
Victor Marsault • 2025-2026

Cours de C++
Segment 1

2025-2026

1

Admire, jeune apprenti !

Wow c’est déjà
trop compliqué…

Victor Marsault • 2025-2026

Sommaire

1. Présentation du module
2. Hello World!
3. Types
4. Fonctions libres
5. Classes
6. Gestion de la mémoire

2

Victor Marsault • 2025-2026

Sommaire

1. Présentation du module.
a. Intervenants
b. Déroulement du module
c. Outils & ressources

2. Hello, World!
3. Types.
4. Fonctions libres.
5. Classes.
6. Gestion de la mémoire

3

Victor Marsault • 2025-2026

Intervenants

Les enseignants de C++ sont:
● Henri Derycke (TP Apprentis GR3) — henri.derycke@univ-eiffel.fr
● Anthony Labarre (TP Initiaux GR1) — anthony.labarre@univ-eiffel.fr
● Victor Marsault (CM & TP Initiaux GR2) — victor.marsault@univ-eiffel.fr

Vous pouvez nous contacter par mail mais aussi sur Discord.

● Les supports du cours ont principalement été écrit par Céline Noël

41. Présentation du module

Victor Marsault • 2025-2026

Contenu du module

Séance supervisées:
● 3 cours magistraux pour présenter les segments
● 11 séances de TPs

Travail en autonomie:
● 9 chapitres sur le site web du cours :

➤ Questionnaire à la fin de chaque chapitre pour vérifier que vous avez compris
➤ Possibilité de l’envoyer à votre encadrant de TP qui vous fera un retour

● 1 TP de révision à réaliser en autonomie
● 2 à 3 heures par semaine

51. Présentation du module

Victor Marsault • 2025-2026

Modalités d’évaluation

Contrôle continu:
● TP noté de 2h à ⅓ du semestre (coef 2)
● TP noté de 2h à ⅔ du semestre (coef 2)
● TP noté final de 3h (coef 3)

Rattrapage: TP noté de 3h qui remplace la plus faible des trois notes !

Modalités:
● Utilisation du mode exam donc pas d’accès à internet
● Accès au site du cours et à la documentation du standard C++
● Tests automatiques

61. Présentation du module

Victor Marsault • 2025-2026

Déroulement du module

71. Présentation du module

S1
CM
Chapitre à lire
TP

S2
Chapitre à lire
TP

S3
Chapitre à lire
TP

S4
TP de révision
TP Noté

S5 CM

S6
Chapitre à lire
TP

S7
Chapitre à lire
TP

S8
Chapitre à lire
TP

S9
TP de révision
TP Noté

S10 CM

S11
Chapitre à lire
TP

S12
Chapitre à lire
TP

S13
Chapitre à lire
TP

S14 Révisions

S15 TP Noté final

— En autonomie

Victor Marsault • 2025-2026

Outils & Ressources

Ressources du cours:
● Site web du cours avec des exercices d’entraînement
● Miroir local de la documentation du standard C++
● Dépôt git des Tps

Pour tester des snippets de code :
➔ Compiler Explorer sur godbolt

Pour développer des projets :
● Visual Studio Code Visual Studio Codium
● CMake
● Git

81. Présentation du module

Victor Marsault • 2025-2026

Outils & Ressources

Ressources du cours:
● Site web du cours avec des exercices d’entraînement
● Miroir local de la documentation du standard C++
● Dépôt git des Tps

Pour tester des snippets de code :
➔ Compiler Explorer sur godbolt

Pour développer des projets :
● Visual Studio Code Visual Studio Codium
● CMake
● Git

91. Présentation du module

Certaines parties du site
et des TPs pourraient ne
pas être à jour

Victor Marsault • 2025-2026

Quelques avertissements

● Les notes ne sont pas entièrement compensables
➤ Le TP noté de rattrapage ne remplace qu’une seule note

● Le système de test automatique est assez punitifs
➤ Un test ne passe passe pas ne vaut généralement pas de points

● La difficulté augmente avec le temps
➤ Le TPN1 est plus facile

● La référence du cours est le site web et pas le CM
➤ Si vous ne lisez pas les chapitres, il vous manquera des notions

101. Présentation du module

Victor Marsault • 2025-2026

Quelques avertissements

● Les notes ne sont pas entièrement compensables
➤ Le TP noté de rattrapage ne remplace qu’une seule note

● Le système de test automatique est assez punitifs
➤ Un test ne passe passe pas ne vaut généralement pas de points

● La difficulté augmente avec le temps
➤ Le TPN1 est plus facile

● La référence du cours est le site web et pas le CM
➤ Si vous ne lisez pas les chapitres, il vous manquera des notions

111. Présentation du module

Travaillez tout au long du semestre

Victor Marsault • 2025-2026

Avant de continuer…

🤨 des questions sur le déroulement du module ?

121. Présentation du module

Victor Marsault • 2025-2026

Sommaire

1. Présentation du module
2. Hello, World!

a. Le C++, c’est quoi?
b. Fonction main
c. Afficher du texte dans la console
d. Compiler avec ou sans CMakeLists.txt
e. Lire du texte depuis la console
f. Utiliser les arguments du programme

3. Types
4. Fonctions libres
5. Classes
6. Gestion de la mémoire

13

Victor Marsault • 2025-2026

Le C++, c’est quoi ?

Le C++ est un langage de programmation…

● Compilé
➔ Donc rapide à l’exécution.

● Orienté-objet
➔ Donc on peut architecturer des gros projets sans avoir trop envie de mourir.

● Générique
➔ Donc on peut facilement limiter le copier-coller d’algorithmes pour supporter différents types.

● Bien documenté
➔ Standard actif et grande base d’utilisateurs !

141. Hello, World!

Victor Marsault • 2025-2026

Le C++, c’est quoi ?

Le C++ est un langage de programmation…

● Compilé
➔ Donc rapide à l’exécution.

● Orienté-objet
➔ Donc on peut architecturer des gros projets sans avoir trop envie de mourir.

● Générique
➔ Donc on peut facilement limiter le copier-coller d’algorithmes pour supporter différents types.

● Bien documenté
➔ Standard actif et grande base d’utilisateurs !

● Quasi-rétro-compatible avec le C
➔ Coexistence de types C et C++
➔ La syntaxe pour les concepts modernes pique un peu les yeux au début

151. Hello, World!

😈

Victor Marsault • 2025-2026

Fonction main

Identifiant — main
Arguments — () ou (int argc, char** argv)
Type de retour — int

int main()
{
 return 0;
}

162. Hello, World!

Victor Marsault • 2025-2026

Afficher du texte dans la console

#include <iostream>

int main()
{
 std::cout << "Hello World!" << std::endl;
 return 0;
}

172. Hello, World!

Victor Marsault • 2025-2026

Afficher du texte dans la console

#include <iostream>

int main()
{
 std::cout << "Hello World!" << std::endl;
 return 0;
}

182. Hello, World!

Donne accès aux symboles déclarés dans
la section I/O (Input/Output, i.e.
Entrées/Sorties) de la librairie standard.

Victor Marsault • 2025-2026

Afficher du texte dans la console

#include <iostream>

int main()
{
 std::cout << "Hello World!" << std::endl;
 return 0;
}

192. Hello, World!

Cible les symboles du
namespace std (librairie
standard)

Victor Marsault • 2025-2026

Afficher du texte dans la console

#include <iostream>

int main()
{
 std::cout << "Hello World!" << std::endl;
 return 0;
}

202. Hello, World!

Sortie standard.

Saut de ligne + flush.

Victor Marsault • 2025-2026

Compiler en ligne de commande

Pour compiler, depuis un terminal :

Puis, pour exécuter :

212. Hello, World!

g++ -std=c++17 hello-world.cpp -o hello-world

./hello-world

Victor Marsault • 2025-2026

Compiler en ligne de commande

Pour compiler, depuis un terminal :

Puis, pour exécuter :

222. Hello, World!

g++ -std=c++17 hello-world.cpp -o hello-world

./hello-world

Nom de la source
Nom de l’exécutable

Victor Marsault • 2025-2026

Ajouter un CMakeLists.txt

cmake_minimum_required(VERSION 3.16)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

232. Hello, World!

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

242. Hello, World!

Légende

Permet de générer un exécutable.

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

252. Hello, World!

Légende

Nom de l’exécutable.

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

262. Hello, World!

Légende

Liste des sources.

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

27

Permet de sélectionner un set de
fonctionnalités pour le langage.

Légende

2. Hello, World!

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

28

C++ 17
Légende

2. Hello, World!

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

29

Permet de passer des options au
compilateur lors de la phase de
compilation.

Légende

2. Hello, World!

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

30

Active un premier set de warnings.

Légende

2. Hello, World!

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

31

Active un second set de warnings.

Légende

2. Hello, World!

Victor Marsault • 2025-2026

cmake_minimum_required(VERSION 3.17)
project(cours-1)

add_executable(hello-world
hello-world.cpp

)

target_compile_features(hello-world PRIVATE cxx_std_17)
target_compile_options(hello-world PRIVATE

-Wall
-Wextra
-Werror

)

Ajouter un CMakeLists.txt

32

Considère les warnings comme des
erreurs.

Légende

2. Hello, World!

Victor Marsault • 2025-2026

Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
 std::cout << "What's your name? " << std::endl;

 auto name = std::string {};
 std::cin >> name;

 std::cout << "Hello " << name << std::endl;
 return 0;
}

332. Hello, World!

Victor Marsault • 2025-2026

Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
 std::cout << "What's your name? " << std::endl;

 auto name = std::string {};
 std::cin >> name;

 std::cout << "Hello " << name << std::endl;
 return 0;
}

34

Construit une instance
de type std::string

2. Hello, World!

Victor Marsault • 2025-2026

Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
 std::cout << "What's your name? " << std::endl;

 auto name = std::string {};
 std::cin >> name;

 std::cout << "Hello " << name << std::endl;
 return 0;
}

35

Type déduit de ce qu’il y
a à droite du symbole =

2. Hello, World!

Victor Marsault • 2025-2026

Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
 std::cout << "What's your name? " << std::endl;

 auto name = std::string {};
 std::cin >> name;

 std::cout << "Hello " << name << std::endl;
 return 0;
}

36

Entrée standard.

2. Hello, World!

Victor Marsault • 2025-2026

Lire du texte depuis la console

#include <iostream>
#include <string>

int main()
{
 std::cout << "What's your name? " << std::endl;

 auto name = std::string {};
 std::cin >> name;

 std::cout << "Hello " << name << std::endl;
 return 0;
}

372. Hello, World!

🤨 Des questions?

Victor Marsault • 2025-2026

Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
 if (argc != 2u)
 {
 std::cerr << "Program expects one argument: "

<< (argc - 1)
<< " were given." << std::endl;

 return -1;
 }

 std::cout << "Hello " << argv[1] << std::endl;
 return 0;
}

382. Hello, World!

Victor Marsault • 2025-2026

Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
 if (argc != 2u)
 {
 std::cerr << "Program expects one argument: "

<< (argc - 1)
<< " were given." << std::endl;

 return -1;
 }

 std::cout << "Hello " << argv[1] << std::endl;
 return 0;
}

39

Nombre d’arguments
(+ 1 pour le chemin de l’exécutable)

Chemin de l’exécutable,
puis arguments.

2. Hello, World!

Victor Marsault • 2025-2026

Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
 if (argc != 2u)
 {
 std::cerr << "Program expects one argument: "

<< (argc - 1)
<< " were given." << std::endl;

 return -1;
 }

 std::cout << "Hello " << argv[1] << std::endl;
 return 0;
}

40

Sortie d’erreurs.

2. Hello, World!

Victor Marsault • 2025-2026

Utiliser les arguments du programme

#include <iostream>

int main(int argc, char** argv)
{
 if (argc != 2u)
 {
 std::cerr << "Program expects one argument: "

<< (argc - 1)
<< " were given." << std::endl;

 return -1;
 }

 std::cout << "Hello " << argv[1] << std::endl;
 return 0;
}

412. Hello, World!

🤨 Des questions?

Victor Marsault • 2025-2026

Sommaire

42

1. Présentation du module.
2. Hello, World!
3. Types.

a. Types fondamentaux.
b. Définition de variables avec auto.
c. Chaînes de caractères.
d. Tableaux dynamiques.
e. Références.
f. Variables et références constantes.

4. Fonctions libres.
5. Classes.
6. Cycle de vie et Ownership

Victor Marsault • 2025-2026

Types fondamentaux

433. Types

Les types hérités du C :
● Types entiers : int, short, long, unsigned int, …
● Types flottants : float, double.
● Types character : char, unsigned char.

Mais aussi :
● Type booléen : bool.
● Types entiers de taille fixe : int8_t, uint32_t, …
● Type taille : size_t.

Victor Marsault • 2025-2026

Définition de variables avec auto

443. Types

auto int_value = 3;
auto unsigned_value = 3u;
auto float_value = 3.f;
auto double_value = 3.0;
auto size_value = size_t { 3 };
auto return_value = fcn();
auto mavar = MaClasse{};

Victor Marsault • 2025-2026

Définition de variables avec auto

Avantages :
● Variables de types fondamentaux sont nécessairement initialisées.

int a; // Ici la valeur de a est n’importe quoi

● Pas de duplication dans le code (refactoring plus rapide)
MaClasse a = mafonction();

● Meilleure lisibilité quand les types sont complexes (templates)

Inconvénient :
● Si on n’a pas d’IDE, il est nécessaire de fouiller un peu et d’aller

chercher le type de retour des fonctions pour connaître celui des
variables.

453. Types

Victor Marsault • 2025-2026

Chaînes de caractères

463. Types

#include <string>

int main()
{
 auto empty_str = std::string { "" };

 auto pouet = std::string { "pouet" };
 auto size = pouet.length();
 auto c0 = pouet.front();
 auto c3 = pouet[3];

 auto big_pouet = std::string {};
 for (auto c: pouet)
 {
 big_pouet += std::toupper(c);
 }

 auto half_pouet = pouet.substr(0, pouet.length() / 2);

 return 0;
}

Victor Marsault • 2025-2026

Chaînes de caractères

473. Types

#include <string>

int main()
{
 auto empty_str = std::string { "" };

 auto pouet = std::string { "pouet" };
 auto size = pouet.length();
 auto c0 = pouet.front();
 auto c3 = pouet[3];

 auto big_pouet = std::string {};
 for (auto c: pouet)
 {
 big_pouet += std::toupper(c);
 }

 auto half_pouet = pouet.substr(0, pouet.length() / 2);

 return 0;
}

😠 Chaine de caractère C : char*

Victor Marsault • 2025-2026

Chaînes de caractères

483. Types

#include <string>

int main()
{
 auto empty_str = std::string { "" };

 auto pouet = std::string { "pouet" };
 auto size = pouet.length();
 auto c0 = pouet.front();
 auto c3 = pouet[3];

 auto big_pouet = std::string {};
 for (auto c: pouet)
 {
 big_pouet += std::toupper(c);
 }

 auto half_pouet = pouet.substr(0, pouet.length() / 2);

 return 0;
}

😃 Chaine de caractère C++:
 std::string

Victor Marsault • 2025-2026

Chaînes de caractères

493. Types

#include <string>

int main()
{
 auto empty_str = std::string { "" };

 auto pouet = std::string { "pouet" };
 auto size = pouet.length();
 auto c0 = pouet.front();
 auto c3 = pouet[3];

 auto big_pouet = std::string {};
 for (auto c: pouet)
 {
 big_pouet += std::toupper(c);
 }

 auto half_pouet = pouet.substr(0, pouet.length() / 2);

 return 0;
}

Les std::string sont des
objets

Victor Marsault • 2025-2026

Chaînes de caractères

503. Types

#include <string>

int main()
{
 auto empty_str = std::string { "" };

 auto pouet = std::string { "pouet" };
 auto size = pouet.length();
 auto c0 = pouet.front();
 auto c3 = pouet[3];

 auto big_pouet = std::string {};
 for (auto c: pouet)
 {
 big_pouet += std::toupper(c);
 }

 auto half_pouet = pouet.substr(0, pouet.length() / 2);

 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Tableaux dynamiques

513. Types

#include <vector>

int main()
{
 auto v1 = std::vector<int> {0,1,2};

 v1.emplace_back(4);
 v1.emplace_back(5);

 auto size = v1.size();
 for (unsigned i = 0; i<size; ++i)
 {
 std::cout << v1[i]
 }

 auto sum = 0;
 for (auto e: v1)
 {
 sum += e;
 }

 return 0;
}

Victor Marsault • 2025-2026

Tableaux dynamiques

523. Types

#include <vector>

int main()
{
 auto v1 = std::vector<int> {0,1,2};

 v1.emplace_back(4);
 v1.emplace_back(5);

 auto size = v1.size();
 for (unsigned i = 0; i<size; ++i)
 {
 std::cout << v1[i]
 }

 auto sum = 0;
 for (auto e: v1)
 {
 sum += e;
 }

 return 0;
}

On crée un vecteur avec 3 éléments

Victor Marsault • 2025-2026

Tableaux dynamiques

533. Types

#include <vector>

int main()
{
 auto v1 = std::vector<int> {0,1,2};

 v1.emplace_back(4);
 v1.emplace_back(5);

 auto size = v1.size();
 for (unsigned i = 0; i<size; ++i)
 {
 std::cout << v1[i]
 }

 auto sum = 0;
 for (auto e: v1)
 {
 sum += e;
 }

 return 0;
}

On ajoute 2 éléments en plus à la
fin du tableaux v1

L’emplacement mémoire de
v1 peut avoir changé

Victor Marsault • 2025-2026

Tableaux dynamiques

543. Types

#include <vector>

int main()
{
 auto v1 = std::vector<int> {0,1,2};

 v1.emplace_back(4);
 v1.emplace_back(5);

 auto size = v1.size();
 for (unsigned i = 0; i<size; ++i)
 {
 std::cout << v1[i]
 }

 auto sum = 0;
 for (auto e: v1)
 {
 sum += e;
 }

 return 0;
}

On parcourt v1 “à la main” et
on affiche ses éléments

Victor Marsault • 2025-2026

Tableaux dynamiques

553. Types

#include <vector>

int main()
{
 auto v1 = std::vector<int> {0,1,2};

 v1.emplace_back(4);
 v1.emplace_back(5);

 auto size = v1.size();
 for (unsigned i = 0; i<size; ++i)
 {
 std::cout << v1[i]
 }

 auto sum = 0;
 for (auto e: v1)
 {
 sum += e;
 }

 return 0;
}

On parcourt v1 avec un “for each” et
on calcule la somme de ses éléments

Victor Marsault • 2025-2026

Tableaux dynamiques

563. Types

#include <vector>

int main()
{
 auto v1 = std::vector<int> {0,1,2};

 v1.emplace_back(4);
 v1.emplace_back(5);

 auto size = v1.size();
 for (unsigned i = 0; i<size; ++i)
 {
 std::cout << v1[i]
 }

 auto sum = 0;
 for (auto e: v1)
 {
 sum += e;
 }

 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Références

573. Types

#include <iostream>
#include <vector>

int main()
{
 auto a = 1;
 std::cout << a << std::endl; // 1

 auto& b = a;
 b = 3;
 std::cout << a << std::endl; // 3

 auto vec = std::vector { 1, 2, 3 };
 auto& last = vec.back();
 last = 5;
 std::cout << vec[2] << std::endl; // 5

 return 0;
}

Une référence est un alias d’une
variable, elle partage donc le
même espace mémoire qu’elle.

Victor Marsault • 2025-2026

Références

583. Types

#include <iostream>
#include <vector>

int main()
{
 auto a = 1;
 std::cout << a << std::endl; // 1

 auto& b = a;
 b = 3;
 std::cout << a << std::endl; // 3

 auto vec = std::vector { 1, 2, 3 };
 auto& last = vec.back();
 last = 5;
 std::cout << vec[2] << std::endl; // 5

 return 0;
}

Pour définir une référence, on place
une esperluette (&) après le type.

Une référence est un alias d’une
variable, elle partage donc le
même espace mémoire qu’elle.

Victor Marsault • 2025-2026

Références

593. Types

#include <iostream>
#include <vector>

int main()
{
 auto a = 1;
 std::cout << a << std::endl; // 1

 auto& b = a;
 b = 3;
 std::cout << a << std::endl; // 3

 auto vec = std::vector { 1, 2, 3 };
 auto& last = vec.back();
 last = 5;
 std::cout << vec[2] << std::endl; // 5

 return 0;
}

Une référence est un alias d’une
variable, elle partage donc le
même espace mémoire qu’elle.

Quand on modifie l’une l’autre est modifiée.

Victor Marsault • 2025-2026

Références

603. Types

#include <iostream>
#include <vector>

int main()
{
 auto a = 1;
 std::cout << a << std::endl; // 1

 auto& b = a;
 b = 3;
 std::cout << a << std::endl; // 3

 auto vec = std::vector { 1, 2, 3 };
 auto& last = vec.back();
 last = 5;
 std::cout << vec[2] << std::endl; // 5

 return 0;
}

Une référence est un alias d’une
variable, elle partage donc le
même espace mémoire qu’elle.

Quand on modifie l’une l’autre est modifiée.

Victor Marsault • 2025-2026

Références

613. Types

#include <iostream>
#include <vector>

int main()
{
 auto a = 1;
 std::cout << a << std::endl; // 1

 auto& b = a;
 b = 3;
 std::cout << a << std::endl; // 3

 auto vec = std::vector { 1, 2, 3 };
 auto& last = vec.back();
 last = 5;
 std::cout << vec[2] << std::endl; // 5

 return 0;
}

Une référence est un alias d’une
variable, elle partage donc le
même espace mémoire qu’elle.

🤨 Des questions?

Victor Marsault • 2025-2026

Références constantes

623. Types

int main()
{
 const auto const_var = 1;
 const_var = 3; // invalide

 auto mutable_var = 1;
 const auto& const_ref = mutable_var;
 const_ref = 3; // invalide

 return 0;
}

Pour définir une variable ou une
référence constante, on place const sur
le type.

Avantages :
● Facilite le debug (si c’est constant,

c’est que ça ne changera pas)
● Facilite la compréhension du code.

Inconvénient :
● Verbeux, donc il faut s’habituer à la

lecture.

Victor Marsault • 2025-2026

Référence pendante (dangling reference)

int main()
{
 auto v1 = std::vector<std::string> {"Hello","World"};
 auto& ref = v1[1];

 v1[1] = "Universe";
 std::cout << ref << std::endl; // Universe

 v1.emplace_back("My");
 v1.emplace_back("Name");
 v1.emplace_back("is");
 v1.emplace_back("World");

 std::cout << ref << std::endl; // ???
}

63

Victor Marsault • 2025-2026

Référence pendante (dangling reference)

int main()
{
 auto v1 = std::vector<std::string> {"Hello","World"};
 auto& ref = v1[1];

 v1[1] = "Universe";
 std::cout << ref << std::endl; // Universe

 v1.emplace_back("My");
 v1.emplace_back("Name");
 v1.emplace_back("is");
 v1.emplace_back("World");

 std::cout << ref << std::endl; // ???
}

64

ref est un alias vers la
case 1 de v

Victor Marsault • 2025-2026

Référence pendante (dangling reference)

int main()
{
 auto v1 = std::vector<std::string> {"Hello","World"};
 auto& ref = v1[1];

 v1[1] = "Universe";
 std::cout << ref << std::endl; // Universe

 v1.emplace_back("My");
 v1.emplace_back("Name");
 v1.emplace_back("is");
 v1.emplace_back("World");

 std::cout << ref << std::endl; // ???
}

65

On modifie la case référencée,
et on l’affiche

Aucun problème : c’est bien la
nouvelle valeur qui s’affiche

Victor Marsault • 2025-2026

Référence pendante (dangling reference)

int main()
{
 auto v1 = std::vector<std::string> {"Hello","World"};
 auto& ref = v1[1];

 v1[1] = "Universe";
 std::cout << ref << std::endl; // Universe

 v1.emplace_back("My");
 v1.emplace_back("Name");
 v1.emplace_back("is");
 v1.emplace_back("World");

 std::cout << ref << std::endl; // ???
}

66

On ajoute des élément à v.
Il a peut-être été
déplacé.

Question: vers quoi pointe ref?

Victor Marsault • 2025-2026

Référence pendante (dangling reference)

int main()
{
 auto v1 = std::vector<std::string> {"Hello","World"};
 auto& ref = v1[1];

 v1[1] = "Universe";
 std::cout << ref << std::endl; // Universe

 v1.emplace_back("My");
 v1.emplace_back("Name");
 v1.emplace_back("is");
 v1.emplace_back("World");

 std::cout << ref << std::endl; // ???
}

67

🤨 Des questions?

Victor Marsault • 2025-2026

Sommaire

1. Présentation du module.
2. Hello, World!
3. Types.
4. Fonctions libres

a. Définir une fonction.
b. Surcharger une fonction.
c. Passage de paramètres.

5. Classes.
6. Gestion de la mémoire

68

Victor Marsault • 2025-2026

Définir une fonction

694. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
 auto count = size_t { 0 };
 for (auto l: words)
 {
 if (l == letter)
 {
 ++count;
 }
 }
 return count;
}

Victor Marsault • 2025-2026

Définir une fonction

704. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
 auto count = size_t { 0 };
 for (auto l: words)
 {
 if (l == letter)
 {
 ++count;
 }
 }
 return count;
}

Type de retour.

Victor Marsault • 2025-2026

Définir une fonction

714. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
 auto count = size_t { 0 };
 for (auto l: words)
 {
 if (l == letter)
 {
 ++count;
 }
 }
 return count;
}

Identifiant de la fonction.

Victor Marsault • 2025-2026

Définir une fonction

724. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
 auto count = size_t { 0 };
 for (auto l: words)
 {
 if (l == letter)
 {
 ++count;
 }
 }
 return count;
}

Paramètres de la fonction.

Victor Marsault • 2025-2026

Définir une fonction

734. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
 auto count = size_t { 0 };
 for (auto l: words)
 {
 if (l == letter)
 {
 ++count;
 }
 }
 return count;
}

Passage de paramètre par copie

Passage de paramètre par
référence constante

Victor Marsault • 2025-2026

Définir une fonction

744. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

size_t count_letter(const std::string& words, char letter)
{
 auto count = size_t { 0 };
 for (auto l: words)
 {
 if (l == letter)
 {
 ++count;
 }
 }
 return count;
}

Corps de la fonction.

Victor Marsault • 2025-2026

Surcharger une fonction

754. Fonctions libres

Vocabulaire :
● Signature — Identifiant + Types des paramètres.
● Surcharge (ou overloading) — Définir une fonction avec le même identifiant

qu’une autre, mais une signature différente.
● Prototype — Signature + type de retour

La surcharge est possible si au moins l’une de ces conditions est vérifiée :
● Le nombre de paramètres est différent.
● La succession des types de paramètres est différente.

Victor Marsault • 2025-2026

Surcharger une fonction

764. Fonctions libres

Vocabulaire :
● Signature — Identifiant + Types des paramètres.
● Surcharge (ou overloading) — Définir une fonction avec le même identifiant

qu’une autre, mais une signature différente.
● Prototype — Signature + type de retour

La surcharge est possible si au moins l’une de ces conditions est vérifiée :
● Le nombre de paramètres est différent.
● La succession des types de paramètres est différente.

🤨 Des questions?

Victor Marsault • 2025-2026

Surcharger une fonction

774. Fonctions libres

void print_sum(int e1, int e2)
{
 std::cout << e1 + e2 << std::endl;
}

void print_sum(int e1, int e2, int e3)
{
 std::cout << e1 + e2 + e3 << std::endl;
}

void print_sum(const std::string& e1, const std::string& e2)
{
 std::cout << e1 + e2 << std::endl;
}

Victor Marsault • 2025-2026

Passage de paramètres

784. Fonctions libres

int sum(int v1, int v2)
{
 v1 += v2;
 return v1;
}

int main()
{
 auto v1 = 3;
 auto v2 = 5;
 std::cout << sum(v1, v2) << std::endl; // 8
 std::cout << v1 << std::endl; // 3

 return 0;
}

Passage par valeur (ou par copie)
➔ L’argument est copié au moment de l’appel.

Cet appel ne modifie pas le
v1 dans main

Victor Marsault • 2025-2026

Passage de paramètres

794. Fonctions libres

int sum(int& v1, int v2)
{
 v1 += v2;
 return v1;
}

int main()
{
 auto v1 = 3;
 auto v2 = 5;
 std::cout << sum(v1, v2) << std::endl; // 8
 std::cout << v1 << std::endl; // 8

 return 0;
}

Passage par référence.
➔ On crée un alias sur l’argument au moment de l’appel.

Cet appel modifie v1

Victor Marsault • 2025-2026

Passage de paramètres

804. Fonctions libres

Passage par référence constante.
➔ On crée un alias non-mutable sur l’argument au moment de l’appel.

std::string append5(const std::string& v1)
{
 return v1 + std::string{"five"};
}

int main()
{
 auto v1 = std::string { "three" };
 std::cout << append5(v1) << std::endl; // threefive
 std::cout << v1 << std::endl; // three

 return 0;
} Dans le corps de append5, tout

ce qui modifie v1 est interdit !

Victor Marsault • 2025-2026

Passage de paramètres

814. Fonctions libres

L’argument doit être modifié ?

Passage par
référence.

L’argument est rapide à copier ?

Passage par
valeur.

Passage par
référence
constante.

Oui Non

Oui Non

Victor Marsault • 2025-2026

Passage de paramètres

824. Fonctions libres

L’argument doit être modifié ?

Passage par
référence.

L’argument est rapide à copier ?

Passage par
valeur.

Passage par
référence
constante.

Oui Non

Oui Non

🤨 Des questions?

Victor Marsault • 2025-2026

Sommaire

1. Présentation du module.
2. Hello, World!
3. Types.
4. Fonctions libres.
5. Classes.

a. Définir une classe.
b. Définir une fonction-membre.
c. Définir un constructeur.
d. Implémentation par défaut du constructeur par défaut.
e. Définir un opérateur de flux ami.

6. Gestion de la mémoire

83

Victor Marsault • 2025-2026

Définir une classe

845. Classes

#include <string>

class Student
{
public:
 std::string name;
 int age = 0;
};

int main()
{
 auto student = Student {};
 student.name = "David";
 student.age = 22;

 return 0;
}

Victor Marsault • 2025-2026

Définir une classe

855. Classes

#include <string>

class Student
{
public:
 std::string name;
 int age = 0;
};

int main()
{
 auto student = Student {};
 student.name = "David";
 student.age = 22;

 return 0;
}

Nom de la classe.

Attributs de la classe.

Le constructeur par défaut est appelé

Victor Marsault • 2025-2026

Définir une classe

865. Classes

#include <string>

class Student
{
public:
 std::string name;
 int age = 0;
};

int main()
{
 auto student = Student {};
 student.name = "David";
 student.age = 22;

 return 0;
}

Oubli du modificateur public
error: '<attribute>' is private within this context

Attention aux oublis !

Victor Marsault • 2025-2026

Définir une classe

875. Classes

#include <string>

class Student
{
public:
 std::string name;
 int age = 0;
};

int main()
{
 auto student = Student {};
 student.name = "David";
 student.age = 22;

 return 0;
}

Oubli du point-virgule (;)
error: expected ';' after class definition

Attention aux oublis !

Victor Marsault • 2025-2026

Définir une classe

885. Classes

#include <string>

class Student
{
public:
 std::string name;
 int age = 0;
};

int main()
{
 auto student = Student {};
 student.name = "David";
 student.age = 22;

 return 0;
}

Non initialisation des attributs de types
fondamentaux.
Undefined behavior (à l’exécution)

Attention aux oublis !

Victor Marsault • 2025-2026

Définir une classe

895. Classes

#include <string>

class Student
{
public:
 std::string name;
 int age = 0;
};

int main()
{
 auto student = Student {};
 student.name = "David";
 student.age = 22;

 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Définir des fonctions-membres

905. Classes

class Student
{
public:
 void set_attributes(const std::string& name,

 int age)
 {
 m_name = name;
 m_age = age;
 }

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 auto student = Student {};
 student.set_attributes("David",22);
 student.print();
 return 0;
}

Victor Marsault • 2025-2026

Définir des fonctions-membres

915. Classes

class Student
{
public:
 void set_attributes(const std::string& name,

 int age)
 {
 m_name = name;
 m_age = age;
 }

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 auto student = Student {};
 student.set_attributes("David",22);
 student.print();
 return 0;
}

Indique que la fonction
ne modifie pas les
attributs de l’instance.

Victor Marsault • 2025-2026

Définir un constructeur

925. Classes

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 auto student = Student {"David", 22};
 student.print();
 return 0;
}

Victor Marsault • 2025-2026

Définir un constructeur

935. Classes

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 auto student = Student {"David", 22};
 student.print();
 return 0;
}

Un constructeur a des
paramètres comme une fonction

Victor Marsault • 2025-2026

Définir un constructeur

945. Classes

int main()
{
 auto student = Student {"David", 22};
 student.print();
 return 0;
}

Un constructeur a des
paramètres comme une fonction

Et s’appelle comme ceci

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

Victor Marsault • 2025-2026

Définir un constructeur

955. Classes

La liste d’initialisation

int main()
{
 auto student = Student {"David", 22};
 student.print();
 return 0;
}

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

Victor Marsault • 2025-2026

Définir un constructeur

965. Classes

La liste d’initialisation
permet d’initialiser les
attributs

int main()
{
 auto student = Student {"David", 22};
 student.print();
 return 0;
}

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

Victor Marsault • 2025-2026

Définir un constructeur

975. Classes

int main()
{
 auto student = Student {"David", 22};
 student.print();
 return 0;
}

🤨 Des questions?

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

Victor Marsault • 2025-2026

Implémentation par défaut du constructeur par défaut

985. Classes

class Student
{
public:
 Student() = default;

 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto david = Student { "David", 22 };
 david.print();

 const auto default_student = Student {};
 default_student.print();

 return 0;
}

Victor Marsault • 2025-2026

Implémentation par défaut du constructeur par défaut

995. Classes

class Student
{
public:
 Student() = default;

 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto david = Student { "David", 22 };
 david.print();

 const auto default_student = Student {};
 default_student.print();

 return 0;
}

Si on écrit un constructeur, le
compilateur ne génère plus le
constructeur par défaut

Victor Marsault • 2025-2026

Implémentation par défaut du constructeur par défaut

1005. Classes

class Student
{
public:
 Student() = default;

 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 void print() const
 {
 std::cout << "Student called " << m_name
 << " is " << m_age << " years old"
 << std::endl;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto david = Student { "David", 22 };
 david.print();

 const auto default_student = Student {};
 default_student.print();

 return 0;
}

Rétablit l’implémentation
par défaut du constructeur
par défaut.

Victor Marsault • 2025-2026

Définir un opérateur de flux ami

1015. Classes

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 friend std::ostream& operator<<(std::ostream& stream,
 const Student& student)
 {
 stream << "Student called " << student.m_name
 << " is " << student.m_age << " years old.";
 return stream;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto student = Student { "David",22 };
 std::cout << student << std::endl;
 return 0;
}

Victor Marsault • 2025-2026

Définir un opérateur de flux ami

1025. Classes

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 friend std::ostream& operator<<(std::ostream& stream,
 const Student& student)
 {
 stream << "Student called " << student.m_name
 << " is " << student.m_age << " years old.";
 return stream;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto student = Student { "David",22 };
 std::cout << student << std::endl;
 return 0;
}

Ceci définit cela

Victor Marsault • 2025-2026

Définir un opérateur de flux ami

1035. Classes

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 friend std::ostream& operator<<(std::ostream& stream,
 const Student& student)
 {
 stream << "Student called " << student.m_name
 << " is " << student.m_age << " years old.";
 return stream;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto student = Student { "David",22 };
 std::cout << student << std::endl;
 return 0;
}

Spécifie que la fonction est amie, c’est-à-dire
peut accéder aux champs privés

Victor Marsault • 2025-2026

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 friend std::ostream& operator<<(std::ostream& stream,
 const Student& student)
 {
 stream << "Student called " << student.m_name
 << " is " << student.m_age << " years old.";
 return stream;
 }

private:
 std::string m_name;
 int m_age = 0;
};

Définir un opérateur de flux ami

1045. Classes

⚠ Attention !

Une fonction amie est une fonction libre. Il faut
donc lui passer une instance en paramètre pour
accéder à ses membres (attributs et méthodes)

Victor Marsault • 2025-2026

Définir un opérateur de flux ami

1055. Classes

class Student
{
public:
 Student(const std::string& name, int age)
 : m_name { name }
 , m_age { age }
 {}

 friend std::ostream& operator<<(std::ostream& stream,
 const Student& student)
 {
 stream << "Student called " << student.m_name
 << " is " << student.m_age << " years old.";
 return stream;
 }

private:
 std::string m_name;
 int m_age = 0;
};

int main()
{
 const auto student = Student { "David",22 };
 std::cout << student << std::endl;
 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Sommaire

1. Présentation du module.
2. Hello, World!
3. Types.
4. Fonctions libres.
5. Classes.
6. Gestion de la mémoire

a. Allocation dynamique
b. Cycle de vie
c. Ownership

106

Victor Marsault • 2025-2026

Statique vs Dynamique

● Statique = au moment de la compilation
○ Le mot-clef static n’a rien à voir

Ex: La taille d’un entier est connue statiquement (32 ou 64 bit)

○ Dès lors qu’on alloue quelque chose sur la pile (variable), on doit
connaître sa taille statiquement

● Dynamique = au moment de l'exécution
Ex: Le nombre d’éléments dans un tableau dynamique n’est pas connu à la
compilation

○ Allocation dynamique = allocation sur le tas (malloc ou new)

107Allocation dynamique

Victor Marsault • 2025-2026

Allocation dynamique

int main()
{
 auto words = std::vector<std::string>{};

while (true) {
 auto name = std::string {};
 std::cin >> name;

words.emplace_back(name);
}

}

108Gestion de la mémoire

Victor Marsault • 2025-2026

Cycle de vie

Un objet est
● alloué ⟶ un segment de mémoire est attribué

○ ≈ malloc

● construit ⟶ un constructeur est appelé pour remplir ce segment

…

● détruit ⟶ un destructeur est appelée pour nettoyer
● désalloué ⟶ la mémoire est rendu disponible

○ ≈ free

109Gestion de la mémoire

Victor Marsault • 2025-2026

Cycle de vie

Un objet est
● alloué ⟶ un segment de mémoire est attribué

○ ≈ malloc

● construit ⟶ un constructeur est appelé pour remplir ce segment

…

● détruit ⟶ un destructeur est appelée pour nettoyer
● désalloué ⟶ la mémoire est rendu disponible

○ ≈ free

110Gestion de la mémoire

Il ne faut utiliser l’objet que
pendant cette période

Une et une seule fois

Victor Marsault • 2025-2026

Ownership (propriété?)

Problème: Gérer la mémoire est difficile !
● Fuite mémoire
● Double désallocation
● Dangling référence/pointeurs

Dans la plupart des autres langages: gestion automatique via un garbage collector

En C++: gestion semi-automatique via l’ownership
● On indique clairement qui a la charge de désallouer quoi

○ Usuellement indiqué dans le type
○ On sait si un objet own un autre objet ou s’il l’observe

● Destruction automatique des ressources owned

● On n’observe que des ressources qui ont une durée de vie plus longue

111Gestion de la mémoire

Victor Marsault • 2025-2026

Ce qu’on va apprendre dans le segment 1

● Les types fondamentaux du C++ (int, bool,...)

● Quelques types de la bibliothèques standard (std::string, std::vector)

● Comprendre et corriger les messages d’erreurs les plus courants

● Bases des classes (membres, constructeurs, destructeurs)

● Copie vs Réference vs Référence constante vs Pointeurs

● Bases de la gestion de mémoire (Allocation, durée de vie, ownership)

112

