main” et
____________________ on affiche ses éléments

std::cout << v1[i]

auto sum = 0;
for (auto e: vl)

{
sum += e;

}

return 0O;

Victor Marsault ® 2025-2026

Tableaux dynamiques)2 Gt €

Gustave Eiffel

#include <vector>

int main()
{

auto vl = std::vector<int> {0,1,2};

vl.emplace back{);
vl.emplace back(®);

auto size = vl.size();
for (unsigned 1 = 0; i<size; ++1i)
{

std::cout << vl1[i]

Jauto sum = 0;
| for (auto e: vl)

—
—~
— - —

o On parcourt v1 avec un “for each” et
return 0; on calcule la somme de ses éléments

3. Types 55 Victor Marsault © 2025-2026

Tableaux dynamiques)2 Gt €

Gustave Eiffel

#include <vector>

p— @ Des questions?

auto vl = std::vector<int> {0,1,2};

vl.emplace back{);
vl.emplace back(®);

auto size = vl.size();
for (unsigned 1 = 0; i<size; ++1i)
{
std::cout << v1[i]
}

auto sum = 0;
for (auto e: vl)
{

sum += e;

}

return 0O;

3. Types 56

Victor Marsault ® 2025-2026

Références >Z< gzis\fc:/sitéiffel

#include <iostream> Une référence est un alias d'une
#include <vector> .

variable, elle partage donc le
int main() méme espace mémoire qu’'elle.

{
auto a = 1;
std::cout << a << std::endl; // 1

auto& b = a;
b = 3;
std::cout << a << std::endl; // 3

auto vec = std::vector { 1, 2, 3 };
autod& last = vec.back();

last = 5;

std::cout << vec[2] << std::endl; // 5

return 0;

Victor Marsault ® 2025-2026

Références)= (g:is\:c:/s;téiffel

(]
r o

#include <iostream> Une référence est un alias d'une
#include <vector> .

variable, elle partage donc le
int main() méme espace mémoire qu’'elle.

{
auto a = 1;
std::cout << a << std::endl; // 1

Pour définir une référence, on place
autoé& b = a; .
b = 3; une esperluette (&) apres le type.

std::cout << a << std::endl; //45—’//////

auto [vec = std::vector { 1, 2, 3 };
autod& last = vec.back();

last = 5;

std::cout << vec[2] << std::endl; // 5

return 0;

3. Types 58 Victor Marsault © 2025-2026

Références >Z< g:is\:c:/sitéiffel

#include <iostream> Une référence est un alias d'une
#include <vector> .

variable, elle partage donc le
int main() méme espace mémoire qu’'elle.

{
auto a = 1;
std::cout << a << std::endl; // 1

auto& b = a; 4_‘Jf——’

b = 3; = 4—")
std::cout << a << std::endl; // 3 ==

Quand on modifie 'une I'autre est modifiée.

auto vec = std::vector { 1, 2, 3 };
autod& last = vec.back();

last = 5;

std::cout << vec[2] << std::endl; // 5

return 0;

3. Types 59 Victor Marsault © 2025-2026

Références >Z< g:is\:c:/sitéiffel

#include <iostream> Une référence est un alias d'une
#include <vector> .
variable, elle partage donc le
?nt main () méme espace mémoire qu’elle.
auto a = 1;
std::cout << a << std::endl; // I
autos b — a Quand on modifie 'une I'autre est modifiée.

b = 3;
std::cout << a << std::endl; // 3

auto vec = std::vector { 1, 2, 3 };
autod& last = vec.back();

last = 5; ==

std::cout << vec[2] << std::endl; // 5 <=

return 0;

Victor Marsault ® 2025-2026

Références >Z< gzis\fc:/sitéiffel

#include <iostream> Une référence est un alias d'une
#include <vector> .
variable, elle partage donc le

tot main() méme espace mémoire qu’elle.

auto a = 1;
std::cout << a << std::endl; // 1

auto& b = a;
b = 3;
std::cout << a << std::endl; // 3

auto vec = std::vector { 1, 2, 3 };
autod& last = vec.back();

last = 5;

std::cout << vec[2] << std::endl; // 5

return 0;

} @ Des questions?

Victor Marsault ® 2025-2026

)V(Université
Gustave Eiffel

(]
r o

Références constantes

Pour définir une variable ou une
réeférence constante, on place const sur

int main () |e 1- e.
{ yp
const auto const var = 1;
const _var = 3; // invalide Avcmiages .
-auto_ mutable_var = 1; e Facilite le debug (si c'est constant,
——>jconst autoé& const ref = mutable var;]
const cef - 3 /) invalide c'est que ¢a ne changera pas)
e Facilite la comprehension du code.
return O;
}
Inconvénient :
e Verbeux, donc il faut s’habituer a la
lecture.

3. Types 62 Victor Marsault © 2025-2026

Référence pendante (dangling reference))20 Guotava Eiffel

int main ()

{
auto vl = std::vector<std::string> {"Hello","World"};
auto& ref = v1[1l];

v1l[1l] = "Universe";
std::cout << ref << std::endl; // Universe

vl.emplace back("My");
vl.emplace back ("Name");
vl.emplace back("is");
vl.emplace back ("World");

std::cout << ref << std::endl; // 2?2°?

63 Victor Marsault ® 2025-2026

Référence pendante (dangling reference))20 Guotava Eiffel

int main () ref est un alias vers la
{ case 1de v

auto vl = std::vector<std::string> {"Hello","World"};

v1l[1l] = "Universe";
std::cout << ref << std::endl; // Universe

vl.emplace back("My");
vl.emplace back ("Name");
vl.emplace back("is");
vl.emplace back ("World");

std::cout << ref << std::endl; // 2?2°?

64 Victor Marsault ® 2025-2026

Référence pendante (dangling reference))20 Guotava Eiffel

int main ()

{

auto vl = std::vector<std::string> {"Hello","World"};
auto& ref = v1[1l];

On modifie la case référenceée,

:vl[l] = "Universe"; : e , .

Istd::cout << ref << std::endl; //: Universe : et on laffiche

vl.emplace back("My");

vl.emplace back ("Name");

vl.emplace back("is");

vl.emplace back ("World");

std::cout << ref << std::endl; // 227 Aucun prob|éme - ¢c’est bien la

nouvelle valeur qui s’affiche

65 Victor Marsault ® 2025-2026

Référence pendante (dangling reference))20 Guotava Eiffel

int main ()

{
auto vl = std::vector<std::string> {"Hello","World"};
auto& ref = v1[1l];

v1l[1l] = "Universe";
std::cout << ref << std::endl; // Universe

: On ajoute des eélément a v.
Ivl.emplace_back("My"); 1 . L
yvl.emplace back("Name"); : I1 a peUt_etre ete
Ivl.emplace back("is"); |

. (; |

: déplaceé.
Ivl emplace back "World"),I
{std::cout << ref << std:iendl; // 227 | : o
} ST T oo smooooos———-o- Question: vers quoi pointe ref?

66 Victor Marsault ® 2025-2026

Référence pendante (dangling reference))20 Guotava Eiffel

int main ()

{
auto vl = std::vector<std::string> {"Hello","World"};
auto& ref = v1[1l];

v1l[1l] = "Universe";
std::cout << ref << std::endl; // Universe

vl.emplace back("My");
vl.emplace back ("Name");
vl.emplace back("is");

(

vl.emplace back ("World");

std::cout << ref << std::endl; // 2?2°?

Des questions?

67 Victor Marsault ® 2025-2026

., Université
Do (

Sommaire

Gustave Eiffel

Présentation du module.
Hello, World!

Types.

Fonctions libres
a. Définir une fonction.
b. Surcharger une fonction.
c. Passage de parametres.

Classes.
6. Gestion de la mémoire

W -

o

68 Victor Marsault ® 2025-2026

Définir une fonction)2C Gt

Gustave Eiffel

void print sum(int el, int e2)
{
std::cout << el + e2 << std::endl;

size t count letter (const std::string& words, char letter)

{

auto count = size t { 0 };
for (auto 1: words)
{

if (1 == letter)

{

++count;

}

return count;

4. Fonctions libres

Victor Marsault ® 2025-2026

Définir une fonction et

:void print sum(int el, int e2)

Type de retour.

r——-- n
I size t lcount letter (const std::string& words, char letter)

4. Fonctions libres Victor Marsault ® 2025-2026

Définir une fonction et

void|print_sum(int el, int e2) Identifiant de la fonction.

1
size tl count letter (const std::stringé& words, char letter)
I R e

4. Fonctions libres Victor Marsault ® 2025-2026

Définir une fonction et

Parametres de la fonction.

size t count letter(const std::string& words, char letter)
- - | J Sy U GRS U RSSO U SR U U R U U ——

4. Fonctions libres Victor Marsault ® 2025-2026

Définir une fonction et

Passage de parametre par
référence constante

Passage de parametre par copie

4. Fonctions libres Victor Marsault ® 2025-2026

Définir une fonction 22C Guntova £

Gustave Eiffel

(]
r o

{
std: :cout << el + e2 << std::endl; }

auto count = size t { 0 };

for (auto 1l: words)

{ Corps de |la fonction.
if (1 == letter)
(>

++count;

}

}

return count;

4. Fonctions libres

Victor Marsault ® 2025-2026

Surcharger une fonction)2 ot

Gustave Eiffel

Vocabulaire :

e Signature — Identifiant + Types des parametres.

e Surcharge (ou overloading) — Définir une fonction avec le méme identifiant
qu'une autre, mais une signature différente.

e Prototype — Signature + type de retour

La surcharge est possible si au moins I'une de ces conditions est vérifiée :
e Le nombre de parametres est différent.

e La succession des types de parametres est différente.

4. Fonctions libres 75

Victor Marsault ® 2025-2026

Surcharger une fonction)2 ot

Gustave Eiffel

Vocabulaire :

e Signature — Identifiant + Types des parametres.

e Surcharge (ou overloading) — Définir une fonction avec le méme identifiant
qu'une autre, mais une signature différente.

e Prototype — Signature + type de retour

La surcharge est possible si au moins I'une de ces conditions est vérifiée :
e Le nombre de parametres est différent.

e La succession des types de parametres est différente.

Des questions?

4. Fonctions libres 76

Victor Marsault ® 2025-2026

Surcharger une fonction)2C Gustave Eiffe

(]
r o

void print sum (int el, 1int e2)

{
std::cout << el + e2 << std::endl;

void print sum (int el, 1int e2, int e3)

{
std::cout << el + e2 + e3 << std::endl;

void print sum (const std::stringé& el, const std::stringé& e2)

{
std::cout << el + e2 << std::endl;

4. Fonctions libres Victor Marsault ® 2025-2026

Passage de parametres)% Université

Gustave Eiffel

(]
r o

Passage par valeur (ou par copie)
- L'argument est copié au moment de I'appel.

int sum(int v1, int v2)
{

vl += v2;

return vl;

} Cet appel ne modifie pas le

int main () vl dans main
{

auto vl = 3;

auto v2 = 5;

F=======

std::cout << Fum(vl, v2) << std::endl;rA/_&

o
std::cout << vl << std::endl; v/ /31
o4

return 0;

4. Fonctions libres Victor Marsault ® 2025-2026

Passage de parametres)2 Gustave Eiffel

(]
r o

Passage par référence.

- On crée un dlias sur I'argument au moment de I'appel.
¥

int sum(int& v1, int v2)
{

vl += v2;

return vl;

}

int main ()

{
auto vl = 3;
auto v2 = 5; /)

std::cout <<Isum(vl, v2) << std::endl; // 8

std::cout << vl << std::endl; s/ 8 Cet appel modifie v1

| P

return O;

4. Fonctions libres Victor Marsault ® 2025-2026

Passage de parametres)% Université

Gustave Eiffel

(]
r o

Passage par référence constante.
- On crée un alias non-mutable sur I'argument au moment de I'appel.

std::string appendb (const std::string& vl)
{
return v1 + std::string{"five"};:>-

}

int main ()

auto vl = std::string { "three" };
std::cout << append5(vl) << std::endl; // threefive
std::cout << vl << std::endl; // three

return 0;

Dans le corps de append5, tout
ce qui modifie v1 est interdit !

4. Fonctions libres Victor Marsault ® 2025-2026

Passage de parametres

4. Fonctions libres

L’argument doit étre modifié 2

r Oui Non —l

L’argument est rapide & copier 2

o e

Passage par
Passage par =
reference
valeur.

constante.

Passage par
référence.

>‘.'(Université
~"' Gustave Eiffel

Victor Marsault ® 2025-2026

Passage de parametres)2C Gustave Eiffe

Des questions?

L’argument doit étre modifié 2

r Oui Non —l

L'argument est rapide a copier ¢
Passage par 9 P P

référence.
17 Oui Non —l

Passage par
Passage par =
reference
valeur.

constante.

4. Fonctions libres Victor Marsault ® 2025-2026

., Université
Do (

Sommaire

Gustave Eiffel

Présentation du module.
Hello, World!

Types.
Fonctions libres.

Classes.
a. Définir une classe.
b. Définir une fonction-membre.
c. Définir un constructeur.
d. Implémentation par défaut du constructeur par défaut.
e. Définir un opérateur de flux ami.

o~ Wb~

83 Victor Marsault ® 2025-2026

Définir une classe) oniversits

Gustave Eiffel

#include <string>

class Student

{

public:
std::string name;
int age = 0;

}s

int main ()

{
auto student Student {};
student.name "David";
student.age = 22;

return 0;

5. Classes

Victor Marsault ® 2025-2026

Définir une classe Y3 Univerit

Gustave Eiffel

#include <Strifi>/a\' Nom de |a classe
e e :

class.StudentI

{ ______
public:

std::string name; Wtfributs de la classe.
int age = 0;
bi

int main ()

«t
auto student =IStudent {}”

student.name = "David";
student.age = 22;
return 0;

) Le constructeur par défaut est appelé

5. Classes 85 Victor Marsault ® 2025-2026

Définir une classe Yo (gniversits

Gustave Eiffel

Atftention aux oublis !

#include <string> Oubli du modificateur public
class Student error: '<attribute>' is private within this context
eiiels Sttty
| public: |
R p— Ttar.string name;
int age = 0;

}s

int main ()

{
auto student Student {};
student.name "David";
student.age = 22;

return 0;

5. Classes 86 Victor Marsault ® 2025-2026

Définir une classe) oniversits

Gustave Eiffel

Atftention aux oublis !

Oubli du point-virgule ;)

#include <string>

class Student

error: expected ';' after class definition
{
public:
std::string name;
— int age = 0;

auto student Student {};
student.name "David";
student.age = 22;

return 0;

5. Classes 87

Victor Marsault ® 2025-2026

Définir une classe) oniversits

Gustave Eiffel

Atftention aux oublis !

#include <string> Non initialisation des atiributs de types
class Student fondamentaux
; .
public: o Undefined behavior (Ql'exécution)
std::string name; 3
int agel = 07 |
}s ' !

int main ()

{
auto student Student {};
student.name "David";
student.age = 22;

return 0;

5. Classes 88

Victor Marsault ® 2025-2026

Définir une classe) oniversits

Gustave Eiffel

#include <string>

class Student

{

public:
std::string name;
int age = 0;

}s

int main ()

{
auto student Student {};
student.name "David";
student.age = 22;

return 0;

@ Des questions?

5. Classes 89

Victor Marsault ® 2025-2026

Définir des fonctions-membres 12 Gltave t

Gustave Eiffel

int main ()
class Student {
{ . auto student = Student {};
pub11c3 . _ student.set attributes("David",22);
void set attributes(const std::stringé& name, student pri;t()'
int age) ; ’
{ return O;
m _name = name; J
m _age = age;

}

void print () const
{
std::cout << "Student called " << m name
<< "M is " << m_age << " years old"
<< std::endl;
}

private:
std::string m name;
int m age = 0;

}i

5. Classes

Victor Marsault ® 2025-2026

Définir des fonctions-memlbres

., Université
Do (

class Student

{

public:
void set attributes(const std::stringé& name,
int age)

{

m name = name;

m age = age;
}

—===

void print()ngqftl
{

std::cout << "Student called " << m name

<< "M is " << m_age << " years old"

<< std::endl;
}

private:
std::string m name;
int m age = 0;

}i

5. Classes

Gustave Eiffel

int main ()

{

auto student = Student {};
student.set attributes("David",22);
student.print () ;

return 0O;

Indique que la fonction
ne modifie pas les
attributs de I'instance.

Victor Marsault ® 2025-2026

Définir un constructeur)2C Gt

Gustave Eiffel

int main ()

{

class Student auto studept = Student {"David", 22};
i studentéprlnt();
t ;
public: p oo
Student (const std::string& name, int age)

m name { name }
, m_age { age }

{}

void print () const
{
std::cout << "Student called " << m name
<< "M is " << m_age << " years old"
<< std::endl;
}

private:
std::string m name;
int m age = 0;
i
5. Classes 92

Victor Marsault ® 2025-2026

Définir un constructeur)2C Gt

Gustave Eiffel

int main ()

{

class Student auto student = Student {"David", 22};
{ student.print () ;

PUblic: = e e e e e return 0;

: m_name { name }
, m_age { age }

{}

void print () const
{
std::cout << "Student called " << m name
<< " is " << m_age << " years old"

<< std::endl;
}

private:
std::string m name;
. o,
oo e Un constructeur a des
parameétres comme une fonction
5. Classes 93

Victor Marsault ® 2025-2026

Définir un constructeur

>‘.'< Université
~"' Gustave Eiffel

class Student
{

public: — - e e e e - ===

Student‘const std::string& name, int age”

: m name { name | T 77

, m_age { age }
{}
void print () const
{

std::cout << "Student called " << m name

<< " is " << m_age << " years old"

}

private:
std::string
int

}s

5. Classes

<< std::endl;

int main ()

O e
auto student =:Student {"David", 22};:
student.print(); ~~,~ "~~~ ~" -~~~ ~—
return 0;

m_name;
m age = 0;

/

Et s’appelle comme ceci

Un constructeur a des
parameétres comme une fonction

Victor Marsault ® 2025-2026

Définir un constructeur)2C Gt

Gustave Eiffel

int main ()

{

class Student auto student = Student {"David", 22};
{ student.print () ;

public: return 0;

Student (const std::string& name, int age) }
m name { name }
, m_age { age }

{}

void print () const

{

std::cout << "Student called " << m name

<< " is " << m_age << " years old"
<< std: :endl,‘ ° j§eo__ejge ° °
) La liste d’initialisation
private:
std::string m name;
int m age = 0;
}i
5. Classes 95

Victor Marsault ® 2025-2026

Définir un constructeur)2C Gt

Gustave Eiffel

int main ()
{
class Student auto student = Student {"David", 22};
{ student.print () ;
public: return 0;
Student (const std::string& name, int age) }
: m_name { name }
, m_age { age }

{}

void print () const

{

std::cout << "Student called " << m name

<< " is " << m age << " years old"
<< std::endl;

) La liste d’initialisation
private: permet d’inifialiser les

td::stri ; 1
T Ry atfribufs

P
N

}s

5. Classes 96

Victor Marsault ® 2025-2026

Définir un constructeur

., Université
Do (

class Student
{
public:
Student (const std::string& name, int age)
: m_name { name }
, m_age { age }

{}

void print () const
{
std::cout << "Student called " << m name
<< " is " << m_age << " years old"
<< std::endl;
}

private:
std::string m name;
int m age = 0;

}s

5. Classes

Gustave Eiffel

int main ()

{
auto student = Student {"David", 22};
student.print () ;
return 0;

@ Des questions?

Victor Marsault ® 2025-2026

Implémentation par défaut du constructeur par défaut 12 g Eite

class Student int main ()
{ {
public: const auto david = Student { "David", 22 };
Student () = default; david.print () ;
Student (const std::stringé& name, int age) const auto default_student = Student ({};
: m name { name } default student.print();
, m_age { age }
{1} return O;
}
void print () const

{
std::cout << "Student called " << m name
<< " is " << m_age << " years old"
<< std::endl;
}

private:
std::string m name;
int m _age = 0;

i

5. Classes 98 Victor Marsault ® 2025-2026

Implémentation par défaut du constructeur par défaut 12 g Eite

class Student
{
public:

Student () = default;

IStudent (const std::string& name,
: : m_name { name }
| , m_age { age }

void print() const

{
std::cout << "Student called "

{

AN

.\}

int main ()

const auto david = Student

david.print () ;

{ "bavid", 22 };

const auto default student =
default student.print();

Student {};

return 0;

<< m_ name

<< " is " << m_age << " years old"

<< std::endl;
}

private:
std::string m name;
int m _age = 0;
i
5. Classes

99

Si on écrit un constructeur, le
compilateur ne génere plus le
constructeur par défaut

Victor Marsault ® 2025-2026

Implémentation par défaut du constructeur par défaut 12 g Eite

class Student int main ()

{ {
public: = o -

|
Student():= default;

const auto david = Student { "David", 22 };
david.print () ;

Student (const std::string& name, int age
: m_name { name }
, m_age { age }

const auto default student = Student {};
default student.print();
{}

return 0;

void print() const

{

std::cout << "Student called "
<< " is " << m_age <
<< std::endl;

<< m_name
" years old"

Rétablit I'implémentation
par défaut du constructeur
private: e
std::string m name; pOr defOUT-

int m _age = 0;

}

i

5. Classes 100 Victor Marsault ® 2025-2026

Dé&finir un opérateur de flux ami

>‘.'< Université
~"' Gustave Eiffel

class Student
{
public:
Student (const std::string& name, int age)
m name { name }
, m_age { age }

{}

int main ()

{
const auto student = Student { "David",22 };
std::cout << student << std::endl;
return O;

friend std::ostreamé& operator<<(std::ostreamé& stream,

const Student& student)

{
stream << "Student called " << student.m name
<< "M is " << student.m age << " years old.";
return stream;

private:
std::string m name;
int m age = 0;

b

5. Classes

Victor Marsault ® 2025-2026

Définir un opérateur de flux ami)2C Gustave Eiffe

int main ()
class Student {
{ubl' const auto student = Student { "David",22 };
P re:) , std::coutl << student << std::endl;
Student (const std::string& name, 1int age) return 0:
m name { name }) !

, m_age { age }

{}

friend!std: :ostreams operator<< (std::ostreamé& stream,

: const Student& student) \

{ T Ceci définit cela

stream << "Student called " << student.m name
<< "M is " << student.m age << " years old.";
return stream;

private:
std::string m name;
int m age = 0;

b

5. Classes 102 Victor Marsault ® 2025-2026

Définir un opérateur de flux ami)2C Gustave Eiffe

int main ()
class Student {
{ubl' const auto student = Student { "David",22 };
P re:) , std::cout << student << std::endl;
Student (const std::string& name, 1int age) return 0:
m name { name }) !

, m_age { age }

' friend Etd :ostreamé& operator<< (std::ostreamé& stream,
- const Student& student)

return stream;

}
Spéecifie que la fonction est amie, c'est-a-dire

private: , .« 7
std::string m_name; peut acceder aux champs prives
int m age = 0;

b

5. Classes Victor Marsault ® 2025-2026

>‘.'(Université
~"' Gustave Eiffel

Dé&finir un opérateur de flux ami

class Student A Attention !
{
public: Une fonction amie est une fonction libre. Il faut
Shudentconst sidristringh mame, int age) donc Iui passer une instance en paramétre pour
, m_age { age } accéder a ses membres (attributs et méthodes)

{}

friend std::ostreamé& operator<<(std::ostream& stream
const Studenté& student

~

{

stream << "Student called " <{ student.m name
<< " is " <4 student.h age << T years old.";
return stream;

}

private:
std::string m name;
int m age = 0;

b

Victor Marsault ® 2025-2026

5. Classes

Définir un opérateur de flux ami)2C Gustave Eiffe

int main ()
class Student {
{ . const auto student = Student { "David",22 };
public:)) std::cout << student << std::endl;
Student (const std::string& name, int age) return O:
: m _name { name } } ’
, m_age { age }
{1}

friend std::ostreamé& operator<<(std::ostreamé& stream,
const Student & student)
{
stream << "Student called " << student.m name
<< "M is " << student.m age << " years old.";
return stream;

}

private:
std::string m name;
int m age = 0;

y Des questions?

5. Classes 105 Victor Marsault ® 2025-2026

., Université
Do (

Gustave Eiffel

Sommaire

Présentation du module.
Hello, World!

Types.
Fonctions libres.
Classes.

Gestion de la mémoire
a. Allocation dynamique
b. Cycle de vie
c. Ownership

SOk~

106 Victor Marsault ® 2025-2026

Statigue vs Dynamique)2 Gt €

Gustave Eiffel

e Statique = au moment de la compilation
A\ Le mot-clef static n’a rien a voir

Ex: La taille d’'un entier est connue statiquement (32 ou 64 bit)
o Deés lors gu’on alloue quelque chose sur la pile (variable), on doit
connaitre sa taille statiquement

e Dynamique = au moment de I'exécution

Ex: Le nombre d’éléments dans un tableau dynamique n’est pas connu a la
compilation

o Allocation dynamique = allocation sur le tas (ma33ee OU new)

Allocation dynamique 107 Victor Marsault 2025-2026

A\

Allocation dynamique)2C Gustave Eiffe

int main ()

{
auto words = std::vector<std::string>{};
while (true) {
auto name = std::string {};
std::cin >> name;
words.emplace back (name) ;
}
}

Gestion de la mémoire Victor Marsault ® 2025-2026

CYC|€ de vie)2C Gustave Eiffe

Un objet est

e alloué — un segment de mémoire est attribué

O =malloc

e construit — un constructeur est appelé pour remplir ce segment

e detruit — un destructeur est appelée pour nettoyer

e désalloué — la mémoire est rendu disponible

o = free

Gestion de la mémoire Victor Marsault ® 2025-2026

CYC|€ de vie)2C Gustave Eiffe

Un objet est

e alloué — un segment de mémoire est attribué

O =malloc

e construit — un constructeur est appelé pour remplir ce segment

Il ne faut utiliser I'objet que
pendant cette période

e detruit — un destructeur est appelée pour nettoyer _
)] o _ _ Une et une seule fois
e désalloué — la mémoire est rendu disponible

o = free

Gestion de la mémoire Victor Marsault ® 2025-2026

Ownership (propriété?))2C Gustave Eiffe

Probléeme: Gérer la mémoire est difficile !
e Fuite mémoire
e Double désallocation
e Dangling référence/pointeurs

Dans la plupart des autres langages: gestion automatique via un garbage collector

En C++: gestion semi-automatique via 'ownership

e Onindique clairement qui a la charge de désallouer quoi
o Usuellement indiqué dans le type
o On sait si un objet own un autre objet ou s'’il 'observe

e Destruction automatique des ressources owned

e On n’observe que des ressources qui ont une durée de vie plus longue

Gestion de la mémoire Victor Marsault ® 2025-2026

Ce gqu’'on va apprendre dans le segment 1 et

e Les types fondamentaux du C++ (int, boal,...)

e Quelques types de la bibliothéques standard (std::string, std::vector)
e Comprendre et corriger les messages d’erreurs les plus courants

e Bases des classes (membres, constructeurs, destructeurs)

e C(Copie vs Réference vs Référence constante vs Pointeurs

e Bases de la gestion de mémoire (Allocation, durée de vie, ownership)

112 Victor Marsault ® 2025-2026

