
Victor Marsault • 2025-20261

Cours de C++
Segment 2

2025-2026

Je te force pas hein mais regaaaaarde comment c’est siii beau et si amusant !

??

Victor Marsault • 2025-2026

1. Copie
2. Déplacement
3. L-Value et R-Value
4. Conteneurs
5. Pointeurs intelligents
6. Héritage
7. Classes polymorphes

Sommaire

2

Victor Marsault • 2025-2026

Sommaire

3

1. Copie.
a. Construction vs affectation
b. Constructeur de copie
c. Opérateur d’affectation par copie
d. Implémentations par défaut

2. Déplacement.
3. L-Value et R-Value.
4. Conteneurs
5. Pointeurs intelligents
6. Héritage.
7. Classes polymorphes.

Victor Marsault • 2025-2026

Si on modifie la valeur d’un objet
qui existe déjà :

Construction vs affectation

4

Il faut distinguer l’instanciation d’un objet de sa réaffectation, car ce ne
sont pas les mêmes fonctions qui sont appelées.

1. Copie

Value v1 { 4 }; v1 = 3;

Si on instancie un tout nouvel
objet :

Appel de
l’opérateur d’affectation

Appel du
constructeur

Victor Marsault • 2025-2026

Construction vs affectation

51. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Opérateur
d’affectation

⚠ Un seul =

Victor Marsault • 2025-2026

Value v1 { 4 };
v1 = 3;
Value v2 = 3;

Construction vs affectation

61. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Quelles fonctions sont appelées par les
instructions suivantes ?

Victor Marsault • 2025-2026

Value v1 { 4 };
v1 = 3;
Value v2 = 3;

Construction vs affectation

71. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Quelles fonctions sont appelées par les
instructions suivantes ?

Victor Marsault • 2025-2026

Value v1 { 4 };
v1 = 3;
Value v2 = 3;

Construction vs affectation

81. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Quelles fonctions sont appelées par les
instructions suivantes ?

Victor Marsault • 2025-2026

Value v1 { 4 };
v1 = 3;
Value v2 = 3;

Construction vs affectation

91. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Quelles fonctions sont appelées par les
instructions suivantes ?

Victor Marsault • 2025-2026

Value v1 { 4 };
v1 = 3;
Value v2 = 3;

Construction vs affectation

101. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Quelles fonctions sont appelées par les
instructions suivantes ?

Victor Marsault • 2025-2026

Value v1 { 4 };
v1 = 3;
Value v2 = 3;

Construction vs affectation

111. Copie

struct Value
{
 Value(int value)
 : v { value }
 {}

 void operator=(int value)
 {
 v = value;
 }

 int v = 0;
};

Quelles fonctions sont appelées par les
instructions suivantes ?

🤨 Des questions?

Victor Marsault • 2025-2026

Constructeur de copie

12

Le constructeur de copie est le constructeur appelé lorsqu’un objet est
instancié et initialisé à partir d’un objet du même type.

1. Copie

Animal medor
// …
Animal medor_copy1 { medor };
Animal medor_copy2 = medor ;

Victor Marsault • 2025-2026

class Animal
{
public:
 Animal(const std::string& species, const std::string& name)
 : _species { species }, _name { name }
 {}

 Animal(const Animal& other)
 : _species { other._species }
 , _name { other._name + " 2 " }
 {
 std::cout << _name << " was copied from " << other._name << std::endl;
 }

private:
 std::string _species;
 std::string _name;
};

Constructeur de copie

131. Copie

Constructeur de copie

Victor Marsault • 2025-2026

class Animal
{
public:
 Animal(const std::string& species, const std::string& name)
 : _species { species }, _name { name }
 {}

 Animal(const Animal& other)
 : _species { other._species }
 , _name { other._name + " 2 " }
 {
 std::cout << _name << " was copied from " << other._name <<
std::endl;
 }

private:
 std::string _species;
 std::string _name;
};

Constructeur de copie

141. Copie

Plus génériquement :
ClassName(const ClassName&)

Signature

Victor Marsault • 2025-2026

class Animal
{
public:
 Animal(const std::string& species, const std::string& name)
 : _species { species }, _name { name }
 {}

 Animal(const Animal& other)
 : _species { other._species }
 , _name { other._name + " 2 " }
 {
 std::cout << _name << " was copied from " << other._name <<
std::endl;
 }

private:
 std::string _species;
 std::string _name;
};

Constructeur de copie

151. Copie

Les attributs sont initialisés
dans la liste d’initialisation

Victor Marsault • 2025-2026

class Animal
{
public:
 Animal(const std::string& species, const std::string& name)
 : _species { species }, _name { name }
 {}

 Animal(const Animal& other)
 : _species { other._species }
 , _name { other._name + " 2 " }
 {
 std::cout << _name << " was copied from " << other._name <<
std::endl;
 }

private:
 std::string _species;
 std::string _name;
};

Constructeur de copie

161. Copie

Les instructions additionnelles
vont dans le corps

Victor Marsault • 2025-2026

class Animal
{
public:
 Animal(const std::string& species, const std::string& name)
 : _species { species }, _name { name }
 {}

 Animal(const Animal& other)
 : _species { other._species }
 , _name { other._name + " 2 " }
 {
 std::cout << _name << " was copied from " << other._name <<
std::endl;
 }

private:
 std::string _species;
 std::string _name;
};

Constructeur de copie

171. Copie

🤨 Des questions?

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

181. Copie

L’opérateur d’affectation par copie est appelé lorsque la valeur d’un objet
est affectée à un objet pré-existant du même type.

Animal medor { … };
Animal felix { … };
medor = felix;

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

191. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

};

Opérateur d’affectation par copie

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

201. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

};

Signature

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

211. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

};
Le corps de la fonction contient les
instructions exécutées par l’affectation

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

221. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

};
this est un pointeur permettant
d’accéder à l’instance courante

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

231. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

};

⚠ Par convention:
valeur de retour

=
référence sur

l’instance courante

Cela permet de chaîner les appels :
felix = medor = ginger;

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

241. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

};

Cela peut éviter des problèmes
lorsqu’on réaffecte un objet à
lui-même

⚠ Attention !
vérifiez toujours que

l’objet courant et
l’objet à copier sont

des instances
distinctes

https://godbolt.org/#g:!((g:!((g:!((h:codeEditor,i:(filename:'1',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,selection:(endColumn:1,endLineNumber:11,positionColumn:1,positionLineNumber:11,selectionStartColumn:1,selectionStartLineNumber:11,startColumn:1,startLineNumber:11),source:'%23include+%3Ciostream%3E%0A%23include+%3Cvector%3E%0A%0Aclass+DynamicInt%0A%7B%0Apublic:%0A++++DynamicInt(int+v)%0A++++:+_v+%7B+new+int+%7B+v+%7D+%7D%0A++++%7B%7D%0A%0A++++DynamicInt%26+operator%3D(const+DynamicInt%26+other)%0A++++%7B%0A++++++++//+if+(this+!!%3D+%26other)%0A++++++++//+%7B%0A++++++++++++//+first+release+memory+in+this%0A++++++++++++delete+_v%3B%0A%0A++++++++++++//+then+realloc+a+new+block+with+the+right+value%0A++++++++++++_v+%3D+new+int+%7B+*other._v+%7D%3B%0A++++++++//+%7D%0A%0A++++++++return+*this%3B%0A++++%7D%0A%0A++++int+value()+const%0A++++%7B%0A++++++++return+*_v%3B%0A++++%7D%0A%0Aprivate:%0A++++int*+_v+%3D+nullptr%3B%0A%7D%3B%0A%0Aint+main()%0A%7B%0A++++std::vector%3CDynamicInt%3E+ints+%7B+1,+3,+2,+3,+6+%7D%3B%0A++++%0A++++DynamicInt+max+%3D+0%3B%0A++++for+(const+auto%26+d:+ints)%0A++++%7B%0A++++++++max+%3D+d.value()+%3C+max.value()+%3F+max+:+d%3B+%0A++++%7D%0A%0A++++std::cout+%3C%3C+max.value()+%3C%3C+std::endl%3B+%0A%0A++++return+0%3B%0A%7D%0A'),l:'5',n:'0',o:'C%2B%2B+source+%231',t:'0')),k:50.03265839320705,l:'4',n:'0',o:'',s:0,t:'0'),(g:!((h:executor,i:(argsPanelShown:'0',compilationPanelShown:'1',compiler:g122,compilerName:'',compilerOutShown:'0',execArgs:'',execStdin:'',fontScale:14,fontUsePx:'0',j:1,lang:c%2B%2B,libs:!(),options:'',overrides:!(),runtimeTools:!(),source:1,stdinPanelShown:'1',wrap:'1'),l:'5',n:'0',o:'Executor+x86-64+gcc+12.2+(C%2B%2B,+Editor+%231)',t:'0')),header:(),k:49.96734160679295,l:'4',n:'0',o:'',s:0,t:'0')),l:'2',n:'0',o:'',t:'0')),version:4

Victor Marsault • 2025-2026

Opérateur d’affectation par copie

251. Copie

class Animal
{
public:
 ...

 Animal& operator=(const Animal& other)
 {
 if (this != &other)
 {
 _name = other._name;
 }
 return *this;
 }

 ...

}; 🤨 Des questions?

Victor Marsault • 2025-2026

Si vous copiez un objet sans définir la fonction appropriée (constructeur de
copie ou opérateur d’affectation par copie), le compilateur essaie de

générer une implémentation par défaut.

Implémentations par défaut

261. Copie

Victor Marsault • 2025-2026

Implémentations par défaut

271. Copie

ClassName(const ClassName& other)
 : _attr1 { other._attr1 }
 , _attr2 { other._attr2 }
 , ...
{
}

Implémentation par défaut
du constructeur de copie

Implémentation par défaut de
l’opérateur d’affectation par copie

ClassName& operator=(const ClassName& other)
{
 if (this != &other)
 {
 _attr1 = other._attr1;
 _attr2 = other._attr2;
 ...
 }
 return *this;
}

Victor Marsault • 2025-2026

Implémentations par défaut

⚠ Suivant les cas, il se peut que le compilateur ne génère pas
d’implémentations par défaut (Voir site du cours)

28

Victor Marsault • 2025-2026

Sommaire

29

1. Copie.
2. Déplacement.

a. Concept
b. Constructeur de déplacement
c. Opérateur d’affectation par déplacement
d. Implémentations par défaut
e. Variables de types fondamentaux

3. L-Value et R-Value.
4. Conteneurs
5. Pointeurs intelligents.
6. Héritage.
7. Classes polymorphes.

Victor Marsault • 2025-2026

Pourquoi le déplacement

302. Déplacement

Copier certains objets est coûteux.
Même en les passant par référence, certaines copies ne

sont pas évitées…

Victor Marsault • 2025-2026

Copie 😭

312. Déplacement

Où se trouve la copie dans le code suivant ?

class Person
{
public:
 Person(const std::string& name)
 : _name { name }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { name };

Victor Marsault • 2025-2026

std::string name = "Celine";
Person celine { name };

Copie 😭

322. Déplacement

Où se trouve la copie dans le code suivant ?

class Person
{
public:
 Person(const std::string& name)
 : _name { name }
 {}

private:
 std::string _name;
};

Victor Marsault • 2025-2026

Copie 😭

332. Déplacement

class Person
{
public:
 Person(const std::string& name)
 : _name { name }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { name };

On aimerait bien pouvoir déplacer le contenu de name
à l’intérieur de celine._name

Victor Marsault • 2025-2026

Qu’est-ce que le déplacement ?

342. Déplacement

Le déplacement consiste donc à transférer le contenu d’une instance A à
l’intérieur d’une instance B.

Déplacer A dans B est plus intéressant que copier A dans B si :

1. vous savez que la copie est coûteuse
2. vous n’utilisez plus A dans la suite du code

Victor Marsault • 2025-2026

Qu’est-ce que le déplacement ?

35

Données internes à
l’objet

(Usuellement sur la pile)

Nouvel objet qu’on veut construire
en déplaçant celui d’au dessus.

Objet dont on a plus besoin

Données externes de l’objet
d’origine (Usuellement, sur le tas)

Victor Marsault • 2025-2026

Qu’est-ce que le déplacement ?

36

Données internes à
l’objet

(Usuellement sur la pile)

Nouvel objet qu’on veut construire
en déplaçant celui d’au dessus.

Objet dont on a plus besoin

Données externes de l’objet
d’origine (Usuellement, sur le tas)

Copie des
données
internes

Victor Marsault • 2025-2026

Qu’est-ce que le déplacement ?

37

Données internes à
l’objet

(Usuellement sur la pile)

Nouvel objet qu’on veut construire
en déplaçant celui d’au dessus.

Objet dont on a plus besoin

Copie des
données
internes

Transfert des
données
externes au
nouvel objet

Données externes de l’objet
d’origine (Usuellement, sur le tas)

Victor Marsault • 2025-2026

Qu’est-ce que le déplacement ?

38

Données internes à
l’objet

(Usuellement sur la pile)

Nouvel objet qu’on veut construire
en déplaçant celui d’au dessus.

Objet dont on a plus besoin

Copie des
données
internes

Donnée minimales pour que
l’ancien objet reste cohérent.

Transfert des
données
externes au
nouvel objet

Préservation de la
cohérence

🤨 Des questions?

Données externes de l’objet
d’origine (Usuellement, sur le tas)

Victor Marsault • 2025-2026

Exemple de déplacement

392. Déplacement

class Person
{
public:
 Person(std::string name)
 : _name { std::move(name) }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { std::move(name) };

La librairie standard fournit la fonction std::move,
qui permet de transférer le contenu d’un objet

On transfère le contenu de
name à l’intérieur du 1er paramètre

du constructeur

Victor Marsault • 2025-2026

Exemple de déplacement

402. Déplacement

class Person
{
public:
 Person(std::string name)
 : _name { std::move(name) }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { std::move(name) };

La librairie standard fournit la fonction std::move,
qui permet de transférer le contenu d’un objet

On utilise std::move

Victor Marsault • 2025-2026

Exemple de déplacement

412. Déplacement

class Person
{
public:
 Person(std::string name)
 : _name { std::move(name) }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { std::move(name) };

La librairie standard fournit la fonction std::move,
qui permet de transférer le contenu d’un objet

On ne passe pas
le paramètre par référence,

puisqu’on construit un nouvel objet
à partir du contenu de l’autre

Victor Marsault • 2025-2026

Exemple de déplacement

422. Déplacement

class Person
{
public:
 Person(std::string name)
 : _name { std::move(name) }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { std::move(name) };

La librairie standard fournit la fonction std::move,
qui permet de transférer le contenu d’un objet

On transfère à nouveau le
contenu de name au constructeur

de l’attribut _name

Victor Marsault • 2025-2026

Exemple de déplacement

432. Déplacement

class Person
{
public:
 Person(std::string name)
 : _name { std::move(name) }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { std::move(name) };

std::cout << "< " << name << " >";

La variable d’origine est maintenant vide, puisque son
contenu a été déplacé ailleurs !

< >

Victor Marsault • 2025-2026

Exemple de déplacement

442. Déplacement

class Person
{
public:
 Person(std::string name)
 : _name { std::move(name) }
 {}

private:
 std::string _name;
};

std::string name = "Celine";
Person celine { std::move(name) };

std::cout << "< " << name << " >";

La variable d’origine est maintenant vide, puisque son
contenu a été déplacé ailleurs !

🤨 Des questions?

Victor Marsault • 2025-2026

Constructeur de déplacement

45

Lorsqu’on déplace un objet pour en instancier un autre du même type,
c’est le constructeur de déplacement qui est appelé.

Animal new_medor = std::move(medor);

2. Déplacement

Victor Marsault • 2025-2026

class Animal
{
public:
 ...

 Animal(Animal&& other)
 : _species { std::move(other._species) }
 , _name { std::move(other._name) }
 {}

 ...
};

Constructeur de déplacement

46

Constructeur de déplacement

2. Déplacement

Victor Marsault • 2025-2026

class Animal
{
public:
 ...

 Animal(Animal&& other)
 : _species { std::move(other._species) }
 , _name { std::move(other._name) }
 {}

 ...
};

Constructeur de déplacement

47

Signature

2. Déplacement

Plus génériquement :
ClassName(ClassName&&)

Victor Marsault • 2025-2026

class Animal
{
public:
 ...

 Animal(Animal&& other)
 : _species { std::move(other._species) }
 , _name { std::move(other._name) }
 {}

 ...
};

Constructeur de déplacement

482. Déplacement

Quelles sont les valeurs de :
- medor._species ?
- medor._name ?
- new_medor._species ?
- new_medor._name ?

Animal medor { "dog", "medor" };
Animal new_medor = std::move(medor);

Victor Marsault • 2025-2026

Opérateur d’affectation par déplacement

49

L’opérateur d’affectation par déplacement est appelé lorsqu’un objet est
déplacé dans une instance pré-existante du même type.

Animal medor { … };
Animal felix { … };
medor = std::move(felix);

2. Déplacement

Victor Marsault • 2025-2026

Opérateur d’affectation par déplacement

502. Déplacement

class Animal
{
public:
 ...

 Animal& operator=(Animal&& other)
 {
 if (this != &other)
 {
 _name = std::move(other._name);
 }
 return *this;
 }

 ...

};

Opérateur d’affectation
par déplacement

Victor Marsault • 2025-2026

Opérateur d’affectation par déplacement

51

class Animal
{
public:
 ...

 Animal& operator=(Animal&& other)
 {
 if (this != &other)
 {
 _name = std::move(other._name);
 }
 return *this;
 }

 ...

};

2. Déplacement

Signature

Victor Marsault • 2025-2026

Opérateur d’affectation par déplacement

522. Déplacement

class Animal
{
public:
 ...

 Animal& operator=(Animal&& other)
 {
 if (this != &other)
 {
 _name = std::move(other._name);
 }
 return *this;
 }

 ...

};

Mêmes contraintes que pour
l’affectation par copie :

- valeur de retour = *this
- s’assurer que les instances

sont bien distinctes

Victor Marsault • 2025-2026

Comme pour les fonctions de copie, le compilateur peut générer des
implémentations par défaut pour les fonctions de déplacement.

Implémentations par défaut

532. Déplacement

ClassName(ClassName&& other)
 : _attr1 { std::move(other._attr1) }
 , _attr2 { std::move(other._attr2) }
 , ...
{
}

Implémentation par défaut du
constructeur de déplacement

Implémentation par défaut de l’opérateur
d’affectation par déplacement

ClassName& operator=(ClassName&& other)
{
 if (this != &other)
 {
 _attr1 = std::move(other._attr1);
 _attr2 = std::move(other._attr2);
 ...
 }
 return *this;
}

Victor Marsault • 2025-2026

Déplacement des types fondamentaux

Que se passe-t-il lorsque vous déplacez une variable
de type fondamental dans une autre ?

542. Déplacement

int a = 4;
int b = std::move(a);

auto* ptr_1 = &a;
auto* ptr_2 = std::move(ptr_1);

Victor Marsault • 2025-2026

Déplacement des types fondamentaux

Lorsque vous déplacez une variable de type fondamental dans une autre,
cela équivaut à faire une copie.

Le contenu de la variable source reste donc inchangé !

552. Déplacement

int a = 4;
int b = std::move(a);

auto* ptr_1 = &a;
auto* ptr_2 = std::move(ptr_1);

a vaut toujours 4,
pas 0

ptr_1 vaut &a et
non pas nullptr

Victor Marsault • 2025-2026

Sommaire

56

1. Copie
2. Déplacement
3. L-Value et R-Value

a. Expression
b. Catégorisation
c. Overloading

4. Conteneurs
5. Pointeurs intelligents
6. Héritage
7. Classes polymorphes

Victor Marsault • 2025-2026

Expression

57

Une expression est une combinaison d’opérandes, d’opérateurs, d’appel
de fonctions, pouvant être évaluée.

L’évaluation d’une expression peut parfois produire une valeur.

3. L-Value et R-Value

Victor Marsault • 2025-2026

Expression

58

Exemples :

(a + b) / 3
15
&r
fcn(r, c + 3, t)
a = b = c
r == 8 || call(g) ==
'c'
++it

3. L-Value et R-Value

Victor Marsault • 2025-2026

Expression

59

Exemples :

(a + b) / 3
15
&r
fcn(r, c + 3, t)
a = b = c
r == 8 || call(g) ==
'c'
++it

Une expression peut
être composée de

sous-expressions

3. L-Value et R-Value

Victor Marsault • 2025-2026

Exemples :

Expression

60

(a + b) / 3
15
&r
fcn(r, c + 3, t)
a = b = c
r == 8 || call(g) ==
'c'
++it

Une expression peut
être composée de

sous-expressions
…

qui peuvent-elles aussi
être constituées

d’autres sous-expressions

3. L-Value et R-Value

Victor Marsault • 2025-2026

Expression

61

Exemples :

(a + *b) / 3

3. L-Value et R-Value

Les deux expressions oranges
et
les deux expressions vertes sont
fondamentalement différentes.

Pourquoi?

Victor Marsault • 2025-2026

Les expressions produisant des valeurs sont catégorisées soit en tant que
L-value, soit en tant que R-value.

Catégorisation

623. L-Value et R-Value

Victor Marsault • 2025-2026

Les expressions produisant des valeurs sont catégorisées soit en tant que
L-value, soit en tant que R-value.

- Une L-value est une expression dont l’évaluation renvoie une donnée
ayant déjà une adresse mémoire (ex: variable, référence).

Catégorisation

633. L-Value et R-Value

Victor Marsault • 2025-2026

Les expressions produisant des valeurs sont catégorisées soit en tant que
L-value, soit en tant que R-value.

- Une L-value est une expression dont l’évaluation renvoie une donnée
ayant déjà une adresse mémoire (ex: variable, référence).

- Une R-value est une expression dont l’évaluation produit un résultat
temporaire, qui n’a pas forcément d’emplacement mémoire associé
(ex: littéral entier, retour d’une fonction par valeur).

Catégorisation

643. L-Value et R-Value

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

653. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

663. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

673. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

5 est un littéral entier

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

683. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

5 est un littéral entier

R-value

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

693. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

703. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

v1 est une variable

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

713. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

L-value

v1 est une variable

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

723. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

733. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

le résultat du calcul
n’est pas encore

stocké en mémoire

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

743. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4); R-value

le résultat du calcul
n’est pas encore

stocké en mémoire

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

753. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

763. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

on construit un tout
nouvel objet

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

773. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

R-value

on construit un tout
nouvel objet

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

783. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

793. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

on retourne une
référence sur l’

élément ajouté au
tableau

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

803. L-Value et R-Value

auto v1 = 5;
auto v2 = v1;
auto v3 = v2 + 5 - v1;
auto v4 = std::vector { 1, 2, 3 };
auto v5 = v4.emplace_back(4);

L-value

on retourne une
référence sur l’

élément ajouté au
tableau

Victor Marsault • 2025-2026

L-value ou R-value ?

Catégorisation

813. L-Value et R-Value

auto v1 = 5; // R
auto v2 = v1; // L
auto v3 = v2 + 5 - v1; // R
auto v4 = std::vector { 1, 2, 3 }; //R
auto v5 = v4.emplace_back(4); //L

🤨 Des questions?

Victor Marsault • 2025-2026

Une bonne manière d’identifier si une expression est une L-value ou une
R-value est de se demander si on peut la placer à gauche d’un =

Si oui, c’est une L-value (L comme Left), si non, c’est une R-value.

Exemple :

 v1 = … // OK

 v2 + 5 - v1 = … // Ça n’a pas de sens

Moyen mnémotechnique

823. L-Value et R-Value

L-value

R-value

Victor Marsault • 2025-2026

Overloading

833. L-Value et R-Value

Rappel

L’overloading (ou surcharge) est le mécanisme permettant de définir deux
fonctions du même nom si elles ont un nombre différent de paramètres ou
que les paramètres n’ont pas le même type.

Victor Marsault • 2025-2026

Overloading

843. L-Value et R-Value

Il est possible de créer des surcharges à partir de la catégorie de valeur
(L-value ou R-value) des arguments.

Victor Marsault • 2025-2026

Overloading

853. L-Value et R-Value

Il est possible de créer des surcharges à partir de la catégorie de valeur
(L-value ou R-value) des arguments.

C’est d’ailleurs ce que nous avons fait plus tôt avec

- les constructeurs de copie (qui attendent des L-values) et
- les constructeurs de déplacement (qui attendent des R-values).

Victor Marsault • 2025-2026

Overloading

863. L-Value et R-Value

Il est possible de créer des surcharges à partir de la catégorie de valeur
(L-value ou R-value) des arguments.

C’est d’ailleurs ce que nous avons fait plus tôt avec

- les constructeurs de copie (qui attendent des L-values) et
- les constructeurs de déplacement (qui attendent des R-values).

L’instructionne std::move ne fait que transformer une L-value en R-value

Victor Marsault • 2025-2026

1. Copie
2. Déplacement
3. L-Value et R-Value
4. Conteneurs

a. Conteneurs séquentiels
b. Conteneurs associatifs
c. Tuples

5. Pointeurs intelligents
6. Héritage
7. Classes polymorphes

Sommaire

87

Victor Marsault • 2025-2026

Conteneurs séquentiels

884. Conteneurs

Un conteneur séquentiel est un conteneur

- dans lequel les éléments sont stockés dans un ordre bien défini,
- de telle sorte que le 1er élément, 2e élément, etc. aient un sens

Par exemple :
- std::array
- std::vector
- std::list

Victor Marsault • 2025-2026

Conteneurs associatifs

894. Conteneurs

Un conteneur associatif est un conteneur dans lequel chaque élément est
indexé par une clé.

Cette indexation peut-être réalisée

- soit au moyen du tri des clés,
- soit au moyen de leur hashage.

Par exemple :
- std::set et std::unordered_set
- std::map et std::unordered_map

Victor Marsault • 2025-2026

Conteneurs associatifs

904. Conteneurs

Accès: O(log n)
Insertion: O(log n)
Suppression: O(log n)

Contraintes sur les clés:
- comparables

Accès: O(1) amorti
Insertion: O(1) amorti
Suppression: O(1) amorti

Contraintes sur les clés:
- équivalences
- hashables

Indexation par hashageIndexation par tri

Victor Marsault • 2025-2026

Conteneurs associatifs

914. Conteneurs

std::map et std::unordered_map sont des dictionnaires : à chaque clé
est associé un seul et unique élément.

auto persons_by_name = std::map<std::string, Person> {
 { "Celine", celine },
 { "Julien", julien },
};

persons_by_name.emplace("Donatien", donatien);
persons_by_name.erase("Julien");

Victor Marsault • 2025-2026

Conteneurs associatifs

924. Conteneurs

std::map et std::unordered_map sont des dictionnaires : à chaque clé
est associé un seul et unique élément.

auto persons_by_name = std::map<std::string, Person> {
 { "Celine", celine },
 { "Julien", julien },
};

persons_by_name.emplace("Donatien", donatien);
persons_by_name.erase("Julien");

Indexation par tri Indexation par hashage

Victor Marsault • 2025-2026

Conteneurs associatifs

934. Conteneurs

std::set et std::unordered_set sont des ensembles : un élément ne
peut être inséré que s’il n’est pas déjà présent dans le conteneur

auto persons = std::unordered_set<std::string> {
 { "Celine" },
 { "Julien" },
};

auto gerald_it = persons.find("Gerald");
auto has_gerald = (gerald_it != persons.end());

Victor Marsault • 2025-2026

Conteneurs associatifs

944. Conteneurs

std::set et std::unordered_set sont des ensembles : un élément ne
peut être inséré que s’il n’est pas déjà présent dans le conteneur

Indexation par tri Indexation par hashage

auto persons = std::unordered_set<std::string> {
 { "Celine" },
 { "Julien" },
};

auto gerald_it = persons.find("Gerald");
auto has_gerald = (gerald_it != persons.end());

Victor Marsault • 2025-2026

Tuples

Les tuples permettent de stocker:

- plusieurs éléments
- de types potentiellement différents

(le nombre et type des éléments soit être connu statiquement)

La librairie standard propose les types std::pair et std::tuple.

Ils permettent notamment d’éviter la définition de types-structurés qui ne
serviraient qu’à un seul endroit du programme.

954. Conteneurs

Victor Marsault • 2025-2026

Tuples

96

Les tuples permettent de stocker un nombre prédéfini d’éléments de types
potentiellement différents.

4. Conteneurs

std::pair<std::string, unsigned int>
get_name_and_age(const Person& person)
{
 return std::make_pair(person.get_name(), person.get_age());
}

Victor Marsault • 2025-2026

Sommaire

97

1. Copie.
2. Déplacement.
3. L-Value et R-Value
4. Conteneurs
5. Pointeurs intelligents
6. Héritage.
7. Classes polymorphes.

Victor Marsault • 2025-2026

Pointeur intelligent

985. Pointeurs intelligents

Un pointeur-intelligent (ou smart-pointer) est un objet qui :

● contient un pointeur vers une donnée allouée dynamiquement
● désalloue automatiquement la donnée lorsqu’il est détruit
● gère de manière cohérente sa copie et son déplacement

Dans du code moderne :

● tous les pointeurs-ownants doivent être encapsulés dans des instances
de smart-pointers ;

● les pointeurs-nus sont nécessairement des pointeurs-observants.

Victor Marsault • 2025-2026

Pointeur intelligent

995. Pointeurs intelligents

Un pointeur-intelligent (ou smart-pointer) est un objet qui :

● contient un pointeur vers une donnée allouée dynamiquement
● désalloue automatiquement la donnée lorsqu’il est détruit
● gère de manière cohérente sa copie et son déplacement

Victor Marsault • 2025-2026

Les pointeurs intelligents fournis par la librairie standard sont :

● std::unique_ptr
● std::shared_ptr

Dans ce cours, nous nous intéresserons uniquement au premier.

Pointeur intelligent

1005. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

Qu’est-ce qu’un std::unique_ptr

1015. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

● Contrairement à un pointeur brut, un unique_ptr own l’objet pointé

Qu’est-ce qu’un std::unique_ptr

1025. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

● Contrairement à un pointeur brut, un unique_ptr own l’objet pointé

● On utilise std::make_unique<type> pour créer un unique_ptr<type>

Qu’est-ce qu’un std::unique_ptr

1035. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

● Contrairement à un pointeur brut, un unique_ptr own l’objet pointé

● On utilise std::make_unique<type> pour créer un unique_ptr<type>

● La copie est interdite

Qu’est-ce qu’un std::unique_ptr

1045. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

● Contrairement à un pointeur brut, un unique_ptr own l’objet pointé

● On utilise std::make_unique<type> pour créer un unique_ptr<type>

● La copie est interdite

● Peut être déplacé (avec std::move)

Qu’est-ce qu’un std::unique_ptr

1055. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

● Contrairement à un pointeur brut, un unique_ptr own l’objet pointé

● On utilise std::make_unique<type> pour créer un unique_ptr<type>

● La copie est interdite

● Peut être déplacé (avec std::move)

● Disponible dans <memory>

Qu’est-ce qu’un std::unique_ptr

1065. Pointeurs intelligents

Victor Marsault • 2025-2026

● Une sorte de pointeur (contient une adresse, peut être nul)

● Invariant: un seul unique_ptr pointe vers la même donnée

○ d’où le terme “unique”

○ des pointeurs bruts peuvent pointer vers la donnée

● Contrairement à un pointeur brut, un unique_ptr own l’objet pointé

● On utilise std::make_unique<type> pour créer un unique_ptr<type>

● La copie est interdite

● Peut être déplacé (avec std::move)

● Disponible dans <memory>

Qu’est-ce qu’un std::unique_ptr

1075. Pointeurs intelligents

🤨 Des questions?

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1085. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1095. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

on instancie un vector de
unique_ptr<Car>

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1105. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

on alloue dynamiquement un
Car avec make_unique

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1115. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

l’élément est déplacé dans
le tableau

R-value

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1125. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

on appelle
create_unique_car

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1135. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

on alloue dynamiquement un
Car avec make_unique

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1145. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

on renvoie le
unique_ptr par valeur

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1155. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

R-value

la valeur de retour est déplacée
dans la variable tmp_car

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1165. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

tmp_car est une L-value ; si on l’ajoute au
tableau directement, le compilateur va
essayer de copier le unique_ptr

L-value

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1175. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
} L-value

tmp_car est une L-value ; si on l’ajoute au
tableau directement, le compilateur va
essayer de copier le unique_ptr⚠ ERREUR DE COMPILATION

⚠

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1185. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
} R-value

on utilise std::move pour déplacer
le unique_ptr dans le tableau

Victor Marsault • 2025-2026

tmp_car est désormais vide

Exemple d’usage de std::unique_ptr

1195. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
}

Victor Marsault • 2025-2026

Exemple d’usage de std::unique_ptr

1205. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 many_cars.push_back(std::make_unique<Car>("Suzuki-Splash"));

 auto tmp_car = create_unique_car("Tesla-Fusion");
 many_cars.push_back(std::move(tmp_car));

 return 0;
} 🤨 Des questions?

Victor Marsault • 2025-2026

Et la copie dans tout ça?

1215. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 /* .. */

 auto car_copies = many_cars;

 return 0;
}

On essaie de copier un vecteur
de unique ptr .
Est-ce que ça va marcher?

Victor Marsault • 2025-2026

L’interdiction de copie se propage!

1225. Pointeurs intelligents

std::unique_ptr<Car> create_unique_car(const std::string& model)
{
 auto car = std::make_unique<Car>(model);
 return car;
}

int main()
{
 auto many_cars = std::vector<std::unique_ptr<Car>> {};

 /* .. */

 auto car_copies = many_cars;

 return 0;
}

On essaie de copier un vecteur
de unique ptr .
Est-ce que ça va marcher?

Non ! copier le vecteur demande de
copier les std::unique_ptr

Victor Marsault • 2025-2026

Sommaire

123

1. Copie
2. Déplacement
3. L-Value et R-Value
4. Conteneurs
5. Pointeurs intelligents
6. Héritage.

a. Syntaxe
b. Instance d’une classe dérivée

7. Classes polymorphes.

Victor Marsault • 2025-2026

Syntaxe

1246. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
};

Victor Marsault • 2025-2026

Syntaxe

1256. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
};

toute instance de Derived peut être
considérée comme une instance de Base

Victor Marsault • 2025-2026

Syntaxe

1266. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
};

permet d’appeler le
constructeur de la classe-parente

Victor Marsault • 2025-2026

Syntaxe

1276. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
};

permet l’accès aux attributs
depuis les instances-filles

Victor Marsault • 2025-2026

Syntaxe

1286. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
};

accès
valide

Victor Marsault • 2025-2026

Syntaxe

1296. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
};

accès
invalide

Victor Marsault • 2025-2026

Syntaxe

1306. Héritage

class Derived : public Base
{
public:
 Derived(int l, int m, int n)
 : Base { l + m, l * m }
 , _z { n }
 {
 _x = 1;
 // _y = 3;
 }

private:
 int _z = 0;
};

class Base
{
public:
 Base(int x, int y)
 : _x { x }
 , _y { y }
 {}

 int get_y() const
 {
 return _y;
 }

protected:
 int _x = 0;

private:
 int _y = 0;
}; 🤨 Des questions?

Victor Marsault • 2025-2026

Appel des fonctions de la classe parente

1316. Héritage

On peut appeler les fonctions publiques de la classe parente sur les
instances de la classe fille.

int main()
{
 auto derived = Derived { … };
 std::cout << derived.get_y() << std::endl;

 return 0;
}

Victor Marsault • 2025-2026

Instance d’une classe dérivée

1326. Héritage

On peut appeler les fonctions publiques du type-parent sur les
instances-filles.

int main()
{
 auto derived = Derived { … };
 std::cout << derived.get_y() << std::endl;

 return 0;
}

get_y() est définie dans la partie publique de Base,
donc on peut l’appeler sur une instance de Derived

Victor Marsault • 2025-2026

Appel des fonctions de la classe parente

1336. Héritage

On peut appeler les fonctions publiques de la classe parente sur les
instances de la classe fille.

int main()
{
 auto derived = Derived { … };
 std::cout << derived.get_y() << std::endl;

 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Instance d’une classe dérivée

1346. Héritage

On peut ensuite référencer les instances du type-enfant par le type-parent.

int main()
{
 auto derived = Derived { … };
 Base& ref_base = derived;

 return 0;
}

void fcn(const Base& base)
{
 ...
}

int main()
{
 auto derived = Derived { … };
 fcn(derived);

 return 0;
}

Victor Marsault • 2025-2026

Instance d’une classe dérivée

1356. Héritage

int main()
{
 auto derived = Derived { … };
 Base& ref_base = derived;

 return 0;
}

void fcn(const Base& base)
{
 ...
}

int main()
{
 auto derived = Derived { … };
 fcn(derived);

 return 0;
}derived peut être référencé par

son type parent Base

On peut ensuite référencer les instances du type-enfant par le type-parent.

Victor Marsault • 2025-2026

Instance d’une classe dérivée

1366. Héritage

On peut ensuite référencer les instances du type-enfant par le type-parent.

int main()
{
 auto derived = Derived { … };
 Base& ref_base = derived;

 return 0;
}

void fcn(const Base& base)
{
 ...
}

int main()
{
 auto derived = Derived { … };
 fcn(derived);

 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Instance d’une classe dérivée

1376. Héritage

Cela fonctionne aussi avec des pointeurs bruts.

int main()
{
 auto derived = Derived { … };
 Base* ref_base = &derived;

 return 0;
}

void fcn(const Base* base)
{
 ...
}

int main()
{
 auto derived = Derived { … };
 fcn(&derived);

 return 0;
}

Victor Marsault • 2025-2026

Instance d’une classe dérivée

1386. Héritage

int main()
{
 auto derived = Derived { … };
 Base* ref_base = &derived;

 return 0;
}

void fcn(const Base* base)
{
 ...
}

int main()
{
 auto derived = Derived { … };
 fcn(&derived);

 return 0;
}Derived* est convertible en Base*

Cela fonctionne aussi avec des pointeurs bruts.

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1396. Héritage

Voyez vous le problème dans
cette ligne ?

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1406. Héritage

On essaie de stocker une Base
sur la pile.

On n’a donc pas la place de
stocker la Derived renvoyée par f

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1416. Héritage

On essaie de stocker une Base
sur la pile.

On n’a donc pas la place de
stocker la Derived renvoyée par f

⚠ Une Derived est une Base donc le
compilateur va tronquer ce qu’il dépasse

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1426. Héritage

Voyez-vous le problème dans
cette ligne ?

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1436. Héritage

On essaie encore de stocker
une Base sur la pile.

g renvoie une L-value donc on
devrait la copier, mais on ne peut
pas stocker la copie

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1446. Héritage

On essaie encore de stocker
une Base sur la pile.

g renvoie une L-value (Derived&)
donc on devrait la copier, mais
Base ne sait se copier qu’une
Base&

⚠ Une Derived est une Base donc le
compilateur va copier la Derived tronquée

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1456. Héritage

Voyez vous le problème dans
cette ligne ?

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1466. Héritage

Voyez vous le problème dans
cette ligne ?

Il n’y en a pas :)
Une Base& et une Derived& prenne
la même place en mémoire.
On pourra récupérer une Derived&
plus tard

Victor Marsault • 2025-2026

Attention à la troncation

Derived f(...) { ... }
Derived& g(...) { ... }

int main()
{
 Base base1 = f(...);
 Base base2 = g(...);
 Base& base3 = g(...);
}

1476. Héritage

🤨 Des questions?

Victor Marsault • 2025-2026

Type statique vs Type dynamique

Rappel:

● Statique = au moment de la compilation
● Dynamique = au moment de l’exécution

Et pour le type?

● Type statique = type déclarée dans le code
● Type dynamique = type réel à l'exécution

1486. Héritage

Victor Marsault • 2025-2026

Type statique vs Type dynamique

class Base
{
 /* .. */
};

class Derived1 : public Base
{
 /* .. */
};

class Derived2 : public Base
{
 /* .. */
};

149

Derived1& f1() {...}
Derived2& f2() {...}
Base& f3() {...}

int main()
{
 Base& x1 = f1();

 Base& x2 = f2();

 Base& x3 = f3();
}

Victor Marsault • 2025-2026

Type statique vs Type dynamique

class Base
{
 /* .. */
};

class Derived1 : public Base
{
 /* .. */
};

class Derived2 : public Base
{
 /* .. */
};

150

Derived1& f1() {...}
Derived2& f2() {...}
Base& f3() {...}

int main()
{
 Base& x1 = f1();

 Base& x2 = f2();

 Base& x3 = f3();
}

Les types statiques de x1,
x2 et x3 sont tous Base&

Victor Marsault • 2025-2026

Type statique vs Type dynamique

class Base
{
 /* .. */
};

class Derived1 : public Base
{
 /* .. */
};

class Derived2 : public Base
{
 /* .. */
};

151

Derived1& f1() {...}
Derived2& f2() {...}
Base& f3() {...}

int main()
{
 Base& x1 = f1();

 Base& x2 = f2();

 Base& x3 = f3();
}

Les types statiques de x1,
x2 et x3 sont tous Base&

Le type dynamique de
x1 est probablement
Derived1&

Le type dynamique de
x2 est probablement
Derived2&

Victor Marsault • 2025-2026

Type statique vs Type dynamique

class Base
{
 /* .. */
};

class Derived1 : public Base
{
 /* .. */
};

class Derived2 : public Base
{
 /* .. */
};

152

Derived1& f1() {...}
Derived2& f2() {...}
Base& f3() {...}

int main()
{
 Base& x1 = f1();

 Base& x2 = f2();

 Base& x3 = f3();
}

Les types statiques de x1,
x2 et x3 sont tous Base&

Le type dynamique de
x1 est probablement
Derived1&

⚠ On ne connait pas le
type dynamique de x3

Le type dynamique de
x2 est probablement
Derived2&

Victor Marsault • 2025-2026

Type statique vs Type dynamique

class Base
{
 /* .. */
};

class Derived1 : public Base
{
 /* .. */
};

class Derived2 : public Base
{
 /* .. */
};

153

Derived1& f1() {...}
Derived2& f2() {...}
Base& f3() {...}

int main()
{
 Base& x1 = f1();

 Base& x2 = f2();

 Base& x3 = f3();
}

Les types statiques de x1,
x2 et x3 sont tous Base&

Le type dynamique de
x1 est probablement
Derived1&

⚠ On ne connait pas le
type dynamique de x3

Le type dynamique de
x2 est probablement
Derived2&

🤨 Des
questions?

Victor Marsault • 2025-2026

Sommaire

154

1. Copie
2. Déplacement
3. L-Value et R-Value
4. Conteneurs
5. Pointeurs intelligents
6. Héritage
7. Classes polymorphes

a. Définition
b. Redéfinir le comportement d’une classe
c. Résolution d’appels
d. Fonctions virtuelles pures

Victor Marsault • 2025-2026

Définition

1557. Classes polymorphes

En C++, l’héritage permet de répondre à 2 besoins orthogonaux :

● éviter la duplication de code
● spécialiser un comportement

Victor Marsault • 2025-2026

Définition

1567. Classes polymorphes

En C++, l’héritage permet de répondre à 2 besoins orthogonaux :

● éviter la duplication de code
● spécialiser un comportement

Une classe dont on a pu redéfinir le comportement via héritage est une
classe dont les instances peuvent se comporter différemment selon le type
dynamique de l’objet.

On parle de classes polymorphes.

Victor Marsault • 2025-2026

Redéfinir le comportement d’une classe

1577. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }

 void describe() const
 {
 std::cout << "This is a " << get_name() << std::endl;
 }
};

Victor Marsault • 2025-2026

Redéfinir le comportement d’une classe

1587. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }

 void describe() const
 {
 std::cout << "This is a " << get_name() << std::endl;
 }
};

indique que la fonction peut-être
redéfinie par les classes-filles

Victor Marsault • 2025-2026

Redéfinir le comportement d’une classe

1597. Classes polymorphes

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

class Guitar: public Instrument
{
public:
 std::string get_name() const override
 {
 return "guitar";
 }
};

Victor Marsault • 2025-2026

Redéfinir le comportement d’une classe

1607. Classes polymorphes

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

class Guitar: public Instrument
{
public:
 std::string get_name() const override
 {
 return "guitar";
 }
};

demande au compilateur de vérifier
que la fonction est bien virtuelle

Optionnel, mais fortement conseillé

Victor Marsault • 2025-2026

Redéfinir le comportement d’une classe

1617. Classes polymorphes

int main()
{
 Piano piano;
 Guitar guitar;

 std::vector<Instrument*> instruments { &piano, &guitar };

 for (const auto* instrument: instruments)
 {
 std::cout << instrument->get_name() << std::endl;
 }

 return 0;
}

Victor Marsault • 2025-2026

Résolution d’appels

1627. Classes polymorphes

1. Une fonction virtuelle dans une classe-mère est également virtuelle
dans les classes-filles (si elle a la même signature)

2. Si une fonction n’est pas virtuelle, on appelle la version définie dans le
type statique de l’objet

3. Si une fonction est virtuelle, on appelle la version définie dans le type
dynamique de l’objet

4. L’appel au destructeur répond aux mêmes règles que les autres
fonctions

Victor Marsault • 2025-2026

1. Une fonction virtuelle dans une classe-mère est également virtuelle
dans les classes-filles (si elle a la même signature)

2. Si une fonction n’est pas virtuelle, on appelle la version définie dans le
type statique de l’objet

3. Si une fonction est virtuelle, on appelle la version définie dans le type
dynamique de l’objet

4. L’appel au destructeur répond aux mêmes règles que les autres
fonctions.

Résolution d’appels

1637. Classes polymorphes

Victor Marsault • 2025-2026

Résolution d’appels

1647. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

Victor Marsault • 2025-2026

Résolution d’appels

1657. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

fonction
virtuelle

Victor Marsault • 2025-2026

Résolution d’appels

1667. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

fonction
virtuelle

donc virtuelle
aussi

Victor Marsault • 2025-2026

Résolution d’appels

1677. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name()
 {
 return "piano";
 }
};

fonction
virtuelle ⚠ Attention ⚠

aux signatures

ne redéfinit
pas l’autre

fonction

Victor Marsault • 2025-2026

Résolution d’appels

1687. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name()
 {
 return "piano";
 }
};

⚠ Attention ⚠
aux signatures

⚠ BUG OBSCUR ⚠

fonction
virtuelle

ne redéfinit
pas l’autre

fonction

Victor Marsault • 2025-2026

Résolution d’appels

1697. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name() override
 {
 return "piano";
 }
};

⚠ Attention ⚠
aux signatures

toujours mettre override pour que
le compilateur nous prévienne si on se

trompe dans la signature

Victor Marsault • 2025-2026

Résolution d’appels

1707. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name() override
 {
 return "piano";
 }
};

⚠ Attention ⚠
aux signatures

toujours mettre override pour que
le compilateur nous prévienne si on se

trompe dans la signature
ERREUR DE COMPILATION

Victor Marsault • 2025-2026

Résolution d’appels

1717. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
}; class Piano: public Instrument

{
public:
 std::string get_name() const
 {
 return "piano";
 }
}; 🤨 Des questions?

Victor Marsault • 2025-2026

1. Une fonction virtuelle dans une classe-mère est également virtuelle
dans les classes-filles (si elle a la même signature)

2. Si une fonction n’est pas virtuelle, on appelle la version définie dans le
type statique de l’objet

3. Si une fonction est virtuelle, on appelle la version définie dans le type
dynamique de l’objet

4. L’appel au destructeur répond aux mêmes règles que les autres
fonctions.
Pour garantir qu’un objet polymorphe sera correctement détruit, en
particulier dans le cas d’allocations dynamiques, il faut toujours définir
un destructeur virtuel dans la classe-mère (même s’il ne fait “rien”).

Résolution d’appels

1727. Classes polymorphes

Victor Marsault • 2025-2026

Résolution d’appels

1737. Classes polymorphes

class Instrument
{
public:
 std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

Victor Marsault • 2025-2026

Résolution d’appels

1747. Classes polymorphes

class Instrument
{
public:
 std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

type statique

on résout l’appel à get_name()

Victor Marsault • 2025-2026

Résolution d’appels

1757. Classes polymorphes

class Instrument
{
public:
 std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

type statique

on résout l’appel à get_name()

fonction non
virtuelle

Victor Marsault • 2025-2026

on réalise un appel statique

Résolution d’appels

1767. Classes polymorphes

class Instrument
{
public:
 std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

type statique

fonction non
virtuelle

Victor Marsault • 2025-2026

Résolution d’appels

1777. Classes polymorphes

class Instrument
{
public:
 std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

???

Victor Marsault • 2025-2026

Résolution d’appels

1787. Classes polymorphes

class Instrument
{
public:
 std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
} 🤨 Des questions?

Victor Marsault • 2025-2026

1. Une fonction virtuelle dans une classe-mère est également virtuelle
dans les classes-filles (si elle a la même signature)

2. Si une fonction n’est pas virtuelle, on appelle la version définie dans le
type statique de l’objet

3. Si une fonction est virtuelle, on appelle la version définie dans le type
dynamique de l’objet

4. L’appel au destructeur répond aux mêmes règles que les autres
fonctions.

Résolution d’appels

1797. Classes polymorphes

Victor Marsault • 2025-2026

Résolution d’appels

1807. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

Victor Marsault • 2025-2026

Résolution d’appels

1817. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

type statique

on résout l’appel à get_name()

Victor Marsault • 2025-2026

Résolution d’appels

1827. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

fonction
virtuelle

on résout l’appel à get_name()

Victor Marsault • 2025-2026

Résolution d’appels

1837. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
} on réalise un appel dynamique

fonction
virtuelle

type dynamique

Victor Marsault • 2025-2026

Résolution d’appels

1847. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
} on réalise un appel dynamique

fonction
virtuelle

type dynamique

Victor Marsault • 2025-2026

Résolution d’appels

1857. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
}

piano

Victor Marsault • 2025-2026

Résolution d’appels

1867. Classes polymorphes

class Instrument
{
public:
 virtual std::string get_name() const
 {
 return "???";
 }
};

class Piano: public Instrument
{
public:
 std::string get_name() const override
 {
 return "piano";
 }
};

int main()
{
 Piano piano;

 Instrument& instrument = piano;
 std::cout << instrument.get_name() << std::endl;

 return 0;
} 🤨 Des questions?

Victor Marsault • 2025-2026

1. Une fonction virtuelle dans une classe-mère est également virtuelle
dans les classes-filles (si elle a la même signature)

2. Si une fonction n’est pas virtuelle, on appelle la version définie dans le
type statique de l’objet

3. Si une fonction est virtuelle, on appelle la version définie dans le type
dynamique de l’objet

4. L’appel au destructeur répond aux mêmes règles que les autres
fonctions.
Pour garantir qu’un objet polymorphe sera correctement détruit, en
particulier dans le cas d’allocations dynamiques, il faut toujours définir
un destructeur virtuel dans la classe-mère (même s’il ne fait “rien”).

Résolution d’appels

1877. Classes polymorphes

Victor Marsault • 2025-2026

Si une fonction n’a pas de sens à être définie dans la classe-mère, il n’est
pas nécessaire de lui fournir une implémentation. On parle de fonctions
virtuelles pures.

Si une classe contient des fonctions virtuelles pures, elle devient abstraite et
n’est plus instanciable.

Les classes-filles doivent redéfinir toutes les fonctions virtuelles pures des
types-parents pour pouvoir être instanciées.

Fonctions virtuelles pures

188

Victor Marsault • 2025-2026

Fonctions virtuelles pures

189

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 Instrument instrument;
 Flute flute;

 return 0;
}

Victor Marsault • 2025-2026

Fonctions virtuelles pures

190

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 Instrument instrument;
 Flute flute;

 return 0;
}

définit une fonction virtuelle pure

Victor Marsault • 2025-2026

Fonctions virtuelles pures

191

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 Instrument instrument;
 Flute flute;

 return 0;
}

Instrument est donc abstraite

Victor Marsault • 2025-2026

Fonctions virtuelles pures

192

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 Instrument instrument;
 Flute flute;

 return 0;
}

Instrument est donc abstraite
donc n’est pas instanciable

Victor Marsault • 2025-2026

Fonctions virtuelles pures

193

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 Instrument instrument;
 Flute flute;

 return 0;
}

Instrument est donc abstraite
donc n’est pas instanciable

ERREUR DE COMPILATION

Victor Marsault • 2025-2026

Fonctions virtuelles pures

194

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute définit get_name

Victor Marsault • 2025-2026

Fonctions virtuelles pures

195

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute n’a pas de fonctions
virtuelle pure
Elle est donc instanciable.

Victor Marsault • 2025-2026

Fonctions virtuelles pures

196

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute n’a pas de fonctions
virtuelle pure
Elle est donc instanciable.

Pas de problème!

Victor Marsault • 2025-2026

Fonctions virtuelles pures

197

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute, j’ai oublié const

Victor Marsault • 2025-2026

Fonctions virtuelles pures

198

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute définit une autre
fonction-membre

Victor Marsault • 2025-2026

Fonctions virtuelles pures

199

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute est donc abstraite

Victor Marsault • 2025-2026

Fonctions virtuelles pures

200

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute est donc abstraite
donc pas instanciable 😱

Victor Marsault • 2025-2026

Fonctions virtuelles pures

201

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() { return "piano"; }
};

int main()
{
 //Instrument instrument;
 Flute flute;

 return 0;
}

Flute est donc abstraite
donc pas instanciable 😱

ERREUR DE COMPILATION OBSCURE

Victor Marsault • 2025-2026

Fonctions virtuelles pures

202

class Instrument
{
public:
 virtual std::string get_name() const = 0;
};

class Flute : public Instrument
{
public:
 virtual std::string get_name() const { return "piano"; }
};

int main()
{
 Instrument instrument;
 Flute flute;

 return 0;
}

🤨 Des questions?

Victor Marsault • 2025-2026

Ce qu’on va apprendre dans le segment 2

● La copie
● Le déplacement
● Comment éviter (encore plus) de copies
● Conteneurs de base
● Utilisation des std::unique_ptr
● Héritage
● Résolution d’appel dynamique

203

