

., Université

Sommaire)2 Gustave Eiffel

1.
2.
3.
4,
S.
6.
/.

2 Victor Marsault ® 2025-2026

Copie

Déplacement
L-Value et R-Value
Conteneurs
Pointeurs intelligents
Héritage

Classes polymorphes

Som mC“re)V< Université

Gustave Eiffel

(]
r o

1. Copie.
a. Construction vs affectation
b. Constructeur de copie
c. Opérateur d'affectation par copie
d. Implémentations par défaut

3 Victor Marsault ® 2025-2026

Construction vs affectation et

Il faut distinguer I'instanciation d'un objet de sa réaffectation, car ce ne
sont pas les mémes fonctions qui sont appelées.

Si on instancie un tout nouvel Si on modifie la valeur d’un objet
objeft : qui existe déja :
Value v1 { 4 }; vl = 3;
Appel du Appel de
constructeur I'opérateur d’affectation

1. Copie 4 Victor Marsault © 2025-2026

A\

Construction vs affectation et

struct Value

{

Value (int value)
© v { value } Opérateur
d'affectation

A Unseul =

1. Copie 5 Victor Marsault © 2025-2026

A\

Construction vs affectation et

struct Value Quelles fonctions sont appelées par les

{ instructions suivantes ¢
Value (int value)

v { value }

{} Value vl { 4 };
vl = 3;
void operator=(int value) Value v2 = 3;

{

v = value;

1. Copie 6 Victor Marsault © 2025-2026

A\

Construction vs affectation et

struct Value Quelles fonctions sont appelées par les
{mmmmmmmmmmmee - instructions suivantes ¢

void operator=(int wvalue) Value v2 = 3;

{

v = value;

1. Copie 7 Victor Marsault 2025-2026

A\

Construction vs affectation et

struct Value Quelles fonctions sont appelées par les

{ instructions suivantes ¢
Value (int value)

v { value }
{} Value vl { 4 };

[o — -

| T T TTTTT T s T T E s T T Em TS I thZB;:

, void operator=(int value) 1 Value v2 = 3:
1

. !

1 1

1

1

1. Copie 8 Victor Marsault © 2025-2026

A\

Construction vs affectation et

struct Value Quelles fonctions sont appelées par les

{ instructions suivantes ¢
Value (int value)

v { value }
{} Value vl { 4 };

void operator=(int value)

{

v = value;

1. Copie 9 Victor Marsault © 2025-2026

A\

Construction vs affectation et

struct Value Quelles fonctions sont appelées par les
{mmmmmmmmmmmee - instructions suivantes ¢

Value v1 { 4 };

void operator=(int value) Value v2 = 3; !

{

v = value;

1. Copie 10 Victor Marsault 2025-2026

Construction vs affectation

struct Value

{
Value (int wvalue)
v { value }

{}

void operator=(int value)

{

v = value;

1. Copie

>‘.'< Université
~"' Gustave Eiffel

Quelles fonctions sont appelées par les
instructions suivantes ¢

Value v1 { 4 };
vl = 3;
Value v2 = 3;

@ Des questions?

11 Victor Marsault ® 2025-2026

A\

Constructeur de copie)2 Gustave Eiffel

Le constructeur de copie est le constructeur appelé lorsqu’un objet est
instancié et initialisé & partir d’'un objet du méme type.

Animal medor

/] ..

Animal medor copyl { medor };
Animal medor copyZ2 = medor ;

Victor Marsault ® 2025-2026

Constructeur de copie)2 Gustave Eiffel

class Animal

{
public:
Animal (const std::stringé& species, const std::stringé& name)

: species { species }, name { name } :
o a Constructeur de copie

Animal (const Animalé& other)
_species { other. species }

: I
| |

|
: , _name { other. name + " 2 " } 1

|
1

|
: std::cout << name << " was copied from " << other. name << std::endl;
1} I
| e e e e e e e e
private:

std::string species;
std::string name;

}s

Victor Marsault ® 2025-2026

Constructeur de copie)2 Gustave Eiffel

class Animal

{
public:
Animal (const std::stringé& species, const std::stringé& name)

: species { s . ame { name }
0

1
:Animal(const Animalé& other),
-0 T '_'Spe?:tés‘ E _O'the'rT__S'pé(ﬁ_éS }

, name { other. name + " 2 " }
{
std::cout << name << " was copied from " << other. name <<
std::endl; B B
}
private:

std::string species; Plus géneriguement .

} std::string _name; ClassName (const ClassName&)

Victor Marsault ® 2025-2026

Constructeur de copie)2 Gustave Eiffel

class Animal
{
public:
Animal (const std::stringé& species, const std::stringé& name)
_species { species }, name { name }
{}
Les attributs sont initialisés

Apimal (const_Animals_Qtherd) _T_ _ _ . yo__ene __qs .
P species 1 other. spevies] dans la liste d'initialisation

1
1

, name { other. name + " 2 " } |
- - 1

1
|
{ ————————————————————————
std::cout << name << " was copied from " << other. name <<
std::endl;
}
private:

std::string species;
std::string name;

I

Victor Marsault ® 2025-2026

Constructeur de copie)2 Gustave Eiffel

class Animal
{
public:
Animal (const std::stringé& species, const std::stringé& name)
_species { species }, name { name }
{}
Les instructions additionnelles

Animal (const Animalé& other)

_species { other. species } VonT dOnS le Corps
, name { other. name + " 2 " } —y
(5 k
1
; std::cout << name << " was copiled from " << other. name << :
std::endl; |
Loom on oo oo oo oo oo oo oo an mm mm mm mm mm mm mm mm mm mm mm Em Em Em EE EE EE EE EE EE EE EE EE EE EE EE S S SN SN S S BN EE EE EE Em Em Em Em Em
T
private

std::string species;
std::string name;

Victor Marsault ® 2025-2026

Constructeur de copie)2 Gustave Eiffel

1. Copie

class Animal
{
public:
Animal (const std::stringé& species, const std::stringé& name)
_species { species }, name { name }

{}

Animal (const Animalé& other)
_species { other. species }

, _name { other. name + " 2 " }
{
std::cout << name << " was copied from " << other. name <<
std::endl; B B
}
private:

std::string species;

}.std: :string name; @ DeS queSt|OnS?

17 Victor Marsault ® 2025-2026

Opérateur d'affectation par copie Y3 Univerit

Gustave Eiffel

L'opérateur d'affectation par copie est appelé lorsque la valeur d'un objet
est affectée a un objet pré-existant du méme type.

Animal medor { .. };
Animal felix { .. };
medor = felix;

Victor Marsault ® 2025-2026

Opérateur d'affectation par copie)20 Contone Eiffel

class Animal

{
public > : :
B Operateur d'affectation par copie
if (this != &other)

}

I
I
I
I
I
I
I _name = other. name;
I
I
I return *this;

I

I

Victor Marsault ® 2025-2026

Opérateur d'affectation par copie

>‘.'< Université
~"' Gustave Eiffel

class Animal
{
public:

_name = other. name;
}

return *this;

Victor Marsault ® 2025-2026

Opérateur d'affectation par copie)20 Contone Eiffel

class Animal

{
public:

1 I
| if (this != s&other) :
1 |
! _name = other. name; :
: |
: return *this; :
1 |

Le corps de |la fonction contient les
instructions exécutées par I'affectation

Victor Marsault ® 2025-2026

Opérateur d'affectation par copie Y3 Univerit

Gustave Eiffel

class Animal
{
public:

Animal & operator=(const Animal & other)

{ R

if Ythis != &other)

{ ————

_name = other. name;
! o

o
return kthis;

} —)

this est un pointeur permettant
}i) , N
d'acceéder a l'instance courante

1. Copie 22

Victor Marsault ® 2025-2026

Opérateur d'affectation par copie)20 Contone Eiffel

class Animal
public: A\ Par convention:
o valeur de retour

: Animal&:operator=(const Animal & other) —
-t ; '(‘t;, o référence sur
i is != &o r ye
: I'instance courante

_name = other. name;

Cela permet de chainer les appels :
felix = medor = ginger;

1. Copie 23 Victor Marsault © 2025-2026

Opérateur d'affectation par copie)20 Contone Eiffel

class Animal

{
public:

———
Animal & operator=(const Animal% otherb

i

A\ Atftenfion! Tm-m---o-o-----

_name = other. name;

vérifiez toujours que

return *this;

I'objet courant et | Cela peut éviter des problémes
'objet a copier sont lorsqu’on réaffecte un objet &
des instances lui-méme
distinctes -

1. Copie 24 Victor Marsault 2025-2026

https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:1,endLineNumber:11,positionColumn:1,positionLineNumber:11,selectionStartColumn:1,selectionStartLineNumber:11,startColumn:1,startLineNumber:11),source:'%23include+%3Ciostream%3E%0A%23include+%3Cvector%3E%0A%0Aclass+DynamicInt%0A%7B%0Apublic:%0A++++DynamicInt(int+v)%0A++++:+_v+%7B+new+int+%7B+v+%7D+%7D%0A++++%7B%7D%0A%0A++++DynamicInt%26+operator%3D(const+DynamicInt%26+other)%0A++++%7B%0A++++++++//+if+(this+!!%3D+%26other)%0A++++++++//+%7B%0A++++++++++++//+first+release+memory+in+this%0A++++++++++++delete+_v%3B%0A%0A++++++++++++//+then+realloc+a+new+block+with+the+right+value%0A++++++++++++_v+%3D+new+int+%7B+*other._v+%7D%3B%0A++++++++//+%7D%0A%0A++++++++return+*this%3B%0A++++%7D%0A%0A++++int+value()+const%0A++++%7B%0A++++++++return+*_v%3B%0A++++%7D%0A%0Aprivate:%0A++++int*+_v+%3D+nullptr%3B%0A%7D%3B%0A%0Aint+main()%0A%7B%0A++++std::vector%3CDynamicInt%3E+ints+%7B+1,+3,+2,+3,+6+%7D%3B%0A++++%0A++++DynamicInt+max+%3D+0%3B%0A++++for+(const+auto%26+d:+ints)%0A++++%7B%0A++++++++max+%3D+d.value()+%3C+max.value()+%3F+max+:+d%3B+%0A++++%7D%0A%0A++++std::cout+%3C%3C+max.value()+%3C%3C+std::endl%3B+%0A%0A++++return+0%3B%0A%7D%0A'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50.03265839320705,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:executor,i:(argsPanelShown:'0',compilationPanelShown:'1',compiler:g122,compilerName:'',compilerOutShown:'0',execArgs:'',execStdin:'',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'',overrides:!(),runtimeTools:!(),source:1,stdinPanelShown:'1',wrap:'1'),l:'5',n:'0',o:'Executor+x86-64+gcc+12.2+(C%2B%2B,+Editor+%231)',t:'0')),header:(),k:49.96734160679295,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Opérateur d'affectation par copie K

(Université
Gustave Eiffel

)

(]
r o

class Animal
{
public:

Animal & operator=(const Animalé& other)

{
if (this != &other)
{

_name = other. name;
}
return *this;

}

@ Des questions?

1. Copie 25

Victor Marsault ® 2025-2026

Implémentations par défaut)2C Gustave Eiffe

Si vous copiez un objet sans définir la fonction appropriée (constructeur de
copie ou opérateur d’'affectation par copie), le compilateur essaie de
générer une implémentation par défaut.

1. Copie 26 Victor Marsault © 2025-2026

Implémentations par défaut)2C Gustave Eiffe

Implémentation par défaut Implémentation par défaut de
du constructeur de copie I'opérateur d'affectation par copie

ClassName (const ClassNameé& other) ClassNameé& operator=(const ClassName& other)
_attrl { other. attrl } {
, _attr2 { other. attr2 } 1f (this != &other)
;e e {
{ _attrl = other. attrl;
} _attr2 = other. attr2;

}

return *this;

Victor Marsault ® 2025-2026

Implémentations par défaut)2C Gustave Eiffe

A\ Suivant les cas, il se peut que le compilateur ne génére pas
d'implémentations par défaut (Voir site du cours)

28 Victor Marsault ® 2025-2026

A\

Sommaire et

2. Déplacement.

a. Concept

b. Constructeur de déplacement

c. Opérateur d'affectation par déplacement
d. Implémentations par défaut

e. Variables de types fondamentaux

29 Victor Marsault ® 2025-2026

A\

Pourquoi le déplacement)2C Gustave Eiffe

Copier certains objets est couteux.
Méme en les passant par référence, certaines copies ne
sontf pas évitées...

2. Déplacement Victor Marsault 2025-2026

., Université
Do (

Gustave Eiffel

Ou se frouve la copie dans le code suivant ¢

std::string name = "Celine'; class Person
Person celine { name }; {
public:

Person(const std::string& name)
: name { name }

{}

private:
std::string name;

}s

2. Déplacement Victor Marsault 2025-2026

., Université
Do (

Gustave Eiffel

Ou se frouve la copie dans le code suivant ¢

std::string name = "Celine'"; class Person
Person celine { name }; {
public:

Person(copst stdiisfring& name)
::_name { name }:

private:
std::string name;

b

2. Déplacement Victor Marsault 2025-2026

., Université
Do (

Gustave Eiffel

On aimerait bien pouvoir déplacer le contenu de name
a l'intérieur de celine. name

. I .
std::string,name & "Celine"; class Person

i
{

Person “Ee1ine
public:

Person(const std::string& name)
: name { name }

2. Déplacement Victor Marsault 2025-2026

Qu'est-ce que le déplacement ¢ et

Le déplacement consiste donc transférer le contenu d'une instance A &
I'intérieur d'une instance B.

Déplacer A dans B est plus intéressant que copier A dans B si :

1. vous savez que la copie est couteuse
2. vous n'utilisez plus A dans la suite du code

2. Déplacement Victor Marsault ® 2025-2026

Qu'est-ce que le déplacement ¢ et

Objet dont on a plus besoin

Données internes &
I'objet
(Usuellement sur la pile)

Données externes de I'objet
d’'origine (Usuellement, sur le tas)

Nouvel objet qu’'on veut construire
en déplacant celui d'au dessus.

K15) Victor Marsault ® 2025-2026

>‘.'(Université
~"' Gustave Eiffel

Qu'est-ce que le déplacement ¢

Objet dont on a plus besoin

Données internes &
I'objet
(Usuellement sur la pile)

Copie des
données
internes Données externes de I'objet

/ d’'origine (Usuellement, sur le tas)

Nouvel objet qu’'on veut construire
en déplacant celui d'au dessus.

36 Victor Marsault ® 2025-2026

Qu'est-ce que le déplacement ¢ K

(Université
Gustave Eiffel

)

(]
r o

Objet dont on a plus besoin

Données internes a
I'objet
(Usuellement sur la pile)

~
~

données données
internes externes au

. Données externes de I'objet
/ nouvel objet d'origine (Usuellement, sur le tas)

Nouvel objet qu’'on veut construire
en déplacant celui d'au dessus.

37

Victor Marsault ® 2025-2026

Qu'est-ce que le déplacement ¢)2 C gt

Gustave Eiffel

Objet dont on a plus besoin ~ ©reservation de la Donnée minimales pour que

cohérence I'ancien objet reste cohérent.
Données internes a
I'objet

(Usuellement sur la pile)

Données externes de I'objet

/ nouvel objet d’origine (Usuellement, sur le tas)

Nouvel objet qu’'on veut construire
en déplacant celui d'au dessus.

Des questions?

38 Victor Marsault ® 2025-2026

Exemple de déplacement)2 Gustave Eiffel

La librairie standard fournit la fonction std: :move,
qui permet de transférer le contenu d'un objet

std::string name = "Celine"; e class Person
1

Person celine { std::move(:name): }; {
Person(std::string Ihame)l

: name { std::moﬁe‘(‘né}ne) }

On fransfere le contenu de .
name Q |'intérieur du Ter parametre private:

du constructeur std: :string name;
i

2. Déplacement Victor Marsault 2025-2026

Exemple de déplacement)2 Gustave Eiffel

La librairie standard fournit la fonction std: :move,
qui permet de transférer le contenu d'un objet

_____ L—=, class Person

Person celine { ?td::move(mame) }s {
"""" T mmue Y
Person(std: :string name)

: name { std::move(name) }

On utilise std: :move 0

private:
std::string name;

b

2. Déplacement Victor Marsault 2025-2026

Exemple de déplacement)2 Gustave Eiffel

La librairie standard fournit la fonction std: :move,
qui permet de transférer le contenu d'un objet

std::string name = "Celine'"; class Person

Person celine { std::move (name) }; {
public”” _ oo

Person(btd::string:name)

: nale~™{ sTdTmove (name) }

On ne passe pas 0
le parametre par référence,
puisqu’on construit un nouvel objet private:

std::string name;

a partir du contenu de I'autre v

2. Déplacement Victor Marsault 2025-2026

Exemple de déplacement)2 Gustave Eiffel

La librairie standard fournit la fonction std: :move,
qui permet de transférer le contenu d'un objet

std::string name = "Celine'"; class Person
Person celine { std::move(name) }; {
public:

Person(std: :string name)
: name { std::move(name) }

.. {} -
On fransfere a nouveau le \/f
contenu de name au constructeur private:

de I'attribut name std::string _name;
- b7

2. Déplacement Victor Marsault 2025-2026

Exemple de déplacement)2 Gustave Eiffel

La variable d’origine est maintenant vide, puisque son
contenu a été déplacé ailleurs !

std::string name = "Celine'; class Person
Person celine { std::move(name) }; {
public:
std::cout << "< " << name << " >"; Person(std: :string name)
: name { std::move(name) }
R :

private:
std::string name;

}s

2. Déplacement Victor Marsault 2025-2026

Exemple de déplacement)2 Gustave Eiffel

La variable d’origine est maintenant vide, puisque son
contenu a été déplacé ailleurs !

std::string name = "Celine'; class Person
Person celine { std::move(name) }; {
public:
std::cout << "< " << name << " >"; Person(std: :string name)

: name { std::move(name) }

{}

private:
std::string name;

Des questions? ¥

2. Déplacement Victor Marsault 2025-2026

A\

Constructeur de déplacement)2 Gustave Eiffel

Lorsqu’on déplace un objet pour en instancier un autre du méme type,
c'est le constructeur de déplacement qui est appelé.

Animal new medor = std::move (medor);

2. Déplacement Victor Marsault 2025-2026

Constructeur de déplacement)2 Gustave Eiffel

class Animal

Animal (Animal&& other)
_species { std::move(other. species) }
, _name { std::move(other. name) }

2. Déplacement Victor Marsault 2025-2026

A\

Constructeur de déplacement)2 Gustave Eiffel

class Animal

{
public:

T T T TSpeciés T std:tmove (other. species) |
, _name { std::move(other. name) }

{}

Plus génériquement :
ClassName (ClassName&é&)

2. Déplacement

Victor Marsault ® 2025-2026

A\

Constructeur de déplacement)2 Gustave Eiffel

class Animal Animal medor { "dog", "medor" };
{ Animal new medor = std::move (medor) ;
public:

Animal (Animal&& other)
: species { std::move(other. species) }
, _name { std::move(other. name) }

{} e .
Quelles sont les valeurs de :

T - medor. species ¢

1 1
| 1
1 1
1 1
1 1
' - medor. name e I
- |
| - new _medor._ species ¢
| 1
1 1

- new _medor. name ¢

2. Déplacement Victor Marsault 2025-2026

Opérateur d'affectation par déplacement)2C Gontove Eiffel

L'opérateur d’affectation par déplacement est appelé lorsqu’'un objet est
déplacé dans une instance pré-existante du méme type.

Animal medor { .. };
Animal felix { .. };
medor = std::move(felix);

2. Déplacement Victor Marsault ® 2025-2026

Opérateur d'affectation par déplacement)2C Gontove Eiffel

class Animal
{ ; : :
public: Opérateur d'affectation
o par déplacement
if (this != &other)

}

1
1
1
1
1
1
1 _name = std::move (other. name);
1
1
| return *this;

1

1

2. Déplacement Victor Marsault 2025-2026

Opérateur d'affectation par déplacement

2. Déplacement

class Animal
{
public:

1
___________________ |
{
if (this != &other)
{

_name = std::move (other. name) ;

}

return *this;

>‘.’< Université
~"' Gustave Eiffel

Victor Marsault ® 2025-2026

A\

Opérateur d'affectation par déplacement)2C Gontove Eiffel

class Animal

{

public:
Mémes contraintes que pour
Animal & operator=(Animal&& other) |’Offec-|-0-|-ion pCII’ COpie :
{:'l}'(t;i's' 1= sother)! ~ |
e - valeur deretour = *this
N —hame = stdiimove (other._name) - s'assurer que les instances
|return *this;i sont bien distinctes

2. Déplacement Victor Marsault 2025-2026

Implémentations par défaut ys (Universite

Gustave Eiffel

(]
r o

Comme pour les fonctions de copie, le compilateur peut générer des
implémentations par défaut pour les fonctions de déplacement.

Implémentation par défaut du Implémentation par défaut de I'opérateur
constructeur de déplacement d'affectation par déplacement

ClassName (ClassName && other) ClassName & operator=(ClassNameé& & other)

: _attrl { std::move (other. attrl) } {

, _attr2 { std::move (other. attr2) } if (this != &other)

;e {
{ _attrl = std::move (other. attrl);
} _attr2 = std::move (other. attr2);

}
return *this;

}

2. Déplacement

Victor Marsault ® 2025-2026

., Université

Déplacement des types fondamentaux)2C Guetave Eiffel

Que se passe-t-il lorsque vous déplacez une variable
de type fondamental dans une aufre ¢

int a = 4;
int b = std::move(a);

auto* ptr 1 = &a;
auto* ptr 2 = std::move(ptr 1);

2. Déplacement Victor Marsault 2025-2026

., Université

Déplacement des types fondamentaux)2C Guetave Eiffel

Lorsque vous déplacez une variable de type fondamental dans une autre,
cela équivaut ¢ faire une copie.

Le contenu de la variable source reste donc inchangé !

int a = 4;

int b = std::move(a); eaVOUTTOUkMNS4
pas 0

auto* ptr 1 = &a;
auto* ptr 2 = std::move(ptr 1);

ptr 1vaut sa et
non pas nullptr

2. Déplacement Victor Marsault 2025-2026

Sommaire >Z< g:is\;z:/itéiffel

3. L-Value et R-Value

a. Expression
b. Catégorisation
c. Overloading

56 Victor Marsault ® 2025-2026

A\

Expression)2C Gustave Eiffe

Une expression est une combinaison d’'opérandes, d'opérateurs, d'appel
de fonctions, pouvant étre évaluée.

L'évaluation d'une expression peut parfois produire une valeur.

3. L-Value et R-Value Victor Marsault ® 2025-2026

Expression

)V< Université
Gustave Eiffel

(]
r o

Exemples :

Victor Marsault ® 2025-2026

3. L-Value et R-Value

Expression)2C Gustave Eiffe

Exemples : Une expression peut
étre composée de
SOUS-expressions

3. L-Value et R-Value Victor Marsault ® 2025-2026

Expression)2C Gustave Eiffe

Exemples : Une expression peut
étre composée de
SOUS-expressions

qui peuvent-elles aussi
RN étre constituées
d’autres sous-expressions

3. L-Value et R-Value Victor Marsault ® 2025-2026

A\

Expression)2C Gustave Eiffe

Exemples :
A . Les deux expressions oranges
(a + *b) / 3 et .
Y Y les deux expressions vertes sont

fondamentalement différentes.

Pourquoie

3. L-Value et R-Value Victor Marsault ® 2025-2026

A\

Catégorisation)2C Gustave Eiffe

Les expressions produisant des valeurs sont catégorisées soit en tant que
L-value, soit en tant que R-value.

3. L-Value et R-Value Victor Marsault ® 2025-2026

A\

Catégorisation)2C Gustave Eiffe

Les expressions produisant des valeurs sont catégorisées soit en tant que
L-value, soit en tant que R-value.

- Une L-value est une expression dont I'évaluation renvoie une donnée
ayant déjd une adresse mémoire (ex: variable, référence).

3. L-Value et R-Value Victor Marsault ® 2025-2026

Catégorisation Yo (gniversits

Gustave Eiffel

(]
r o

Les expressions produisant des valeurs sont catégorisées soit en tant que
L-value, soit en tant que R-value.

- Une L-value est une expression dont I'évaluation renvoie une donnée
ayant déjd une adresse mémoire (ex: variable, référence).

- Une R-value est une expression dont I'évaluation produit un résultat
temporaire, qui n'a pas forcément d’'emplacement mémoire associé
(ex: littéral entier, retour d'une fonction par valeur).

3. L-Value et R-Value Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl
V2
v3
v4
v5

L-value ou R-value ¢

= 5;
= vl;

=v2 + 5 - vl;

= std::vector { 1, 2,
= véd.emplace back(4);

3

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

L-value ou R-value ¢

vl =:5€
v2 = vil;
vy = v2 + 5 - vl;

vd = std::vector { 1, 2,
v = vd.emplace back(4);

3

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

L-value ou R-value ¢

vl =:5€
v2 = vil;
vy = v2 + 5 - vl;

vd = std::vector { 1, 2,

v = vd.emplace back(4);

3

5 est un littéral entier

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

L-value ou R-value ¢

vl =:5€
v2 = vil;
vy = v2 + 5 - vl;

vd = std::vector { 1, 2,

v = vd.emplace back(4);

3

5 est un littéral entier

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl =
V2 =
=v2 + 5 - vl;

= std::vector { 1, 2,
v4d.emplace back(4);

v3
v4
vb

L-value ou R-value ¢

3

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl =

V2
v 3
v4
V5

L-value ou R-value ¢

= v2 + 5 - vl;
= std::vector { 1, 2,

v4d.emplace back(4);

3

v1 est une variable

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl =

V2
v 3
v4
V5

L-value ou R-value ¢

= v2 + 5 - vl;
= std::vector { 1, 2,

v4d.emplace back(4);

3

v1 est une variable

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

)V< Université
Gustave Eiffel

auto
auto
auto
auto
auto

vl =
V2 =
v3 =

v4
vb

L-value ou R-value ¢

= Std: vector: {1, 2,
v4d.emplace back(4);

3

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

)V< Université
Gustave Eiffel

auto
auto
auto
auto
auto

vl
%

v3 =

v4
vb

L-value ou R-value ¢

Std: vector: {1, 2,

v4d.emplace back(4);

3

le résultat du calcul

n'est pas encore

stocké en mémoire

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

)V< Université
Gustave Eiffel

auto
auto
auto
auto
auto

vl
%

v3 =

v4
vb

L-value ou R-value ¢

Std: vector: {1, 2,

v4d.emplace back(4);

3

le résultat du calcul

n'est pas encore

stocké en mémoire

Y

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl =
V2 =
v3 =
vl =

V5

L-value ou R-value ¢

————————————————————————

v4d.emplace back(4);

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl =
V2 =
v3 =
vl =

V5

L-value ou R-value ¢

on construit un tfout

————————————————————————

v4d.emplace back(4);

nouvel objet

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl =
V2 =
v3 =
vl =

V5

L-value ou R-value ¢

on construit un tfout

————————————————————————

v4d.emplace back(4);

nouvel objet

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

)V< Université
Gustave Eiffel

auto
auto
auto
auto
auto

vl
V2
v 3
v4
V5

L-value ou R-value ¢

= 5=
= vl;

= v2 + 5 - vl;

= Std: vector { 1, 2,

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation)2C Gustave Eiffe

L-value ou R-value ¢

on retourne une
référence sur |’
auto vl = 5; élément ajouté au

auto v2 = vl; tableau
auto v3 = v2 + 5 - vl;

auto v4 = Std: vector { 1, 2, 3 };

auto vb =|v4 emplace back(4) ;

3. L-Value et R-Value Victor Marsault ® 2025-2026

Catégorisation

)V< Université
Gustave Eiffel

auto
auto
auto
auto
auto

vl
V2
v 3
v4
V5

L-value ou R-value ¢

= 5=
= vl;
=v2 + 5 - vl;

Std: vector { 1, 2,

on retourne une
reférence sur |’
eléement gjouté au
tableau

3. L-Value et R-Value

Victor Marsault ® 2025-2026

Catégorisation

>‘.'< Université
~"' Gustave Eiffel

auto
auto
auto
auto
auto

vl
V2
v3
v4
v5

L-value ou R-value ¢

= 5; // R

=vl; // L

=v2 + 5 -+vl; // R

= std::vector { 1, 2, 3 }; //R
= vd.emplace back(4); //L

@ Des questions?

3. L-Value et R-Value

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Moyen mnémotechnique

Une bonne maniere d’identifier si une expression est une L-value ou une
R-value est de se demander si on peut la placer d gauche d'un =

Sioui, c'est une L-value (L comme Left), sinon, c'est une R-value.

Exemple :

vl = . // OK =D
v2 + 5 -vl = . // Ca n’a pas de sens »

Victor Marsault ® 2025-2026

3. L-Value et R-Value

OVGHOCIdIﬂg)V< Université

Gustave Eiffel

(]
r o

Rappel

L'overloading (ou surcharge) est le mécanisme permettant de définir deux
fonctions du méme nom si elles ont un nombre différent de parameétres ou
que les parametres n'ont pas le méme type.

3. L-Value et R-Value Victor Marsault ® 2025-2026

A\

OVGHOCIC“HQ)2 Gustave Eiffel

Il est possible de créer des surcharges a partir de la catégorie de valeur
(L-value ou R-value) des arguments.

3. L-Value et R-Value Victor Marsault ® 2025-2026

A\

Overloadin g)2 Gustave Eiffel

Il est possible de créer des surcharges a partir de la catégorie de valeur
(L-value ou R-value) des arguments.

C’est d'ailleurs ce que nous avons fait plus tot avec

- les constructeurs de copie (qui attendent des L-values) et
- les constructeurs de déplacement (qui attendent des R-values).

3. L-Value et R-Value Victor Marsault ® 2025-2026

A\

Overloadin g)2 Gustave Eiffel

Il est possible de créer des surcharges a partir de la catégorie de valeur
(L-value ou R-value) des arguments.

C’est d'ailleurs ce que nous avons fait plus tot avec

- les constructeurs de copie (qui attendent des L-values) et
- les constructeurs de déplacement (qui attendent des R-values).

L'instructionne std: :move ne fait que transformer une L-value en R-value

3. L-Value et R-Value 86 Victor Marsault ® 2025-2026

Sommaire >Z< g:is\;z:/itéiffel

4. Conteneurs
a. Conteneurs séquentiels
b. Conteneurs associatifs
c. Tuples

87 Victor Marsault ® 2025-2026

Conteneurs séquentiels)2C Gustave Eiffe

Un conteneur séquentiel est un conteneur

- dans lequel les éléments sont stockés dans un ordre bien défini,
- de telle sorte que le 1er élément, 2e élément, etc. aient un sens

Par exemple :
- std::array
- std::vector
- std::list

4. Conteneurs Victor Marsault ® 2025-2026

., Université
Do (

Gustave Eiffel

Conteneurs associatifs

Un conteneur associatif est un conteneur dans lequel chaque élément est
indexé par une clé.

Cette indexation peut-étre réalisée

- soit au moyen du tri des clés,
- soit au moyen de leur hashage.

Par exemple :
- std::setetstd::unordered set
- std::mapetstd::unordered map

Victor Marsault ® 2025-2026

4. Conteneurs

., Université

Conteneurs associatifs)2(Gustave Eiffel

Indexation par tri Indexation par hashage
Acces: Oflog n) Acces: O(1) amorti
Insertion: O(log n) Insertion: O(1) amorti
Suppression: O(log n) Suppression: O(1) amorti
Conftraintes sur les clés: Conftraintes sur les clés:

- comparables - équivalences
- hashables

4. Conteneurs Victor Marsault ® 2025-2026

Conteneurs associatifs et

std: :map et std: :unordered map sont des dictionnaires : d chaque clé
est associé un seul et unique élément.

auto persons by name = std::map<std::string, Person> {
{ "Celine", celine },
{ "Julien", julien },

b

persons by name.emplace ("Donatien", donatien);
persons by name.erase ("Julien");

4. Conteneurs Victor Marsault ® 2025-2026

Conteneurs associatifs et

Indexation par tri Indexation par hashage

std: :map et std: :unordered map sont des dictionnaires : d chaque clé
est associé un seul et unique élément.

auto persons by name = std::map<std::string, Person> {
{ "Celine", celine },
{ "Julien", julien },

b

persons by name.emplace ("Donatien", donatien);
persons by name.erase ("Julien");

4. Conteneurs Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Conteneurs associatifs

std::set et std: :unordered set sont des ensembles : un élément ne
peut étre inséré que s'il n'est pas déja présent dans le conteneur

auto persons = std::unordered set<std::string> {

{ "Celine" 1},
{ "Julien" 1},

b

auto gerald it = persons.find("Gerald");
auto has gerald = (gerald it != persons.end());

Victor Marsault ® 2025-2026

4. Conteneurs

., Université
Do (

Gustave Eiffel

Conteneurs associatifs

Indexation par tri Indexation par hashage

std::set et std: :unordered set sont des ensembles : un élément ne
peut étre inséré que s'il n'est pas déja présent dans le conteneur

auto persons = std::unordered set<std::string> {

{ "Celine" 1},
{ "Julien" 1},

b

auto gerald it = persons.find("Gerald");
auto has gerald = (gerald it != persons.end());

Victor Marsault ® 2025-2026

4. Conteneurs

>‘.'(Université
~"' Gustave Eiffel

Tuples

Les tuples permettent de stocker:

- plusieurs élements
- de types potentiellement différents

(le nombre et type des éléments soit éfre connu statiguement)

La librairie standard propose les types std: :pair et std: :tuple.

Is permettent notfamment d’éviter la définition de types-structurés qui ne
serviraient qu’'a un seul endroit du programme.

Victor Marsault ® 2025-2026

4. Conteneurs 95

TU ples >Z< Université

Gustave Eiffel

Les tuples permettent de stocker un nombre prédéfini d'éléments de types
potentiellement différents.

std::pair<std::string, unsigned int>
get name and age(const Personé& person)

{

return std::make pair(person.get name(), person.get age());

4. Conteneurs

Victor Marsault ® 2025-2026

Sommaire >Z< g:is\:c:/itéiffel

5. Pointeurs intelligents

97 Victor Marsault ® 2025-2026

A\

Pointeur intelligent)2 Gustave Eiffel

Un pointeur-intelligent (ou smart-pointer) est un objet qui :

e contfient un pointeur vers une donnée allouée dynamiquement
e désalloue automatiquement la donnée lorsqu'il est détruit
e gére de maniere cohérente sa copie et son déplacement

Dans du code moderne :

e tous les pointeurs-ownants doivent étre encapsulés dans des instances
de smart-pointers ;
e |es pointeurs-nus sont nécessairement des pointeurs-observants.

5. Pointeurs intelligents 98 Victor Marsault 2025-2026

A\

Pointeur intelligent)2 Gustave Eiffel

Un pointeur-intelligent (ou smart-pointer) est un objet qui :

e contfient un pointeur vers une donnée allouée dynamiquement
e désalloue automatiquement la donnée lorsqu'il est détruit
e gére de maniere cohérente sa copie et son déplacement

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Pointeur intelligent)2 Gustave Eiffel

Les pointeurs intelligents fournis par la librairie standard sont :

® std::unique ptr
® std::shared ptr

Dans ce cours, Nous Nous intéresserons uniquement au premier.

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée

e Contrairement a un pointeur brut, un unique ptr own |'objet pointé

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée

e Contrairement a un pointeur brut, un unique ptr own |'objet pointé

e On utilise std: :make unique<type> pPOUr Créer un unique ptr<type>

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée

e Contrairement a un pointeur brut, un unique ptr own |'objet pointé
e On utilise std: :make unique<type> pPOUr Créer un unique ptr<type>

e La copie estinterdite

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée

e Contrairement a un pointeur brut, un unique ptr own |'objet pointé
e On utilise std: :make unique<type> pPOUr Créer un unique ptr<type>
e La copie estinterdite

e Peut éfre déplacé (avec std: :move)

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée

e Contrairement a un pointeur brut, un unique ptr own |'objet pointé

e On utilise std: :make unique<type> pPOUr Créer un unique ptr<type>
e La copie estinterdite

e Peut éfre déplacé (avec std: :move)

e Disponible dans <memory>

5. Pointeurs intelligents Victor Marsault 2025-2026

A\

Qu'est-ce gu'un std::unique_ptr et

e Une sorte de pointeur (contient une adresse, peut étre nul)

e Invariant: unseul unique ptr pointe versla méme donnée
o d'oule terme “unique”

o des pointeurs bruts peuvent pointer vers la donnée
e Contrairement a un pointeur brut, un unique ptr own |'objet pointé
e On utilise std: :make unique<type> pPOUr Créer un unique ptr<type>
e La copie estinterdite
e Peut éfre déplacé (avec std: :move)

' ?
e Disponible dans <memory> @ Des questions”

5. Pointeurs intelligents Victor Marsault 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std: :unique ptr<Car> create unique car (const std::string& model)
{

auto car = std::make unique<Car> (model) ;

return car;

int main ()

{

auto many cars = std::vector<std::unique ptr<Car>> {};
many cars.push back(std::make unique<Car>("Suzuki-Splash"));
auto tmp car = create unique car ("Tesla-Fusion");

many cars.push back(std::move (tmp car)) ;

return O;

5. Pointeurs intelligents Victor Marsault 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model
auto car = std <Car> (model

return car

int main ()

{

auto many cars = std::vector<std::unique ptr<Car>> {};

many cars. std <Car>

auto tmp car = create unique car

many cars. std tmp car

return 0 on instancie un vector de

unique ptr<Car>

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model
auto car = std <Car> (model

return car

int main ()
{

auto many cars = std::vector<std::unique ptr<Car>> {};

many cars.push back (std::make unique<Car>("Suzuki-Splash"))

auto tmp car create unique car
many cars. std tmp car

return 0 on alloue dynamiquement un
} Car aveC make unique

5. Pointeurs intelligents Victor Marsault 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model
auto car = std <Car> (model

return car

int main ()

{
auto many cars = std::vector<std:: r<Car>> {};

A
r N\
many cars.push back(std::make unique<Car>("Suzuki-Splash"));
auto tmp car create unique car

many cars.

return O

I'élément est déplacé dans
le tableau

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model

auto car = std <Car> (model
return car

int main ()
{

auto many cars = std::vector<std::unique ptr<Car>> {};

many cars.push back(std::make unique<Car> ("Suzuki-Splash"));

auto tmp car = create unique car ("Tesla-Fusion");
many cars. std tmp car
return 0 on appelle

create unique car

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std: :unique ptr<Car> create unique car (const std::string& model)
{

auto car = std::make unique<Car> (model) ;

return car
} ’\

int main ()

{

auto many cars = std::vector<std::unique ptr<Car>> {};

many cars.push back(std::make unique<Car> ("Suzuki-Splash"));

auto tmp car create unique car ("Tesla-Fusion");

many cars. std tmp car

return 0 on alloue dynamiquement un
Car adveC make unique

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std: :unique ptr<Car> create unique car (const std::string& model)
{

auto car = std::make unique<Car> (model) ;
return car;

} ~_
int main ()

{

auto many cars = std::vector<stdrs ' <Car>> {};

many cars.push back(std::make unique<Car> ("Suzuki-Splash"));

auto tmp car create unique car ("Tesla-Fusion"

many cars. std tmp car

on renvoie le
unique ptr parvaleur

return O

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model
auto car = std <Car> (model

return car

int main ()

{

auto many cars = std::vector<std::unique ptr<Car>> {};
R-value .
many cars.push back (std: :ma s M <Car>("Suzuki-Splash"));
A
r N\
auto tmp car = create unique car ("Tesla-Fusion");
many cars. _7std tmp car

- \/ la valeur de retour est déplacée
}

dans la variable tmp car

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Exemple d'usage de std::unique_pfr

std <Car> create unique car (const std & model
auto car = std <Car> (model
. tmp_ car est une L-value ; si on I'gjoute au

tableau directement, le compilateur va

int main () essayer de copier le unique ptr

{

auto many cars = std::vfgctor<std::unique ptr<Car>> {};
many cars.push back(sfd::make unique<Car>("Suzuki-Splash"));

auto tmp car = cre
many cars.push back (=td tmp car,);

___Y,__J

return 0O
} L-value

e unique car ("Tesla-Fusion");

5. Pointeurs intelligents Victor Marsault 2025-2026

., Université
Do (

Exemple d'usage de std::unique_pfr

Gustave Eiffel

std <Car> create unique car (const std & model
auto car = std <Car> (model

return car

int main ()

{

auto many cars = std::vfgctor<std::unique ptr<Car>> {};
many cars.push back(sfd::make unique<Car>("Suzuki-Splash"));

auto tmp car = cre
many cars.push back (=td tmp car,);

___Y,__J

return 0O
} L-value

e unique car ("Tesla-Fusion");

5. Pointeurs intelligents Victor Marsault 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model

auto car = std <Car> (model
return car

int main ()

{

auto many cars = std::vect

ique ptr<Car>> {};

many cars.push back (gtd: :make unique<CarX ("Suzuki-Splash"));

auto tmp car = créate unique car ("Tesla-Fusion");
many cars.push back(std::move (tmp car)) ;
\ J
return 0 - on utilise std: :move pour déplacer
} le unique ptr dansle tableau

5. Pointeurs intelligents Victor Marsault 2025-2026

Exemple d'usage de std::unique_pir ys(Universite

Gustave Eiffel

std <Car> create unique car (const std & model
auto car = std <Car> (model

return car

int main ()
{

auto many cars = std::vector<std::unique ptr<Car>> {};
many cars.push back(std::make unique<Car> ("Suzuki-Splash"));

auto tmp car = create unique car ("Tesla-Fusion");
many cars.push back(std::move (tmp car)) ;

return 0 ‘\\\\\5__’/,/”—‘\

} tmp car est désormais vide

5. Pointeurs intelligents Victor Marsault 2025-2026

Exemple d'usage de std::unique_pftr et

std: :unique ptr<Car> create unique car (const std::string& model)

{

auto car = std::make unique<Car> (model) ;
return car;

int main ()

{

auto many cars = std::vector<std::unique ptr<Car>> {};
many cars.push back(std::make unique<Car>("Suzuki-Splash"));
auto tmp car = create unique car ("Tesla-Fusion");

many cars.push back(std::move (tmp car)) ;

return O;

} Des questions?

5. Pointeurs intelligents Victor Marsault 2025-2026

Et la copie dans tout ca?)2 Gt €

Gustave Eiffel

std: :unique ptr<Car> create unique car (const std::string& model)

{

auto car = std::make unique<Car> (model) ;
return car;

}

int main ()
{

auto many cars = std::vector<std::unique ptr<Car>> {};

/res On essaie de copier un vecteur

de unique pir .
Est-ce que ca va marcher?

auto car copies = many cars;

return O;

}

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

L'interdiction de copie se propage!)2 Gt €

Gustave Eiffel

(]
r o

std: :unique ptr<Car> create unique car (const std::string& model)

{

auto car = std::make unique<Car> (model) ;
return car;

}

int main ()
{

auto many cars = std::vector<std::unique ptr<Car>> {};

/*o0 x/

On essaie de copier un vecteur
de unique pir .
Est-ce que ¢ca va marcher?

auto car copies = many cars;

return O;

} Non | copier le vecteur demande de

copier les std::unique_pftr

5. Pointeurs intelligents

Victor Marsault ® 2025-2026

Sommaire >Z< g:is\;z:/itéiffel

é. Héritage.
a. Syntaxe
b. Instance d'une classe dérivée

123 Victor Marsault ® 2025-2026

., Université
Do (

Gustave Eiffel

class Base class Derived : public Base
{ {
public: public:
Base(int x, int y) Derived(int 1, int m, int n)
o x { x} Base { 1 +m, 1 * m }
r Yy Ly} r_z {n}
{} {
x=1;
int get y() const /]y = 3;
{ }
return y;
} private:
int z = 0;
protected: }i
int x = 0;
private:
int y = 0;

b

Victor Marsault ® 2025-2026

6. Héritage

., Université
Do (

Gustave Eiffel

6. Héritage

class Base
{
public:
Base(int x, int vy)
o x { x}
.y Ly}
{}

int get y() const
{
return y;

}

protected:
int x = 0;

private:
int y = 0;

}i

N -
public:
Derived(int 1, int m, int n)
: Base { 1 +m, 1 *m }
r _Z2 { n}

toute instance de Derived peut étre
considérée comme une instance de Base

Victor Marsault ® 2025-2026

class Base

{

class Derived : public Base

{

public: public:
Base(int x, int vy) Deri_v_eci(in_t_l_, _iiﬂ'; m,_ in_t_n)
o ox { x} :IBase { 1 +m, 1 *m } !
;v iy} A 2 o - ’
{} {
x = 1;
int get y() const /]y = 3;
{ }
return y;
} private:
int z = 0;
protected: b
int x = 0;
private:

int y = 0;

}i

permet d'appeler le

Université

Gustave Eiffel

constructeur de la classe-parente

6. Héritage Victor Marsault 2025-2026

., Université
Do (

Gustave Eiffel

class Base class Derived : public Base
{ {
public: public:
Base(int x, int vy) Derived(int 1, int m, int n)
o x { x} : Base { 1 +m, 1 *m }
oy Ly} , z { n}
{} {
x = 1;
int get y() const /]y = 3;
{ }
return y;
} private:
- int z = 0;
jprotected: | i
int x = 0;
private
int _y = 0; permet I'accés aux afttributs

depuis les instances-filles

6. Héritage Victor Marsault 2025-2026

>‘.’< Université
~"' Gustave Eiffel

Syntaxe

class Base class Derived : public Base
{ {
public: public:
Base(int x, int vy) Derived(int 1, int m, int n)
x { x} : Base { 1 +m, 1 *m }
oy { vy} r _Z2 { n}
{} {
x=1;
int get y() const /]y = 3;
{ }
return y;
} private:
int z = 0;

acces protected:

valide int _x = 0;
private:
int y = 0;

}i

Victor Marsault ® 2025-2026

6. Heritage

., Université
Do (

Gustave Eiffel

class Base class Derived : public Base
{ {
public: public:

Base(int x, int vy) Derived(int 1, int m, int n)

x { x} : Base { 1 +m, 1 *m }
oy { vy} r _Z2 { n}
{} {
x = 1;
int get y() const /]y = 3;

{

return y;
} private:
int z = 0;
protected: b
int x = 0;
acces private:
invalide int _y = 0;

}i

Victor Marsault ® 2025-2026

6. Héritage

., Université
Do (

Gustave Eiffel

class Base class Derived : public Base
{ {
public: public:
Base(int x, int y) Derived(int 1, int m, int n)
o x { x} Base { 1 +m, 1 * m }
.y Ly} r_z {n}
{} {
x=1;
int get y() const /]y = 3;
{ }
return y;
} private:
int z = 0;
protected: b
int x = 0;
private:
int y = 0;

’ Des questions?

Victor Marsault ® 2025-2026

6. Héritage

A\

Appel des fonctions de la classe parente)2C Gustave Eifel

On peut appeler les fonctions publiques de la classe parente sur les
instances de la classe fille.

int main()

{

auto derived = Derived { .. };
std::cout << derived.get y() << std::endl;

return 0O;

6. Héritage Victor Marsault 2025-2026

A\

Instance d'une classe dérivée et

On peut appeler les fonctions publiques du type-parent sur les
instances-filles.

int main()

{

auto derived = Derived { .. };
std::cout << derived.get y() << std::endl;

return 0O;

get y() est définie dans la partie publique de Base,
donc on peut I'appeler sur une instance de berived

6. Héritage Victor Marsault 2025-2026

Appel des fonctions de la classe parente)2C Gustave Eifel

On peut appeler les fonctions publiques de la classe parente sur les
instances de la classe fille.

int main()

{

auto derived = Derived { .. };
std::cout << derived.get y() << std::endl;

return 0O;

}

Des questions?

6. Héritage Victor Marsault 2025-2026

A\

Instance d'une classe dérivée et

On peut ensuite référencer les instances du type-enfant par le type-parent.

volid fcn(const Base& base)
{

int main()

{ }

auto derived = Derived { .. };
Base& ref base = derived; int main()
{
return O; auto derived = Derived { .. };
} fcn (derived) ;

return O;

}

6. Héritage Victor Marsault 2025-2026

Instance d'une classe dérivée yo(Universits

Gustave Eiffel

On peut ensuite référencer les instances du type-enfant par le type-parent.

vold fcn(const Base& base)

(mmmmem———--

int main()

{ }

auto derived = Derived { .. };

Base& ref base = derived; int main()

_____ {

return 0; auto derived = Derived { .. };
} fcn (derived) ;

, . Lo, , return 0O;
derived peut étre référence par

son type parent Base

6. Héritage

Victor Marsault ® 2025-2026

Instance d'une classe dérivée et

On peut ensuite référencer les instances du type-enfant par le type-parent.

volid fcn(const Base& base)

{
int main()

{ }

auto derived = Derived { .. };
Base& ref base = derived; int main()
{
return O; auto derived = Derived { .. };
} fcn (derived) ;

return O;

}
Des questions?

6. Héritage Victor Marsault 2025-2026

A\

Instance d'une classe dérivée et

Cela fonctionne aussi avec des pointeurs bruts.

volid fcn(const Base* base)
{

int main()

{ }

auto derived = Derived { .. };
Base* ref base = &derived; int main()
{
return O; auto derived = Derived { .. };
} fcn (&derived) ;

return O;

}

6. Héritage Victor Marsault 2025-2026

Instance d'une classe dérivée et

Cela fonctionne aussi avec des pointeurs bruts.

vold fcn(const Base* base)

(mmmmem———--

int main()
{ }

auto derived = Derived { .. };

Base* ref base = &derived; int main()

_____ {

return 0; auto derived = Derived { .. };
} fcn (&derived) ;

return 0O;

Derived* est convertible en Base* }

6. Héritage Victor Marsault 2025-2026

A\

Attention & la tfroncation et

Derived f£(...) { ...
Derived& g(...) { ... }

Voyez vous le probleme dans
cette ligne ¢

int main()
\Base Dbasel = £(...);«
Base " base2 ="g(...);
Base& base3 ;

}

6. Héritage Victor Marsault 2025-2026

Attention & la tfroncation et

Derived f(...)

{ ...
Deriveds g(...) { ... } On essaie de stocker une Base

sur la pile.

int malr/\/
P e
Base | basel =i1f(...)f«<— ~___ Onn'adonc pasla place de

‘Base base2 =4(C...7; ! ,
Bases base3 = g(...); stocker la Derived renvoyée par f

}

6. Héritage Victor Marsault 2025-2026

Attention a la tfroncation et

Derived f£(...) { ...
Derived& g(...) { ... }

int malr/\/
(..« ______
'Base | basel)T'l < ~~—_ Onn'adonc pas la place de

‘Base Dbase2 = ; ker la D d f
Bases base3 = stocker la Derive renvoyee par

}

On essaie de stocker une Base
sur la pile.

.
~
~e

A\ Une Derived est une Base donc le
compilateur va fronquer ce qu'il dépasse

6. Héritage Victor Marsault ¢ 2025-2026

A\

Attention & la tfroncation et

Derived f£(...) { ...
Derived& g(...) { ... }

Voyez-vous le probleme dans
cette ligne ¢

int main()

{
Base basel = f(...);

FEEEEEEEEEE—-- 1
1Base base2 = g(...);=

Base& base3 = g(...);
}

6. Héritage Victor Marsault 2025-2026

Attention a la froncation Yo (gniversite

Gustave Eiffel

Derived f(...) {
Deriveds g(...) { ...) On essaie encore de stocker

une Base sur la pile.

int main()

{

Base basel = £(...); g renvoie une L-value donc on
Base 1 base2 = g(...);e— ~____ devrait la copier, mais on ne peut
} Base& base3 = gT...77 pas stocker la copie

6. Héritage Victor Marsault 2025-2026

A\

Attention a la tfroncation et

Derived f£(...) { ... } .
Deriveds g(...) { } On essaie encore de stocker

une Base sur la pile.

int main()

{
Base ‘basel = f(...); g renvoie une L-value (Deriveds)
Base 1 base2 = g(...);le— ~____ donc on devrait la copler Mais
Base& base3 = §T. RN

Base he sait se copler qu une
Baseé&

}

A\ Une Derived est une Base donc le
compilateur va copier la berived tronquée

6. Héritage Victor Marsault ¢ 2025-2026

A\

Attention & la tfroncation et

Derived f£(...) { ...
Derived& g(...) { ... }

| _ Voyez vous le probleme dans
int main() .
{ cefte ligne ¢

BRase Dbasel ..
Base basez = g(...);

6. Héritage Victor Marsault 2025-2026

A\

Attention & la tfroncation et

Derived f£(...) { ...
Derived& g(...) { ... }

| _ Voyez vous le probleme dans
JEment cette ligne 2
Base Dbasel ..
Base baseZ = g(...);
'Bases& base3 = g(...);< In'y en apas)
Une Bases et une Deriveds prenne
la méme place en mémoire.
On pourra récupérer une Deriveds

plus tard

6. Héritage Victor Marsault 2025-2026

Attention & la tfroncation et

Derived f£(...) { ...
Derived& g(...) { ... }

int main()

{
Base Dbasel = ...
Base base?2 = g(...)
Base& base3 =

Ne Neo N

}

Des questions?

6. Héritage Victor Marsault 2025-2026

Type statique vs Type dynamique yo(Jniversite

Rappel:

e Statique = au moment de la compilation
e Dynamique = au moment de |I'exécution

Et pour le type?

e Type statique = type déclarée dans le code
e Type dynamique = type réel a I'exécution

6. Héritage Victor Marsault ¢ 2025-2026

Type statique vs Type dynamique

>‘.'< Université
~"' Gustave Eiffel

class Base

{
/* oL x/
b

class Derivedl

{
/* L. x/
¥

class Derived2
{

VL

b

: public Base

: public Base

Derivedl& f1() {...
Derived2& f2() {...

Base& £3()

int main()

{

Base& x1

Base& x2

Base& x3

{...

£10)
£2(0);
£3();

Victor Marsault ® 2025-2026

Type statique vs Type dynamique yo(Jniversite

(]
r o

class Base

{ Derivedls& f1() {...}

Derived2& f2() {...}

* *
}{ ..o/ Base& f3() {...}
int main()
class Derivedl : public Base { _-———
{ :Base&.xl = f1();
/* .. */ (—— ==
) :Base&|x2 = £2();

IBase& | x3

}I.____

£30)7

class Derived2 : public Base
{

/* oL x/

i

Les types statiques de x1,
x2 et x3 sont fous Bases

150 Victor Marsault ® 2025-2026

Type statique vs Type dynamique

>‘.'< Université
~"' Gustave Eiffel

class Base

{
/* oL x/
b

class Derivedl

{
/* L. x/
¥

class Derived2
{

VL

b

: public Base

: public Base

Derivedl& f1() {...

Derived2& f2() {...}

Base& £3() {...}

int main()

IBase& x3 = £3();

}I.____

Les types statiques de x1,
x2 et x3 sont fous Bases

151

{ (\/
IBase&:xl =1£1()
L - — = b = =

F—) el —E 0

Le type dynamique de
x1 est probablement
Derivedl&

Le type dynamique de
x2 est probablement
Derived2&

Victor Marsault ® 2025-2026

A\

Type statique vs Type dynamique yo(Jniversite

Le type dynamique de
x1 est probablement

class Base

{ Derivedls& f1() {...}

Derived2& f2() {...}

}{* e Bases £3() {...} Derivedlé&
int main() (\\,//’
class Derivedl : public Base by 0! Le type dynamique de

IBase& x1 =1f1();
o) -_-_-_-: _-_—_—_:/LY x2 est probablement
y .- 'Base&1x2 ='£2(); Derived2&

IBase& %3 ='f3()

}l___- S

class Derived2 : public Base

{ A\ On ne connait pas le

}{* Y type dynamique de x3

Les types statiques de x1,
x2 et x3 sont fous Bases

152 Victor Marsault ® 2025-2026

Type statique vs Type dynamique yo(Jniversite

™ Le type dynamique de
class Base @ DeS -
{ = " 5 Jervedts 28 E 1 x1 est probablement
}{* Y questlons: Bases £3() (.. .] Derivedls

int main() (\/
. . : { S i

class Derivedl : public Base Bases'x1 =210 Le type dynamlque de
{/* y s —_-_-_-_1/[] x2 est probablement
o 'Bases1x2 =£2() ;i Derived2&

IBase& x3 ='f3();|

class Derived2 : public Base)

{ A\ On ne connait pas le

}{* Y type dynamique de x3

Les types statiques de x1,
x2 et x3 sont fous Bases

153 Victor Marsault ® 2025-2026

., Université

Sommaire)2 Gustave Eiffel

1.
2.
3.
4,
S.
6.
7.

Copie
Déplacement
L-Value et R-Value
Conteneurs
Pointeurs intelligents
Héritage
Classes polymorphes
a. Définition
Redéfinir le comportement d'une classe

o)
c. Résolution d'appels
d. Fonctions virtuelles pures

154 Victor Marsault ® 2025-2026

Définition >Z< g:is\:c:/s;téiffel

En C++, I'héritage permet de répondre a 2 besoins orthogonaux :

e cvifterla duplication de code
e spécialiser un comportement

7. Classes polymorphes 155 Victor Marsault © 2025-2026

., Université
Do (

Gustave Eiffel

Définition

En C++, I'héritage permet de répondre a 2 besoins orthogonaux :

e cvifterla duplication de code
e spécialiser un comportement

Une classe dont on a pu redéfinir le comportement via héritage est une
classe donft les instances peuvent se comporter differemment selon le type

dynamique de |'objet.

On parle de classes polymorphes.

156 Victor Marsault ® 2025-2026

7. Classes polymorphes

Redéfinir le comportement d’une classe)2(Gustave Eiffe

class Instrument

{
public:
virtual std::string get name() const

{

return "?2??";

void describe () const

{
std::cout << "This 1s a " << get name () << std::endl;

b

7. Classes polymorphes Victor Marsault © 2025-2026

Redéfinir le comportement d’une classe)2(Gustave Eiffe

7. Classes polymorphes

indigue que la fonction peut-étre
class Instrument redéfinie par les classes-filles

return "???";

void describe () const

{
std::cout << "This is a " << get name() << std::endl;

158 Victor Marsault ® 2025-2026

Redéfinir le comportement d’une classe)2(Gustave Eiffe

class Piano: public Instrument
{
public:
std::string get name () const override
{
return "piano";
}
}i

class Guitar: public Instrument

{
public:
std::string get name () const override

{

return "guitar";

7. Classes polymorphes 159 Victor Marsault © 2025-2026

Redéfinir le comportement d’une classe)2(Gustave Eiffe

7. Classes polymorphes

class Piano: public Instrument

{

public:
std::string get name () const:bverride:

T T T e

return "piano";

}
b

class Guitar: public Instrument

{

public:
. LR |
std::string get name () const.overrldeI
P e
return "guitar"; Q demande au compilateur de vérifier
} que la fonction est bien virtuelle

Optionnel, mais fortement conseillé

160 Victor Marsault ® 2025-2026

Redéfinir le comportement d'une classe o (gniversité

Gustave Eiffel

int main ()

{
Piano piano;
Guitar guitar;

std::vector<Instrument *> instruments { &piano, &guitar };
for (const auto* instrument: instruments)

{

std::cout << instrument->get name () << std::endl;

return 0;

7. Classes polymorphes

Victor Marsault ® 2025-2026

Résolution d'appels)2 Gustave Eiffel

1. Une fonction virtuelle dans une classe-mere est également virtuelle
dans les classes-filles (si elle a la méme signature)

2. Siune fonction n'est pas virtuelle, on appelle la version définie dans le
type statique de |'objet

3. Siune fonction est virtuelle, on appelle la version définie dans le type
dynamique de |'objet

4. L'appel au destructeur répond aux mémes regles que les autres
fonctions

7. Classes polymorphes 162 Victor Marsault © 2025-2026

A\

Résolution d'appels)2 Gustave Eiffel

1. Une fonction virtuelle dans une classe-mere est également virtuelle
dans les classes-filles (si elle a la méme signature)

7. Classes polymorphes 163 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument
{
public:
virtual std::string get name () const

{

return "?2??";

bi class Piano: public Instrument
{
public:
std::string get name () const

{

return "piano";

7. Classes polymorphes Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument anChon
{ virtuelle

public:
virtual std::string get name () const

{

return "?2??";

bi class Piano: public Instrument
{
public:
std::string get name () const

{

return "piano";

7. Classes polymorphes 165 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument anChon
{ virtuelle

public:
virtual std::string get name () const

{

return "?2??";

donc virtuelle

}i class Piano: public Ins :
{ aussli

public:
std::string get name () const

{

return "piano";

7. Classes polymorphes 166 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument fonction

‘- VLIRS A\ Attention A\
public: I auXx 5|gnaiures

virtual std::string get_name()nconsq

e

return "?2??";

} ne redéfinit
s class Piano: public Ins p05|q9”e
i fonction

public:

{

return "piano";

7. Classes polymorphes Victor Marsault © 2025-2026

A\

Résolution d'appels)2 Gustave Eiffel

class Instrument anCﬂon
{ | virtuelle A Attention A
b e aux signatures

{

return "?2??";

} ne redéfinit
s class Piano: public Ins p05|q9”e
i fonction

public:
std::strino

7. Classes polymorphes 168 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument

(A\ Attention A\
public: aux signatures

virtual std::string get name () const

{

return "?2??";

b class Piano: public Instrument
{
public:
'Y * o : r ey I_ EP
toujours metire override pour que std::string get_name (), override!

le compilateur nous prévienne si on se {

tfrompe dans la signature

return "piano";

7. Classes polymorphes 169 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument

(A\ Attention A\
public: aux signatures

virtual std::string get name () const

{
return "?2??";

}

b class Piano: public Instrument
{
public:
'Y * o : r ey I_ EP
toujours metire override pour que std::string get_name (), override!

le compilateur nous prévienne si on se
tfrompe dans la signature

7. Classes polymorphes Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument

{
public:
virtual std::string get name () const

{

return "?2??";

b class Piano: public Instrument

{
public:
std::string get name () const

{

return "piano";

@ Des questions? y

7. Classes polymorphes 171 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

2. Siune fonction n'est pas virtuelle, on appelle la version définie dans le
type statique de I'objet

7. Classes polymorphes 172 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
std::string get name () const std::string get name () const
{ {
return "?2?2°?"; return "piano";

int main ()
{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0;

7. Classes polymorphes 173

Victor Marsault ® 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
std::string get name () const std::string get name () const
{ {
return "?2?2°?"; return "piano";
} }
bi }i
int main ()

{
g type stafique

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0; , , N
) on resout 'appel d get name ()

7. Classes polymorphes 174 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

fonction non

class Instrument . class Piano: blic Instrument
{ b virtuelle { * pub-t b
public: public:

std::string get name () const std::string get name () const

{ {

return "?2?2°?"; return "piano";

} }
}i i
int main ()

{
g type stafique

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0; , , N
) on resout 'appel d get name ()

7. Classes polymorphes 175 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

fonction non
class Instrument

. class Piano: blic Instrument
{ virtuelle { * pub-t b
public: public:
std::string get name () const std::string get name () const
{ {
return "?2?2°?"; return "piano";

} }
}s s

int main ()

{
g type stafique

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0;

) on réalise un appel statique

7. Classes polymorphes 176 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
std::string get name () const std::string get name () const
{ {
return "?2?2°?"; return "piano";

int main ()
{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0; H
}

7. Classes polymorphes 177

Victor Marsault ® 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
std::string get name () const std::string get name () const
{ {
return "?2?2°?"; return "piano";

} }
}s s

int main ()
{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

e Des questions?

7. Classes polymorphes 178 Victor Marsault © 2025-2026

Résolution d'appels)2 Gustave Eiffel

3. Siune fonction est virtuelle, on appelle la version définie dans le type
dynamique de |'objet

7. Classes polymorphes 179 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
virtual std::string get name() const std::string get name () const override
{ {
return "?2?2°?"; return "piano";

int main ()
{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0;

7. Classes polymorphes 180

Victor Marsault ® 2025-2026

Résolution d'appels

>‘.'< Université
~"' Gustave Eiffel

class Instrument

{
public:
virtual std::string get name() const

{

return "?2?2?";

int main ()

{
g type stafique

Instrumenté& instrument = piano;

class Piano: public Instrument

{

public:
std::string get name () const override
{

return "piano";

s

std::cout << instrument.get name () << std::endl;

return 0; , , N
) on resout 'appel d get name ()

7. Classes polymorphes

Victor Marsault ® 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

fonction . .

class Instrument : class Piano: public Instrument
(virtuelle (
public: public:

virtual std::string get name() const std::string get name () const override

{ {

return "?2?2°?"; return "piano";

} }
}i i
int main ()

{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0; , , N
) on resout 'appel d get name ()

7. Classes polymorphes 182 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

fonction . .
class Instrument : class Piano: public Instrument
(virtuelle {
public: public:
virtual std::string get name() const std::string get name () const override
{ {
return "?2?2°?"; return "piano";

int

{

type dynamique

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0; P .
) on réalise un appel dynamique

7. Classes polymorphes 183 Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

fonction . .
class Instrument : class Piano: public Instrument
(virtuelle {
public: public:
virtual std::string get name() const std::string get name () const override
{ {
return "?2?2°?"; return "piano";

int

{

type dynamique

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

return 0; P .
) on réalise un appel dynamique

7. Classes polymorphes Victor Marsault © 2025-2026

RéSO|UTIOﬂ d’Oppels)Z(Université

Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
virtual std::string get name() const std::string get name () const override
{ {
return "?2?2°?"; return "piano";

int main ()
{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

}

7. Classes polymorphes 185

Victor Marsault ® 2025-2026

Résolution d'appels)2 Gustave Eiffel

class Instrument class Piano: public Instrument
{ {
public: public:
virtual std::string get name() const std::string get name () const override
{ {
return "?2?2°?"; return "piano";
} }
bi }i
int main ()

{

Piano piano;

Instrumenté& instrument = piano;
std::cout << instrument.get name () << std::endl;

e Des questions?

7. Classes polymorphes 186 Victor Marsault © 2025-2026

., Université

Résolution d’Oppe|S)2(Gustave Eiffel

4. L'appel au destructeur répond aux mémes regles que les autres
fonctions.
Pour garantir qu'un objet polymorphe sera correctement détruit, en
particulier dans le cas d’allocations dynamiques, il faut toujours définir
un destructeur virtuel dans la classe-mere (méme s'il ne fait “rien”).

7. Classes polymorphes Victor Marsault © 2025-2026

Fonctions virtuelles pures)2 Gustave Eiffel

(]
r o

Si une fonction n'a pas de sens a étre définie dans la classe-mere, il n'est
pas nécessaire de lui fournir une implémentation. On parle de fonctions
virtuelles pures.

Siune classe contfient des fonctions virtuelles pures, elle devient abstraite et
n'est plus instanciable.

Les classes-filles doivent redéfinir toutes les fonctions virtuelles pures des
types-parents pour pouvoir étre instanciées.

188 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

{
public:
virtual std::string get name() const = 0;

}s

class Flute : public Instrument

{
public:
virtual std::string get name() const { return "piano"; }

}s

int main()

{

Instrument instrument;
Flute flute;

return O;

189 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument définit une fonction virtuelle pure

{
public: e
virtual std::string get name() const'!= 0; |

__r
}s

class Flute : public Instrument

{
public:
virtual std::string get name() const { return "piano"; }

}s

int main()

{

Instrument instrument;
Flute flute;

return O;

190 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument k\/—\/ Instrument est donc abstraite
{

public:
virtual std::string get name() const = 0;

}s

class Flute : public Instrument

{
public:
virtual std::string get name() const { return "piano"; }

}s

int main()

{

Instrument instrument;
Flute flute;

return O;

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument Instrument est donc abstraite
{ , donc n’est pas instanciable
public:

virtual std::string get name() const = 0;

}s

class Flute : public Instrument

{
public:
virtual std::string get name() const { return "piano"; }

}s

int main()

{

Instrument instrument;
Flute flute;

return O;

192 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument Instrument est donc abstraite
{ , donc n’est pas instanciable
public:

virtual std::string get name() const = 0;

}s

class Flute : public Instrument

{
public:
virtual std::string get name() const { return "piano"; }

}s

int main()

{

Instrument instrument;
Flute flute;

return O;

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

{ PP
public: Flute définif get name

virtual std::string get name() const = 0;

}s

class Flute : public Instrument

{ 1/////’—7
public:

virtual std::string get name() const { return "piano"; }

}s

int main()

{

//Instrument instrument;
Flute flute;

return O;

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

Lo Flute n'a pas de fonctions
public: .

virtual std::string get name() const = 0; VerUe”e pure
bi Elle est donc instanciable.

class Flute : public Instrument
{
public:
virtual std::string get name() const { return

}s

int main()

{

//Instrument instrument;
Flute flute;

return O;

}

195 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

Lo Flute n'a pas de fonctions
public: .

virtual std::string get name() const = 0; VerUe”e pure
bi Elle est donc instanciable.

class Flute : public Instrument
{
public:
virtual std::string get name() const { return

}s

int main()

{

//Instrument instrument;
Flute flute;

return O;

}

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument
Lo Flute, j'ai oublié const
public:

virtual std::string get name() const = 0;

}s

class Flute : public Instrument
{ /

public: R
virtual std::string get name() ! { return "piano"; }

b o

int main()

{

//Instrument instrument;
Flute flute;

return O;

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

I Flute définit une autre
public: .
fonction-membre

virtual std::string get name() const = 0;

class Flute : public Instrument
{ /

public: R
virtual std::string get name() ! { return "piano"; }

}s

int main()

{

//Instrument instrument;
Flute flute;

return O;

198 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument
o Flute est donc abstraite
public:

virtual std::string get name() const = 0;

}s

class Flute : public Instrument

{
public: o

virtual std::string get name() ! { return "piano"; }

b o

int main()

{

//Instrument instrument;
Flute flute;

return O;

199 Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

L Flute est donc abstraite
public:

virtual std::string get name() const = 0; donc pas instanciable m
b

class Flute : public Instrument

{
public: o

virtual std::string get name() ! { return "piano"; }

b o

int main()

{

//Instrument instrument;
Flute flute;

return O;

}

200 Victor Marsault ® 2025-2026

>‘.'(Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

L Flute est donc abstraite
public:

virtual std::string get name() const = 0; donc pas instanciable m
b

class Flute : public Instrument

{
public: R

virtual std::string get name() ! { return "piano"; }

}s

int main()

{

//Instrument instrument;
Flute flute;

return O;

}

Victor Marsault ® 2025-2026

>‘.'< Université
~"' Gustave Eiffel

Fonctions virtuelles pures

class Instrument

{
public:
virtual std::string get name() const = 0;

}s

class Flute : public Instrument
{
public:
virtual std::string get name() const { return "piano"; }

}s

int main()

{

Instrument instrument;
Flute flute;

Des questions?

return O;

202 Victor Marsault ® 2025-2026

Ce gqu’'on va apprendre dans le segment 2 et

La copie

Le déplacement

Comment éviter (encore plus) de copies
Conteneurs de base

Utilisation des std::unique_ptr

Héritage

Résolution d'appel dynamique

203 Victor Marsault ® 2025-2026

